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Abstract
Applying the resolution–scale relativity principle to develop a mechanics of non-dif-
ferentiable dynamical paths, we find that, in one dimension, stationary motion cor-
responds to an Itô process driven by the solutions of a Riccati equation. We verify 
that the corresponding Fokker–Planck equation is solved for a probability density 
corresponding to the squared modulus of the solution of the Schrödinger equation 
for the same problem. Inspired by the treatment of the one-dimensional case, we 
identify a generalization to time dependent problems in any number of dimensions. 
The Itô process is then driven by a function which is identified as establishing the 
link between non-differentiable dynamics and standard quantum mechanics. This is 
the basis for the scale relativistic interpretation of standard quantum mechanics and, 
in the case of applications to chaotic systems, it leads us to identify quantum-like 
states as characterizing the entire system rather than the motion of its individual 
constituents.
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1 Introduction

Scale relativity was proposed by Nottale [14, 17, 19] to extend the relativity princi-
ple to transformations of resolution–scales, which become additional relative attrib-
utes defining reference frames with respect to one another. As such, scale relativity 
generalizes the standard theory of relativity and includes it as a special case, when 
the considered systems are invariant under changes of resolution–scale such as in 
classical mechanics with smooth differentiable trajectories. The resolution–scale 
relativity principle leads to the abandonment of the usually implicit hypothesis of 
differentiability and opens up on the consideration of non-differentiable or generally 
fractal geometries. This amounts to a clear departure from classical dynamics with, 
in particular, the loss of trajectories as a meaningful concept.

In this article, we concentrate at first on the stationary states, which, in standard 
quantum mechanics, are described as eigenfunctions of the Hamiltonian operator. 
We do not intend to provide a detailed review of the scale relativistic approach to 
standard quantum mechanics nor to discuss the details of its possible interpretations. 
More details can be found in publications by Nottale [14, 17, 19] or in an article 
by Teh et al. [12]. However, in order to ensure some level of self-containment, in 
Sect. 2, we provide the main lines of the application of the resolution–scale relativ-
ity principle for the development of non-differentiable dynamics. In particular, we 
show how concentrating on one dimensional stationary states leads to identifying 
an Itô process driven by the solutions of a Riccati equation. This special form of 
Riccati equations commonly appears in quantum mechanics and, in Sect.  3, after 
reviewing properties of Riccati equations, we see that finding their solutions entails 
solving the time independent Schrödinger equation for the same problem. In Sect. 4 
we verify that, in the stationary regime, the Fokker–Planck equation for the Itô 
process is satisfied by the squared modulus of the eigenfunctions of the time inde-
pendent Schrödinger equation. In order to further expose the connection with stand-
ard quantum mechanics, in Sect.  5, we travel the reverse route and show that the 
Schrödinger equation re-written as a Madelung system of equations [10] yields the 
same Riccati equation in the one dimensional stationary case. Then, in Sect. 6, we 
transpose these results to the multidimensional case and obtain a multidimensional 
Itô process, the integration of which yields standard quantum mechanics statistics 
also for time dependent states. This allows us to comment, in Sect. 7, on the pos-
sibility that the resolution–scale relativity principle is also applicable to chaotic or 
complex systems, which come under an effective stochastic description. Finally, in 
Sect. 8, we summarize and bring a few conclusions together.

2  The Riccati Equation from Resolution–Scale Relativity

This section is inspired by Sects. 3, 4, and 5 in Teh et  al.’s paper [12], where 
more details and discussions can be found. In classical mechanics, the velocity is 
defined as the rate of change of the position �(t) during an infinitesimal time step 
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forward or backward. The resolution–scale relativity principle leads to consider-
ing non-differentiable paths. This makes the velocity resolution–scale dependent 
as it can only be defined by considering finite time steps. Also, it breaks the sym-
metry between forward and backward time steps, resulting in the resolution–scale 
dependent velocity to be double-valued. This situation can be dealt with by defin-
ing the following finite time differentials of position:

with which a displacement over a time step dt can be described by the combination 
of two terms:

In both expressions, the first term amounts to a displacement with a usual veloc-
ity �̇± depending on the resolution–scale �t . The second terms d�±(t) correspond to 
possibly stochastic residuals such that ⟨d�±⟩ = 0 with the averaging being done over 
all the paths sharing the same usual velocities [19].

Without any loss of generality, the two differential operators can be combined into a 
single complex time-differential operator[19]:

This can be used to define the complex velocity:

where � can be regarded as the classical velocity and � is an additional term, the 
kink velocity [12], which classically vanishes in the limit of infinitesimal �t but per-
sists and generally diverges for non-differentiable paths.

We now turn to considering a classical field h(�, t) on the Taylor expansion of which 
we act with the forward and backward time differential operators defined above and 
take the expectation value over all the compatible paths. This amounts to smoothing 
out all paths details smaller than some resolution-scale set by the inspection time-scale 
�t , which explicitly enters the definition of the differential operator:
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If we now restrict ourselves to d�± being a Wiener process such that 
⟨dbi+ ⋅ dbi−⟩ = 0 , and ⟨dbi+ ⋅ dbj+⟩ = ⟨dbi− ⋅ dbj−⟩ = 2D�i,jdt , in the limit of infini-
tesimal times dt, the complex and resolution-scale dependent time-differential of h 
becomes[12, 19]:

This can be used to develop a mechanics of non-differentiable dynamical paths. For 
this purpose, we assume that mechanical systems can be characterized by a now 
complex Lagrange function L(�,V, t) and we correspondingly define the complex 
action as S = ∫̂

t2

t1
L(�,V, t)dt . Here, we use the symbol ∫̂  to indicate the integration 

is implementing the reciprocal of the complex differential operator of Eq. (2). The 
definition of the complex differential operator results from a renunciation of taking 
the limit dt → 0 . Correspondingly and inversely, the integration can not proceed by 
following one specific non-differentiable dynamical paths out of an infinite multi-
tude of indistinguishable ones constituting a bundle fitting the finite resolution scale 
at hand. It is specifically this distinction that results in the apparent transition from a 
point-particle discussion to a field theory [12, 19]. With this, enforcing Hamilton’s 
stationary action principle while keeping track of changes in the Leibniz product 
rule resulting from the higher order differential term in Eq.  (2), leads to the usual 
Euler–Lagrange equation but with the complex time-differential operator and 
velocity:

We then assume that the Lagrange function for a point particle of mass m under the 
influence of a real potential energy term Φ keeps its classical form with the com-
plex velocity in the place of the usual velocity: L =

1

2
mV2 − Φ . The Euler–Lagrange 

equation leads to a generalized form of Newton’s relation of dynamics where the 
velocity is replaced by the complex velocity (Eq.  (3)) and the time derivative is 
replaced by the complex finite time differential operator (Eq. (4)):

We may now replace V and d̂
dt

 by their expressions (Eqs. 3 and 4), so as to separate 
the real and imaginary parts of the generalized Newton Equation (5):

It should be noted that this system of equations was also obtained by Nelson [13] in 
the context of stochastic mechanics with an entirely different set of hypothesis and 
interpretations[12, 19]. It can be noted then when there is no kink velocity � = 0 , 

(4)d̂

dt
h =

[
𝜕

𝜕t
+ V ⋅ ∇ − iDΔ

]
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−
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then standard classical mechanics is recovered. Inversely, we are now going to con-
centrate on a form of stationary motion, in which there is no usual velocity or drift 
but only the stochastic fluctuation. This amounts to setting ⟨�⟩ = 0 and, in order to 
simplify, we restrict ourselves to the special case � = 0 . The motion that is left is 
entirely described by the kink velocity U, which is associated with the non-differen-
tiable nature of paths that are otherwise stationary. Under this restriction, the system 
of Eq. (6) becomes:

The second equation indicates that, as can be expected, � does not depend on time. 
Since � = 0 , we have �+ = −�− , and �+ = � . Consequently, Eq. (1) becomes

which is a Langevin equation or Itô process driven by �(�) , solution to Eq. (7) and in 
which d�+ is a stochastic function such that ⟨d�+⟩ = 0 and ⟨dbi+ ⋅ dbj+⟩ = 2D�i,jdt.

We now further restrict ourselves and consider one dimensional problems for which 
Eq. (7) becomes

which, when integrated once, takes the form of a Riccati equation[5]:

where E is an integration constant with the dimension of energy. Here, we start using 
the lighter notation U� =

dU

dx
 . With the resolution–scale relativity principle leading to 

standard quantum mechanics[12, 19] , it is not surprising to see the appearance of 
this Riccati equation. Several authors [6, 24] investigated the occasional possibility 
of using Riccati equations to solve quantum mechanical problems such as a particle 
in a box, the simple harmonic oscillator and others. More fundamentally, G.W. Rog-
ers [21] observed that the one-dimensional Schrödinger equation can be reduced to 
a Riccati form. This is particularly interesting: while being non-linear, the Riccati 
equation can be used to formulate standard quantum mechanics [23], which is gen-
erally presented as a fundamentally linear theory. Here, we identify again the Ric-
cati equation as being deeply rooted in the quantum mechanical behavior but, this 
time, in a stochastic description, which independently manifests itself in the resolu-
tion–scale relativity framework without invoking quantum mechanics.

(7)
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3  Riccati Equations

A Riccati equation is a first order non-linear differential equation quadratic in the 
unknown function:

Equation  (9) is of this type with q0 =
1

mD
(Φ(x) − E) , q1 = 0 , and q2 = −

1

2D
 . With 

their relatively simple form, these equations constitute an attractive gateway to non 
linear dynamical systems. Nowakowski and Rosu [20] investigated systems for 
which the equations of motion resulting from Newton’s laws can be written as Ric-
cati equations. We have seen above that quantum mechanics can sometimes be for-
mulated in terms of Riccati equations. These equations then appear as a possible 
point of connection between nonlinear dynamics and quantum mechanics.

An interesting property of the general Riccati equation [22] is that it can be rewritten 
as a linear second order differential equation by noticing that with � = Uq2,

in which, substituting � = −
� �

�
 leads to

When the solution � of this equation is found, the solution of the original Riccati 
equation is obtained as U = −

� �

q2�
 . In the case of Eq. (9), q1 +

q�
2

q2
= 0 and the corre-

sponding linear second order differential equation can be rearranged in the form

which, with the substitution ℏ ↔ 2mD , is just the time independent Schrödinger 
equation for a particle of mass m in a one dimensional potential Φ . This is the stand-
ard quantum mechanical answer to the problem we approached by applying the gen-
eralized Newton fundamental relation of dynamics Equation (5). So the connection 
with standard quantum mechanics is starting to reveal itself.

With q2 = −
1

2D
 , we have U = 2D

� �

�
 and with D > 0 , the sign of U is such that, in 

Eq.  (8), it corresponds to a flux toward regions where the wave function � reaches 
extrema and away from its nodes. In the stationary case, this flux must be statistically 
compensated for by the stochastic process as can be verified with the Fokker–Planck 
equation.

U�(x) = q0(x) + q1(x)U(x) + q2(x)U
2(x).

�� = q0q2 +

(
q1 +

q�
2

q2

)
� + �2,

−� �� = q0q2� −

(
q1 +

q�
2

q2

)
� �.

(10)−2mD2� �� + Φ(x)� = E� ,
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4  Fokker–Planck Equation

Several authors [1–3, 7, 12] have applied the scale relativity approach to various time 
independent one-dimensional quantum problems. Before them, McClendon and Rabitz 
[11] applied the same Eqs. (6) and (8) but derived from Nelson’s approach [13]. All 
verified that the numerical integration of the Langevin equation or Itô process, Eq. (8), 
yields position distributions converging toward the probability densities matching the 
stationary wave-functions given by standard quantum mechanics for the same potential. 
Here, we can see why this is so in all cases. The stochastic process described by Eq. (8) 
with db =

√
2DdW , where dW is the standard Wiener process, corresponds to the fol-

lowing Fokker–Planck differential equation for the probability density �:

We just established that U = 2D
� �

�
 with � a solution of the time independent 

Schrödinger Equation  (10). In an attempt to identify the probability � with the 
squared modulus of a probability amplitude, we may write the wave function as 
� =

√
�ei� and then � � =

�
��

2
√
�
+ i

√
�� �

�
ei� and, in one dimension, in the station-

ary regime � � = 0 , so U = D
��

�
 and, hence, � = � ⋅ �∗ solves the Fokker–Planck 

equation for stationarity d�
dt

= 0.
This confirms that in the limit of infinite times, the integration of the Itô process of 

Eq. (8) reproduces the quantum probability density for the position of a particle of mass 
m in a stationary state of energy E in any one dimensional potential Φ . So, the connec-
tion with standard quantum mechanics is now explicit.

5  Madelung’s Equations

To be complete, we can now start from standard quantum mechanics and see if we 
can identify the Itô process that reproduces stationary quantum statistics. Writing the 
wave-function � =

√
�ei� in the usual definition of the probability current density 

� = �� = −iD(�∗∇� − �∇�∗) , we identify the drift velocity as � = 2D∇� . Simi-
larly, Schrödinger’s Equation (10) can be rewritten as the equivalent system of Made-
lung’s equations [10]:

The first equation, Eq.  (12), is a continuity equation and the second, Eq.  (13), is 
Euler’s equation of fluid dynamics with Q = −2mD2 Δ

√
�

√
�

 as an additional term 
known as the quantum potential [4] that is entirely responsible for the quantum 

(11)��

�t
= −

�

�x
(�U) +D

�2�

�x2
.

(12)
��

�t
= − ∇(��),

(13)
(
�

�t
+ �∇

)
� = −

∇(Φ +Q)

m
.
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behavior. In the one-dimensional stationary case discussed earlier, ��
�t

= 0 and also 
V = 0 , so the continuity equation is degenerate and, after integration, the Made-
lung–Euler fluid dynamics equation becomes Q = E − Φ , where E is an integration 
constant. Substituting Q with its expression and expanding leads to

From this, noting that �
��

�
=

(
��

�

)�

+

(
��

�

)2

 and using U = D
��

�
 we obtain again the 

Riccati Equation  (9). This time, however, it is obtained from a standard quantum 
mechanical approach. The solutions of this Riccati equation retain the properties 
established earlier of driving the Itô process of Eq. (8) in a way that reproduces sta-
tionary quantum probability densities. This convergence of Schrödinger’s Equa-
tion  (10) and Newton’s generalized Equation  (5) of dynamics does not come as a 
surprise as, as further discussed in the next section, the two are in fact equivalent 
[12, 19]. We now turn to a generalization of all this in more than one dimension.

6  More than One Dimension

In more than one dimension, energy eigenfunctions cannot always be real and the 
complex velocity V generally has both a real and an imaginary part. We have seen 
above that in one dimension, for a state � , the kink velocity U = 2D

� �

�
 sets the flux 

required to compensate the diffusion resulting from the stochastic term in the Itô 
process described by Eq.  (8). In more than one dimension, the kink velocity � 
should retain this role as it is the non-classical or quantum-like part of the complex 
velocity field. In addition, there can be a non-zero drift velocity � which is the real 
and classical part of the complex velocity field. Considering the expression for the 
complex velocity V = � − i� , in order to generalize the expression U = 2D

� �

�
 , it is 

tempting, as an hypothesis to write V in the form:

Proceeding with � =
√
�ei� as before, we obtain

from which we identify � = 2D∇� , which is the familiar expression for the drift 
velocity associated with the probability current density, and � = D

∇�

�
 . The one 

dimensional result U = 2D
� �

�
 obtained by solving the Riccati Equation (9) appears 

as an accidental consequence of the constancy of the complex argument of the wave 
function or absence of probability current. The expression U = D

��

�
 found in Sect. 4 

now appears as more fundamental and general.

−mD2

(
���

�
−

1

2

(
��

�

)2
)

= E − Φ.

(14)V = −2iD
∇�

�
.

V = 2D∇� − iD
∇�

�
,
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It is interesting to see how this works in the three dimensional Fokker–Planck 
equation with now � ≠ 0 . With the definition of � and � in Eq. (3), the time for-
ward Eq. (1) becomes

and the corresponding Fokker–Planck equation is

With � = D
∇�

�
 , the second term on the right-hand side is cancelled out by the third. 

The first term and the left-hand side constitute together Madelung’s continuity Equa-
tion (12). So, even in the time dependent cases, this Fokker–Planck equation is satis-
fied by our hypothesis for the complex velocity V with the real part corresponding to 
the drift associated with the probability current density and the imaginary part cor-
responding to an anti-diffusion[18] flux statistically compensated for by the stochas-
tic process as already identified in the one dimensional case.

In the one dimensional case, starting from the Madelung–Euler Equation  (13) 
and using U = D

��

�
 , we obtained the Riccati equation, which we had previously 

obtained from the integration of the one dimensional version of Eq. (6) in the case 
� = 0 . In the more than one dimension case, with the hypothesis we made for the 
expression of the complex velocity V , we need to verify if the Madelung–Euler 
Equation  (13) can again be connected with Eq.  (6). Or instead, we could equiva-
lently connect Schrödinger’s Equation (10) and the generalized Eq. (5) of dynamics. 
We do not reproduce the development [12, 19] here but the second can actually be 
shown to be equivalent to the first by writing the complex action in logarithmic form 
S = −2imD ln� (the constant 2mD plays the role of a unit of action), which makes 
the complex velocity canonically appear as V = −2iD∇ ln� , which is precisely the 
complex velocity expression hypothesized in Eq. (14).

This establishes that, with the complex velocity of Eq. (14), the integration of the 
Itô process of Eq. (15) statistically reproduces the quantum probability density for a 
time dependent state � in any number of dimensions.

7  On Quantum‑Like Mechanics and Dynamical Chaos

We have seen above that enforcing the resolution–scale relativity principle to con-
servative point mechanics problems leads to an Itô process (Eq.  15) driven by a 
complex velocity, which can be written as V = � − i� = −2iD∇ ln� with � the 
solution of the Schrödinger equation for the same problem. Integration of this Itô 
process then statistically reproduce the position probability density |�|2 . One spe-
cific integration of the Itô process amounts to sampling one of an infinite number 
of dynamical paths. It should be clear that such a sampling is not to be identified 
with the state of the system in any way. Under the resolution–scale relativity prin-
ciple, when the dynamics is resolution-scale dependent with a Wiener process com-
ponent, notions of position and trajectory lose their meaning. The paths are neither 

(15)d�+ = (� + �)dt + d�+

��

�t
= −∇ ⋅ (��) − ∇ ⋅ (��) +D∇2�.
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enumerable nor distinguishable, so the system can not be described as following a 
particular one. The sampling of dynamical paths obtained by integration of the Itô 
process does not correspond to any physical reality as long as the successive posi-
tions are not given by successive position measurements. Instead, the state of the 
system is to be identified with a time section of the entire bundle of dynamical paths 
[12, 19] with the same resolution-scale dependent complex velocity V , which was 
found to correspond to the gradient of the logarithm of the wave function used to 
describe the state of the system in standard quantum mechanics.

It has been suggested that if the resolution–scale relativity principle is applicable 
to complex or chaotic systems that can effectively be described in terms of Wiener 
processes at some resolution-scale, then quantum-like features would be expected to 
appear in such systems [9, 14, 19]. There is a number of observational evidences 
that this might indeed be the case for various classes of gravitational Keplerian sys-
tems [8, 15, 16, 19]. In this context, it is worth noting here that, with the substitution 
ℏ ↔ 2mD , the generalized de  Broglie wavelength for a particle of velocity � 
becomes independent of the particle’s mass: �dB =

2D

|�| . This implies that an ensem-
ble of particles with different masses constituting a macroscopic chaotic system in a 
given quantum-like state would be distributed according to the same position proba-
bility density. There is, however, a difference between this situation and the resolu-
tion–scale relativity based interpretation of standard quantum mechanics: when 
observed at a fine enough resolution-scale, a given particle within the set recovers a 
differentiable trajectory that can be described using classical mechanics. At coarse 
enough resolution-scale, it may be appropriate to describe the system as being in a 
stationary quantum-like state labeled for example by some eigenvalues of mass-spe-
cific energy and angular momentum or as time evolving because of being in a super-
position of a few such stationary states. However, at resolutions finer than the gener-
alized de Broglie wavelength characterizing the quantum like state, a given 
constituent of the system can be found with almost any energy and angular momen-
tum. The one particle does not hold much information about the quantum-like state 
which possibly describes its motion and that of other constituents of the system 
observed at coarser resolutions. Considering that the interaction of the one particle 
with rest of the system conserves energy and angular momentum for example, these 
quantities for the individual particle are classically entangled with those for the rest 
of the ensemble of particles. Without this interactions between individual particles 
and the rest of the system, there would not be any chaotic motion at any scale and, 
consequently, no effective description in terms of Wiener processes and, hence, no 
quantum-like description either. The scale-relativistic quantum-like state appears as 
the state of the entire system regarded under some sort of thermodynamic limit 
under which the existence of individual constituents is lost. As such, the scale-rela-
tivistic quantum-like state would not be the state of the individual constituents 
whose mutual interactions are responsible for the chaotic behavior falling under a 
quantum like description if the resolution–scale relativity principle is applicable. 
Then, the motions of the individual constituents can be envisioned as as many inte-
grations of the Itô process for the quantum-like state, the information about which is 
held by the entire system. As long as one does not rely on the physical existence of 
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some sub-quantum Brownian motion for the interpretation of quantum mechanics, 
this apparent disconnect between the content and the container does not arise for 
standard quantum mechanics.

8  Summary and Conclusions

In Sect. 2, we reviewed the development of the dynamics of non-differentiable paths. 
It proceeds from the definition of complex and resolution-scale dependent velocity 
and time differential operator (Eqs. 3 and 4). Assuming the system can be described 
by a complex Lagrange function, the equation of motion was found to take the form 
of Newton’s fundamental relation of dynamics (Eq. 5) with the usual velocity and 
time derivative replaced by their complex and resolution-scale dependent counter-
parts. Separating the real and imaginary parts of this equation, and restricting our-
selves to one dimensional cases with no net motion, we obtained a Riccati equation 
for the imaginary part of the complex velocity (Eq. 9). On the basis of the definition 
of the time-differential operator, we find that the system evolves according to an Itô 
process (Eq. 8) driven by the imaginary part of the complex velocity, solution of the 
Riccati equation.

In Sect. 3, we found that the second order linear differential equation correspond-
ing to the Riccati equation is Schrödinger’s equation with the substitution ℏ ↔ 2mD . 
We observed that the drift term in the Itô process tends to make the particle move 
away from the nodes of the wave function and toward its extrema in a way compen-
sated for by the stochastic term in the stationary regime for which the Riccati equa-
tion was obtained. More specifically, in Sect. 4, we verified that the Fokker–Planck 
equation for the Itô process is solved by a probability density equal to the squared 
modulus of the solution of the Schrödinger equation corresponding to the Riccati 
equation. In Sect. 5, we verified that the Madelung equations, which are equivalent 
to Schrödinger’s equation, also yield the same Riccati equation when applied in the 
stationary regime. This two way correspondence establishes the equivalence of the 
generalized Newton Equation  (5) of dynamics and Schrödinger’s Equation  (10) at 
least in the one dimensional stationary case.

In Sect. 6, we postulated an expression for the complex velocity that generalized 
the one dimensional result to any number of dimensions. We used it to write the 
multidimensional Itô process implementing the non-differentiable dynamics and 
verified that the corresponding multidimensional Fokker–Planck equation is satis-
fied by the squared modulus of the solution to the Schrödinger equation, not only in 
the stationary case but also in the time dependent case. We then commented on the 
fact that the confirmed expression of the complex velocity matches that obtained 
from the canonical momentum calculated as the gradient of the complex action writ-
ten as the logarithm of the wave function. It is specifically this identity that allows to 
establish the equivalence of the generalized Newton Equation (5) of dynamics with 
Schrödinger’s Equation (10) [12, 19].

The hypothesis that the resolution–scale relativity principle is implemented in 
nature is validated by the fact that its enforcement to mechanics leads straightfor-
wardly to a relativity principle based foundation of standard quantum mechanics 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



202 Foundations of Physics (2020) 50:191–203

1 3

prevailing at small resolution-scales. In Sect. 7, we commented on the fact that, in 
the scale-relativistic interpretation, the state of the system is to be identified with the 
entire set of dynamical paths merely sampled by an Itô process. We then noted that 
if, as suggested by a number of observations, the resolution–scale relativity prin-
ciple is applicable to macroscopic chaotic systems, then the interpretation of the 
nature of the state of the system must be different: a single constituent can not by 
itself carry the information of a quantum-like state. Instead, the state of the system 
has to be a collective property of the ensemble of constituents whose mutual interac-
tions are responsible for the chaotic dynamics and the quantum-like behavior under 
the resolution–scale relativity principle. As such, the interpretation of the state of 
a chaotic macroscopic system of N particles may recover the same form as for one 
particle in standard quantum mechanics, provided it is regarded as a single self 
interacting particle in a 3N dimensional space. Inversely, the richness of the wave 
function of a single standard quantum mechanical particle may be considered as an 
infinite collection of dynamical paths each coming under a description by the same 
Itô process. In these scale relativistic interpretations of standard quantum mechanics 
and macroscopic chaos, the difference resides in the respectively infinite and finite 
numbers of degrees of freedom. As a consequence, while it is very possible that the 
resolution–scale relativity principle applies to macroscopic chaos, it should only do 
so approximatively. This leaves open the question of the manifestation of the reso-
lution–scale relativity principle in systems demonstrating dynamical chaos over a 
small number of degrees of freedom.
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