Amply Supplemented Module over Commutative Ring

Majid Mohammed Abed

School of Mathematical science, Faculty of Sciences and Technology University of Kebangsaan, Malaysia E-mail: <u>m_m_ukm@ymail.com</u>

Abd Ghafur Bin Ahmed

School of Mathematical science, Faculty of Sciences and Technology University of Kebangsaan, Malaysia E-mail: <u>ghafur@ukm.my</u>

Abstract: No doubt, a notion of the amply supplemented module can constitute a very important situation in the module theory, because a generalization of supplemented module depend on some types of modules as amply supplemented module. Here we introduce a characterization of the relations between amply supplemented and some concepts as, semi-perfect, perfect rings, Rad-supplemented and lifting modules. We prove that if M be a nonzero R-module is linearly compact then M is amply supplemented. Also we prove that if R be a semi-local ring with every simple R-module has a flat cover then M is amply supplemented. Let R be a Bass ring and let M be Rad-supplemented R-module then M is amply supplemented. Any lifting R-module M is amply supplemented.

Keywords: Amply supplemented module, perfect ring, semi-local ring, *Rad* -supplemented module, lifting module, Noetherian ring

1. Definition and Notions

All the rings in this paper are considered to be associative with identity and all modules are unitary left *R*-module. A sub-module N of M is called small in $M(N \square M)$ if for every sub-module of M, N+L=M then L=M. A sub-module N of M is called a supplement of K in M if N + K = M and N is minimal with respect to this property [11]. A module M is called supplemented if any sub-module N of M has a supplement in M. Let R be a ring and let N be sub-module of an R-module M such that N is supplement and lies above a direct summand of M then R is perfect ring. In [6], Abed and Ahmad defined amply supplemented modules and related it with Rad supplemented. Here we use local property to obtain amply supplemented module. Moreover lf M is projective and local also it is amply supplemented. Also if M is (D_1) module then it is amply supplemented because every N supplement sub-module of M lies above a direct summand of M this implies R is perfect ring and so supplemented and finally M is amply supplemented module. Also if M is projective and semi-perfect then it is supplemented module. If any module M has no maximal sub-module this means M = Rad(M) such that Rad(M) is the intersection of all maximal sub-modules of M. A ring R is called left Bass if Rad(M) is small in M such that $M \neq 0$ [4]. A module M is called hollow if every proper sub-module N of M is small in M. A module M is said to have the summand intersection property (briefly (SIP)) if the intersection of any two direct summands is again a direct summand. An R -module M is called semi-simple if any exact sequence of *R*-modules $0 \rightarrow N \rightarrow M \rightarrow N_1 \rightarrow 0$ splits. For integral domain *R*, an *R*-module *M* is called torsion free if Ann(a) = 0, for each $0 \neq a \in M$. This article divided into 5 sections. In section 2 we study some properties of amply supplemented module and the relation between linearly compact property and amply supplemented module. In section 3 we introduce some results about the relation between amply supplemented module and semi-perfect and perfect ring. In section 4 we study the relation between Rad -supplemented module and amply supplemented. In section 5 we conclude some results which it explain the relation between lifting module and amply supplemented module.

2. Some Properties of Amply Supplemented Module

A module M is called amply supplemented if for any two sub-modules H and K with H + K, K contains a supplement of H in M. Also, we say that a sub-module N of the R-module M has

ample supplements in M if, for every $K \subset M$ with N+K=M, there is a supplement L of N with $L \subset K$. Therefore if every (finitely generated) sub-module of M has ample supplements in M, then we call M amply (finitely) supplemented. A sub-module N is a supplement of K in M if and only if N+K=M and $K \cap N \subset N$, because if N be a supplement of K in M such that N+K=M. Suppose $(K \cap N) + A = N$ for some $A \subseteq N$, then $N+K=M = K + (K \cap N) + A = K + A$. Since N has minimal property then A = N. Therefore $(K \cap N)$ is small in N. If N+K=M and $(K \cap N)$ is small in N. If M = K+B for some $(B \cap N)$, then by (Modular Law) we can say $N = M \cap N = (K+B) \cap N = (K \cap N) + B$, therefore B = N because $K \cap N \subset N$ and this means N is a supplement of K in M. A module M is called local if it has a largest proper submodule, equivalently, a module is local if and only if it is cyclic nonzero and has a unique maximal proper sub-module. If $n \in M$ is local, then M is hollow module.

Lemma 2.1. Every local R -module M is supplemented module.

Proof: Since M is local module then for every proper sub-module A of M, $A \subseteq Rad(M) \square M$. Therefore $A \square M$. Then M is hollow module, therefore M be an R-module and A be a sub-module of M. Then A+M=M. By definition of hollow module we have $A \bigcap M = A \square M$. Thus M is supplemented module.

Remark 2.2. Let M be an amply supplemented R -module, then:

(1) every factor module of amply supplemented module is also amply supplemented.

(2) A module M is amply supplemented if and only if every maximal sub-module has ample supplements in M.

Some modules are not amply supplemented especially when M is not satisfy the conditions supplemented module. For example, Z-module such that Z every nonzero proper sub-module has no supplements. But we can give some modules are amply supplemented, for example an Artinian module is amply supplemented and semi-simple module is amply supplemented therefore every

injective R -module has (^(SIP)) property is semi-simple modules and so amply supplemented.

Note that if M is amply supplemented R-module then it is supplemented, therefore we can easily introduce the following lemma:

Lemma 2.3. Let M be an R-module. Then M is a supplemented module if and only if it is amply supplemented module.

A module M is called linearly compact if for every family of co-sets $\{x_i + M_i\}_{\Delta}; x_i \in M$ and sub-

modules $M_i \subset M$ (with ($\overline{M_i}$) finitely cogenerated) such that the intersection of any finitely many of these cosets is not empty, the intersection is also not empty.

Theorem 2.5. Let N be a linearly compact sub-module of an R -module M. Then N has ample supplements in M.

Proof: Suppose $N, K \subseteq M \ni N$ is linearly compact and let M = N + K. We take $\eta = \{K_1 \subseteq K \mid N + K_1 = M\}$. Since $K \in \eta$ then $\eta \neq 0$. Let $\{K_\lambda\}$ a chain in η . We can consider it is an inverse family of sub-modules K_λ since $\{K_\lambda\}$ is a chain. Now $\bigcap K_\lambda$ is a lower r bound for $\{K_\lambda\}$ and by definition of linearly compact module we get $N + (\bigcap K_\lambda) \cap (N + K_\lambda) = M$.

Thus $\bigcap K_{\lambda} \in \eta$ By Zorn's Lemma we have L is minimal element in η such that M = N + L and this means L is a supplement of N and $L \subseteq K$. Therefore N has ample supplements in M.

Theorem 2.6. Every direct sum of two submodules linearly compact of M has ample supplements in M .

Proof: Let $N = N_1 + N_2$ be linearly compact and let $K = K_1 + K_2 \subset M \ni (N_1 + N_2) + (K_1 + K_2) = M$. If inverses of sub-modules K_i of $(K_1 + k_2)$ such that $(K_1 + k_2) + K_i = M$, then we get $(N_1 + N_2) + \bigcap K_i = \bigcap (N_1 + N_2) + K_i = M$. Then we have $\{(L_1 + L_2) \subset (K_1 + K_2) \ (N_1 + N_2) + (L_1 + L_2) = M\}$ is inductive and by (Zorn's Lemma) this set has a minimal element. Hence $N_1 + N_2$ has ample supplements in M.

Remark 2.7. We can easily generalization last theorem for any linearly sub-modules N_i of M such that N_i ; i = 1, ...n (N_i has ample supplement).

Now we can use the linearly compact property for any module in order to obtain amply supplemented module and also we make a generalization of linearly compact property of the module M:

Theorem 2.8. Let M be a nonzero R-module. Let M to be linearly compact then M is amply supplemented.

Proof: Let M be linearly compact then every sub-module N of M is linearly compact and then N has ample supplements in M. Then M is amply supplemented [Remark 2.2 (2)].

Theorem 2.9. If $M = {}^{M_1 + M_2}$ be linearly compact. Then M is amply supplemented module.

Proof: Let $M = {}^{M_1 + M_2}$ be linearly compact and let $({}^{N_1 + N_2})$ be sub-module of M. By [Theorem 2.5]. since every sub-module $({}^{N_1 + N_2})$ of M is linearly compact, then $({}^{N_1 + N_2})$ has ample supplements in M. Then M is amply supplemented module.

Theorem 2.10. For an R -module M . If M is supplemented and π -projective then M is amply supplemented.

Proof: Let M = N + K and A be a supplement of N in M. Let g belong to endomorphism of M(End(M)) such that $\operatorname{Im} g(g)$ subset of K and $\operatorname{Im} g(1-g)$ subset of N since we have g(N) subset of N, M = N + g(B) and $g(N \cap B) = N \cap g(B)$ (since n = g(b) then we can say $b - n = (1 - g)(b) \in N$ and $b \in N$). Since $N \cap B \square A$, $N \cap g(A) \square g(A)$, and this means g(A) is a supplement of N such that g(A) subset of K. Then M is amply supplemented module.

Corollary 2.11. Let M be an R-module. If M is projective and local then M is amply supplemented. **Proof:** Let M be projective module. Let f be epimorphism. Here we must show that f is split. Let 1_M be identity mapping. Since M is projective module then there exists a mapping g from M into $(U \oplus V)$ such that $f \circ g = ^{1_M}$ and this means f is split and hence M is π -projective. Now we have M is local module then if M be an R-module. Therefore for every proper sub-module N of M, $N \subseteq Rad(M) \square M$. Hence $N \square M$ and M is hollow and if K be a sub-module of M. Then K + M = M and since, $K \cap M = K \square M$. Therefore M is supplemented. Now M is π -projective and supplemented then by [Theorem 2.10] M is amply supplemented module.

Proposition 2.12. Let M be an R-module. If M is a π -projective δ -supplemented, then M is amply δ -supplemented module.

Proof: Let N, K sub-module of M such that M = N + K. We have M is π -projective module, then there exists a mapping β from M into M such that $\beta(M)$ sub-module of N and $(1 - \beta)(M)$ sub-module of K. We know that $(1 - \beta)(N)$ sub-module of N. Let L to be a δ -supplement of N in M. Then $M = \beta(M) + (1 - \beta)(M) = \beta(M) + (1 - \beta)(N + L)$ sub-module of $N + (1 - \beta)(L)$ sub-module of M, also $M = N + (1 - \beta)(L)$. Note that $(1 - \beta)(L)$ sub-module of K. Suppose that n belong to $N \cap (1 - \beta)(L)$. Then n belong to N and $n = (1 - \beta)(s) = s - \beta(s)$ for some s belong to L. From now we consider $s = n + \beta(s)$ belong to N, so that n belong to $(1 - \beta)(N)$. But $N \cap L \square \delta(L)$ implies that $N \cap (1 - \beta)(L) = (1 - \beta)(N \cap L)\delta(1 - \beta)(L)$. Therefore $(1 - \beta)(L)$ is a δ -supplement of N in M and hence M is an amply δ -supplemented module.

Definition 2.13. Let M be an R-module and $K \le N \le M$. If $N = K \square M = K$ then we say N lies above K. Therefore, N lies above a sub-module K of M if and only if $K \square N$ and for every sub-module L of M such that N + L = M, then K + L = M.

Lemma 2.14. Every sub-module of M lies above a supplement sub-module of M if and only if for any sub-module N of M, there exists sub-modules K and K_1 of N with K is supplemented, $N = K + K_1$ and $K_1 \square M$.

Proof: Let N be a sub-module in M. Since N lies above a supplement sub-module A in M. Suppose that A is a supplement of B in M then M = A + B = N + B. Again by hypothesis B lies above a supplement sub-module K in M. Hence M = A + B = A + K. Since A is a supplement of B, $A \cap K \square$ M. Furthermore since K is a supplement in M, $A \cap K \square$ K and K is a supplement of for any $K_1 \leq Y$ with $N + K_1 = M$, since N lies above A and K is a supplement of A, $A + K_1 = M$ and $K_1 = K$. Thus K is a supplement of N. Finally, M is supplemented therefore by [Lemma 2.3] M is amply supplemented module.

Corollary2 .15. Let M be an R-module. Then every sub-module of M lies above a supplement sub-module of M, if and only if M is amply supplemented.

Corollary 2.16. For an R-module M . If every cyclic sub-module lies above a direct summand; then M is amply finitely supplemented and every supplement is a direct summand.

3. Amply Supplemented Property over Perfect and Semi-local Rings

In this section we study amply supplemented module over some rings which is commutative as semilocal, semi-perfect and perfect ring. A ring R is called semi-perfect if every finitely generated Rmodule has a projective cover. A module M is called semi-perfect if every factor module of M has a projective cover. A ring R is called perfect if every R-module M has projective cover. Also in this section we study amply property over ring R is called semi-local.

Lemma 3.1. [2, Theorem 2.4]. For every ring R, if every finitely generated free R-module is \oplus -supplemented. Then R is semi-perfect.

Lemma 3.2 [13, Corollary 3.15]. The following statements are equivalent for a ring R.

- (1) R is a left perfect.
- (2) Every R -module is supplemented.
- (3) Every projective R -module is supplemented.

Theorem 3.3. Let R be a Noetherian ring. If R is semi-perfect ring, then every finitely generated left R -module is amply supplemented module.

Corollary 3.4. Let R be a Noetherian ring. If every finitely generated free R-module M is \oplus supplemented then M is amply supplemented.

Theorem 3.5. Let R be a ring and let M be an R-module such that it is strongly \oplus -supplemented. Then M is amply supplemented.

Proof: Since M is strongly- \oplus -supplemented module then R is perfect ring and so M is supplemented and hence M is amply supplemented.

Let A and B be sub-modules of an amply supplemented module M such that M = A + B. Then there exist sub-modules A_1 and B_1 of $M \ni A_1 \subseteq A$, $B_1 \subseteq B$ and A_1, B_1 are supplements of each other in M, for example:

$$\begin{bmatrix} G & G \\ 0 & G \end{bmatrix}$$

be the ring of all upper triangular $n \times n$ matrices with entries in G, where G is a Let $R_{=}$ field. It is clear that R is a right perfect ring and hence R is an amply supplemented right R-module.

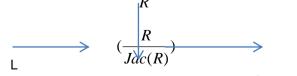
Consider the right R-modules $A = \begin{bmatrix} G & G \\ 0 & 0 \end{bmatrix}_{and B} = \begin{bmatrix} 0 & G \\ 0 & G \end{bmatrix}$. Then $R_R = A + B$. On the other hand, $\begin{bmatrix} G \\ 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \\ 0 & G \end{bmatrix}_{. \text{ Now we can take }} A_{1=A \text{ and }} B_{1=} \begin{bmatrix} 0 & 0 \\ 0 & G \end{bmatrix}_{\le B \text{ . Clearly }} A_{1 \text{ and }} B_{1 \text{ are }}$ supplements of each other in K_R .

$$\frac{R}{lac(R)}$$

A ring *R* is called semi-local if $\frac{(\frac{R}{Jac(R)})}{(\frac{R}{Jac(R)})}$ is a semi-simple ring. Also *R* is semi-local if *R* has finitely many maximal ideals.

Theorem 3.6. Let R be a semi-local ring and every simple R-module has a flat cover then M is amply supplemented.

Proof: Let *R* be semi-local and consider $\left(\frac{K}{Jac(R)}\right)_{=}E_1 \oplus ... \oplus E_n$ with E_i simple *R*-modules. Every simple R-module is isomorphic to one of the all E_i . By hypothesis every E_i has a flat cover L_i . Thus $L := L \oplus ... \oplus L_n$ is a flat cover of R / Jac (*R*). Hence we obtain the following:



That can be extended by a homomorphism $g: R \to L$ Since f is a small epimorphism and gf is epimorphism, g must be epimorphism with $Ker(g) \subseteq Ker(g) = Jac(R)$. Hence R is a projective cover of the flat module L. By [9], $L \approx R$ and hence all L_i must be projective. Thus each simple R. module has a projective cover and so R is semiperfect. Therefore we have R semi-perfect with M is finitely generated (simple module) then M is amply supplemented module.

Theorem 3.7. Let R be a semilocal Bass ring. Then any R-module M is supplemented.

$$\left(\frac{R}{Las(R)}\right)$$

Theorem 3.8. Let R be a ring such that Jac(R) is Artinian. Then R has the lifting property of simple modules as a right or left R -module if and only if R is semi-perfect.

Corollary 3.9. For any ring R, if M is R-module and satisfy the following:

1. Every left R -module M is semi-local.

2. Every simple R -module M has a flat cover.

Then M is amply supplemented.

Corollary 3.10. Let R be a left perfect ring. Then any R -module M is amply supplemented.

Corollary 3.11. Let R be a semi-local Bass ring. Then any R-module M is amply supplemented module.

Corollary 3.12. Let R be semi-perfect ring then any finitely generated R-module (M is simple) is amply supplemented.

4. Amply Supplemented Module and Rad-Supplemented Module

Let R be a Rad-supplemented ring and has hereditary property then R is semi-perfect ring. Let M be an R-module. If M = Rad(M) then M is Rad-supplemented. Any local module with Bass ring, are satisfying a condition of amply supplemented module. If M is hollow module then every proper sub-module of M is small in M and this means every sub-module of M is supplement in M, so M is supplemented and hence M is Rad-supplemented module. Therefore if M is a hollow module, then M is Rad-supplemented.

Theorem 4.1. Let R be a commutative Bass ring and let M be an injective R-module, then M is supplemented.

Proof: Since M is injective R-module then it is radical module (Rad (M) = M) and this implies M is Rad-supplemented. Now M is Rad-supplemented and R Bass ring. Let M be a Rad-supplemented module and N be a proper sub-module of M. There exists $K \le M \ni M = N + K$ and $N \cap K \le Rad (K)$. But R is left Bass ring, $Rad (K) \cap K$. Then $(N \cap K) \cap K$, and this means K is a supplement of N in M. Therefore, M is supplemented.

Corollary 4.2. Let R be a Bass ring and let M be Rad -supplemented R -module then M is amply supplemented.

Corollary 4.3. Let R be a left Bass ring and let M be be injective R-module then M is amply supplemented.

Proof: Since M is local module then for every proper sub module N of M, $N \subseteq Rad_{(M)} \square M$. Therefore $N \square M$ and then M is hollow. Now M is hollow module and this implies M is Rad_{-} supplemented and hence M is amply supplemented module.

Theorem 4.4. Let R be a semi-simple and Bass ring. If M be \oplus -supplemented, then M is amply supplemented.

Proof: Since *R* is semi-simple with *M* is \oplus -supplemented then *M* is injective *R*-module, but *R* is Bass ring then *M* supplemented and hence it is amply supplemented.

Lemma 4.5. Let R be a Dedekind domain, then every torsion free divisible R-module is Rad-supplemented.

Corollary 4.6. If M is torsion free divisible R-module and let R be a ring such that satisfying the following conditions:

- 1) R is Dedekind domain;
- 2) R is Bass ring;

then M is amply supplemented module.

Theorem 4.7. Let R be a ring. If M is projective R-module and is Rad(M)-semiperfect, then M is amply supplemented module.

Proof: Suppose that M is projective R-module. We must prove that R is perfect ring. Since M is Rad(M)-semiperfect therefore we need prove Rad(M) \square M in order to we get R perfect ring. Let N be a submodule of M such that M = Rad(M) + N. Then, $M = L \oplus K$, where $L \le N$ and $K \cap N \le Rad(M)$. Then $N = L \oplus (K \cap N)$ and so M = Rad(M) + L. Since L is a summand of M, there exists a submodule N_1 of Rad(M) such that $M = N_1 \oplus L$ by [9]. Then $Rad(N_1) = N_1 \cap Rad(M) = N_1$. Since N_1 is projective and $N_1 = 0$ then M = N. So R is perfect ring and hence by [Corollary 3.10] M is amply supplemented module.

Theorem 4.8. Let R be a left Bass ring. If every sub-module of R-module M is supplemented in M, then M is amply supplemented.

Proof: Since every supplemented module is amply supplemented then we must prove that M is supplemented. Let $Rad(M) \neq 0$ then there exists a nonzero element $n \in Rad(M)$. We have Rn is a supplement that is $Rn_+N_=M$ and $Rn \cap N \square Rn$ for some $N \subseteq M$. Since $n \in Rad(M), Rn \subseteq M$ and N = M. Thus $Rn \square Rn$, and this impossible and then Rad(M) = 0. Let $N \leq M$. Since N is a supplement $N_+N_1 = M$ and $N \cap N_1 \square N$ for some N_1 subset of M. Then $N \cap N_1$ subset of Rad(M) = 0 therefore $N \cap N_1 = 0$. So $M = N \oplus N_1$ and M is semisimple, then every sub-module of M is supplement in M and this means M is supplemented.

Corollary 4.9. If R is hereditary Rad-supplemented ring, then any finitely generated R-module M is amply supplemented.

Corollary 4.10. If R be a Rad-supplemented ring and has hereditary property. Then R is semiperfect ring and so amply supplemented module.

5. Amply Supplemented Module and Lifting Property

A module M is called lifting or satisfies (D_1) , if for every sub-module N of M there exists a direct summand K of M such that K is a coessential sub-module of N in M. Let M be an R-module such that M is projective and lifting then R is perfect ring and is amply supplemented. Any R-module M having no factor module is amply supplemented because any module have this property is lifting module. A module M is called (D_{12}) if for every sub-module K of M there exist a direct

summand N of M and an epimorphism $\delta: M = N \rightarrow (\frac{M}{K})$ with $Ker(\delta) \square (\frac{M}{N})$. A module M is

said to satisfying $(^{T_1})$ if for every sub-module K of M, where $(\frac{M}{N})$ is isomorphic to a co-closed sub-module of M, every homomorphism $\mu: M \to (\frac{M}{N})$ lifts to a homomorphism $\beta: M \to M$.

Lemma 5.1. Any lifting R -module M is amply supplemented module.

Theorem 5.2. For an R-module M, if M is (D_1) module then M is amply supplemented and every supplement sub-module is a direct summand.

Proof: Since M is $({}^{D_1})$ module then every sub-module of M lies above a direct summand; then M is obviously supplemented and every sub-module $N \subset M$ is of the form N = A + B, with A a direct summand of M and $B \square M$. Since A is again supplemented it follows, from that M is amply supplemented. The converse true because if M is amply supplemented module then for $A \subset M$, let K be a supplement in M and A a supplement of K in M with $A \subset N$. Then $M = {}^{A \oplus A_1}$ for a suitable direct summand ${}^{A_1} \subset M$. Since $N \cap K \square M$, this A_1 is a supplement of $A_+(N \cap K) = N$ and hence $N \cap {}^{A_1} \square {}^{A_1}$.

Definition 5.3. A module M is called hollow-lifting if every sub-module N of M with $\binom{M}{N}$ is hollow has a coessential sub-module that is a direct summand of M. Equivalently for an indecomposable module M, the module M is hollow-lifting if and only if M is hollow, or else M has no hollow factor modules [8].

Proposition 5.4. Let N_1 and N_2 be hollow modules. If $M = N_1 \oplus N_2$ such that M is hollow-lifting then M is lifting module and so M is amply supplemented module.

Proof: We must prove that M is lifting module. Let L sub-module of M and let the two projections the first $\alpha: M \to N_1$ and the second $\beta: M \to N_2$. Suppose $\alpha(L) \neq N_1$ and $\beta: (L) \neq N_2$, therefore L is small in M. Now, let $\alpha(L) = N_1$. Therefore $M = L + N_2$ and then $(\frac{M}{N})$ is hollow.

Thus there exists a direct summand K of M such that K sub-module of L and $(\frac{L}{K})$ is small in $(\frac{M}{K})$

 (\overline{K}) . Therefore M is lifting module and then M is amply supplemented module [Lemma 5.1]. **Proposition 5.5.** Let M be an R-module. Then the following statements are equivalent:

- 1. M is D_1 -module.
- 2. M is lifting module.
- 3. M is hollow-lifting module.
- 4. M is amply supplemented module.

Lemma 5.6. Let M be a projective module. Then the following statements are equivalent:

(i) Every factor module of M has a projective cover;

(ii) M is lifting.

We will say that K is a strong supplement of N in M if K is a supplement of N in M and $K \cap N$ is a direct summand of N.

Theorem 5.7. Let M be a finitely generated module over a commutative ring R. If M is hollow-lifting then M is lifting.

Proof: Let N be a sub-module of M such that $(\frac{M}{N})$ is cyclic. Since R is local, $(\frac{M}{N})$ is a local module. Then N has a strong supplement in M and so M is lifting.

A module M is called finitely lifting, or f-lifting for short, if every finitely generated sub-module of M lies above a direct summand. Let R be a V-ring. An R-module M is lifting if and only if it is semi-simple.

Lemma 5.8. [12, Theorem 3.3] If M is cf -lifting then M is f -lifting.

Theorem 5.9. For Noetherian R-module M, if M is f-lifting then M is amply supplemented module.

Proof: Since M is Noetherian, every sub-module of M is finitely generated so M is lifting and by [Lemma 5.1] M is amply supplemented.

Theorem 5.10. Let N_1 and N_2 be hollow modules. Then the following are equivalent for the module $M = N_1 \oplus N_2$. If *M* is *f* -hollow-lifting module then *M* is amply supplemented.

Proof: We must proof M is f-lifting module. Let N be a finitely generated sub-module of M. Consider the two natural projections maps $\alpha: M \to N_1$ and $\beta: M \to N_2$. If $\alpha(N) \neq N_1$ and $\beta(N) \neq N_2$. Then by our assumption $\alpha(N) \square N_1$ and $\beta(n_2 \square n_2, \text{ so by [22, Lemma (1.2)]}, \alpha(N)\beta(n_2) \square N_1 \oplus N_2$. Now claim that N subset of $\alpha(N_1) \oplus \beta(N_2)$, to see that, let $n \in N$ then $n \in M = N_1 \oplus N_2$ and hence $n = \binom{n_1}{n_1}, \binom{n_2}{n_2}$, where $n_1 \in N_1$ and $n_2 \in N_2$. Now, $\alpha(n) = \alpha(\binom{n_1}{n_1}, \binom{n_2}{n_2}) = \binom{n_1}{n_1}$ and $\beta(n) = \beta(\binom{n_1}{n_1}, \binom{n_2}{n_2}) = \binom{n_2}{n_1}$. This implies that $n = (\alpha(n), \beta(n))$ and we get N subset of $\alpha(N) \oplus \beta(N)$ and $N \ll M$. Thus M is f-lifting module. Then M is amply supplemented module

Corollary 5.11. If M is cf -lifting module then M is then M is amply supplemented.

Corollary 5.12. Let R be a V-ring. An R-module M is semi-simple then M is amply supplemented supplemented module.

Corollary 5.13. Let R be a right perfect ring. Then any projective R-module M is lifting and so amply supplemented.

Theorem 5.14. If M is a strongly \oplus -supplemented module. Then M is amply supplemented module [2]

Proof: Let M be a strongly \oplus -supplemented module. Then from definition of strongly- \oplus -supplemented we get M is lies above a direct summand of M and this mean M is $(^{D_1})$ module and by [Theorem 5.2] M is lifting module. So M is amply supplemented.

Any module $\,M$ is called a weak lifting module provided, for each semi-simple sub-module $\,^N$ of M ,

there exists a direct summand K of M such that $K \leq N$ and $(\frac{N}{K}) \square (\frac{M}{K})$ equivalently, there exists a decomposition $M = {}^{M_1 \bigoplus M_2}$, such that ${}^{M_1} \leq N$ and ${}^{M_2} \cap N \square {}^{M_2}$.

Theorem 5.15. Every amply supplemented R -module M is weak lifting.

Proof: Let A be a semi-simple sub-module of M. Then there exists $B \le M$ with M = A + B and $A \cap B$ small in B. Now there exists $C \le M$ such that M = C + B and $C \cap B$ small in $C \le A$.

Since C is semi-simple $C \cap B = 0$ and hence $M = C \oplus B$. Thus M is weak lifting.

Remark 5.16. Weak lifting module not implies amply supplemented, but the converse is true.

Example 5.17. The ring Z is weak lifting but not amply supplemented module.

At the end of the paper we can review the most important results that give a clearer view:

- 1. *M* linearly compact $\Rightarrow M$ is amply supplemented.
- 2. *M* supplemented module and π -projective $\Rightarrow M$ amply supplemented module.
- 3. *R* perfect ring $\Rightarrow M$ is amply supplemented module.

- 4. M^{D_1} -module $\Rightarrow M$ is amply supplemented module and (D_{12}) -module.
- 5. *M* is amply supplemented module with (D_{12}) -module and $T_1 \Rightarrow M$ discrete $\Rightarrow M$ quasi-discrete.
- 6. M having no factor module $\Longrightarrow M$ amply supplemented module.
- 7. *M* hollow-lifting \Rightarrow *M* Lifting module \Rightarrow *M* amply supplemented module \Rightarrow *M* weak lifting module.

References

[1]. Ozcan, A. C., Aydogdu P. (2008) A Generalization of Semi-regular and Semi-perfect Modules, Algebra Colloquium 15(4):667-680.

[2]. Nebiyev, C., Pancar, A. (2004) Strongly \oplus -Supplemented Modules, International Journal of Computational Cognition 2(3): 57–61.

[3]. Chang, C. (2008) X-Lifting Modules Over Right Perfect Ring, Bull. Korean Math. Soc, 45(1):59-66.

[4]. Turkmen, E., Pancar, A. (2001) Some properties of Rad -supplemented modules, International Journal of the Physical Sciences, 6(35):7904 –7909.

[5]. Varadarajan, K. (1979) Dual Goldie Dimension, Comm. Algebra, 7(6):565–610.

[6]. Abed, M. M., Ahmad, A. G. (2012) Generalization of generalized Supplemented Module, International Journal of Algebra,6(29):1431-1441.

[7]. Orhan, N.D., Tutuncu, K. (2006) Generalization of Modules, Soochow Journal of Mathematics, 32(1): 71-76.

[8]. Orhan, N.D., Tutuncu, K., Tribak, R. (2007) On Hollow-Lifting Modules, Taiwanese Journal of Mathematics, 11(2): 545-568.

[9]. Wisbauer, R. (1991) Foundations of Module and Ring Theory, Gordon and Breach, Reading, Philadelphia.

[10]. TOP, S. (2007) Totally weak Supplemented Modules, Thesis Master, Izmir.

[11]. Guler, S. (2011) On ^P-Supplement Sub-modules, International Journal of Algebra, 5(1)8:867-872.

[12]. Talebi, Y., Nematollahi, M. J., Ghaziani, K.h. (2007) A Generalization of Lifting Modules, Int. J. Contemp. Math. Sciences, 2(22):1069-1075.

[13]. Wang, Y. (2001) A Generalization of Supplemented Modules, Math. RA, 17.