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Abstract. This paper introduces and studies a new class of multidimensional numerical integration,
which we call “strongly positive definite cubature formulas”. We establish, among others, a characterization
theorem providing necessary and sufficient conditions for the approximation error (based on such cubature
formulas) to be bounded by the approximation error of the quadratic function. This result is derived as
a consequence of two characterization results, which are of independent interest, for linear functionals
obtained in a more general seeting. Thus, this paper extends some result previously reported in [2, 3]
when convexity in the classical sense is only assumed. We also show that the centroidal Voronoi Tesselations
provide an efficient way for constructing a class of optimal of cubature formulas. Numerical results for the
two-dimensional test functions are given to illustrate the efficiency of our resulting cubature formulas.

1. Introduction and motivation for the problem

We introduce and study a class of a new class of multidimensional numerical integrations, that un-
derestimate the exact value of the integral of every strongly convex function. For brevity, we call them
“strongly positive definite cubature formulas” (or for short spd-formulas). These provide a natural gen-
eralization of some results presented in [2, 3] to the setting where the integrands are strongly convex. Let
us mention that all the papers [2, 3] are derived in the context of convexity in the classical sense. Our first
main results, which hold in large generality and are of independent interest, concern two characterization
results of any linear functional C1,1(Ω) → R, which is nonnegative on the set of convex functions. These
results, which find applications in the later sections, are stated in Section 2. In Section 3, we first apply our
general results to the case when the functional is the error functional of spd-formulas. It is shown that,
for functions belonging to C1,1(Ω), the absolute value of the approximation error based on such cubature
formulas can be bounded by the approximation error of the quadratic function. In addition, for integrands
which satisfy the classical convexity or, more generally, strong convexity, we derive sharp upper and also
lower bounds for the approximation error. We also propose two methods for their constructions. The first
one is given in terms of the partition of unity of the integration domain. However, the second one is based
on a decomposition method for domain integration. In section 4, we derive optimal global error estimates
and also show that the centroidal Voronoi tessellations give access to efficient algorithms for constructing
such cubature formulas. Finally, Section 5 provides two numerical examples to validate our approach.
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2. Notation, terminology and preliminary results

We first introduce some notations, which follow closely those of [2, 3]. The set of all positive real
numbers is denoted by R+. Let Ω be a subset of Rd. We denote by ‖.‖ the Euclidean norm in Rd and 〈x, y〉 the
standard inner product of x, y ∈ Rd. By C1,1(Ω) we denote the class of all functions f which are continuously
differentiable on Ω with Lipschitz continuous gradients, i.e., there exists L(∇ f ) such that∥∥∥∇ f (x) − ∇ f (y)

∥∥∥ ≤ L(∇ f )
∥∥∥x − y

∥∥∥ , (x, y ∈ Ω).

A convex function f is said to be µ-strongly convex function if, and only if, there exists a constant µ ≥ 0
such that the function f − µ

2 ‖.‖
2 is convex.

A linear functional R : C(Ω)→ R is positive on X ⊂ C(Ω) if and only if R( f ) ≥ 0 whenever f ∈ X. Let CC(Ω)
denote the set of all continuous convex functions on Ω, and SCµ(Ω) the set of all µ−strongly continuous
convex functions on Ω.

We start by providing two characterization results for any linear functional, which hold in large gener-
ality and is of independent interest. But to apply our approach, we are mainly interested here in the case
when the functional R is the approximation error of our cubature formulas. These results will be important
in the sequel. The first general characterization result is given in the following:

Lemma 2.1 Let µ > 0 and Ω ⊂ Rd be a compact convex set. Let R : C(Ω) → R, be a linear functional. Then, R is
positive on CC(Ω) if and only is R is positive on SCµ(Ω).

Proof. It suffices to show that any positive linear function on SCµ(Ω) is also positive on CC(Ω) because
SCµ(Ω) is a subset of CC(Ω). Let us assume that R is positive on SCµ(Ω) and take any f ∈ CC(Ω). Define

1 := f +
ε
2
‖.‖2.

Multiplying by µ
ε and rearranging, we deduce

µ

ε
f =

µ

ε
1 −

µ

2
‖.‖2.

Since µ
ε f is convex, then µ

ε 1 is µ−strongly convex. Now, from the positivity of R on SCµ(Ω), it follows

R(
µ

ε
1) ≥ 0.

Hence, the homogeneity of R implies
R(1) ≥ 0.

Hence, the linearity of R yields :

R( f ) ≥ −
ε
2

R(‖.‖2).

Since this inequality holds for all ε > 0, then by letting ε ↓ 0, we get

R( f ) ≥ 0.

Hence, the desired result follows.

Under regularity conditions, the functions belong to C1,1(Ω), our second characterization result is given
in the following:
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Lemma 2.2 Let Ω ⊂ Rd be a compact convex set. Let µ > 0 and R : Ck(Ω) → R, where k ∈ {0, 1}, be a linear
functional. Then R is positive on SCµ(Ω)

⋂
C1,1(Ω) if and only if for every f ∈ C1,1(Ω), it holds

|R
[

f
]
| ≤

L(∇ f )
2

R
[
‖.‖2

]
, (1)

where L[∇ f ] is the Lipschitz parameter of the gradient of f .

Proof. Let us assume that R is positive on SCµ(Ω)
⋂

C1,1(Ω) and take any function f from C1,1(Ω). Define
the two following functions

h± :=
L[∇ f ]

2
‖.‖2 ± f .

Then, [3, proposition 2.2] tells us that h± ∈ CC(Ω)
⋂

C1,1(Ω). Hence, by application of Lemma 2.1, we may
conclude that

R [h±] ≥ 0.

Then, by linearity of R and a simple manipulation we find that

−
L[∇ f ]

2
R

[
‖.‖2

]
≤ R

[
f
]
≤

L[∇ f ]
2

R
[
‖.‖2

]
.

This shows that (1) is satisfied.

Now, let us assume that (1) holds. Then, (1) obviously implies

R
[
‖.‖2

]
≥ 0, (2)

and that

R
[

L[∇ f ]
2
‖.‖2 − f

]
≥ 0. (3)

For any h ∈ SCµ(Ω)
⋂

C1,1(Ω) define

f :=
L[∇h]

2
‖.‖2 − h.

Then, in view of [3, proposition 2.2], once again we get

f ∈ C1,1(Ω) and L[∇h] − L[∇ f ] ≥ 0. (4)

But, since

h =
L[∇h]

2
‖.‖2 − f ,

it can be written as follows

h =

(
‖.‖2

L[∇ f ]
2
− f

)
+

L[∇h] − L[∇ f ]
2

‖.‖2,

we therefore obtain

R [h] = R
[
‖.‖2

L[∇ f ]
2
− f

]
+

L[∇h] − L[∇ f ]
2

R
[
‖.‖2

]
.

Finally, this together (2), (3) and (4) yield the desired result R [h] ≥ 0.
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3. Spd-cubature formulas

We now define our new general class of cubature formulas:

Definition 3.1 Let Ω be a compact subset of Rd and let µ > 0. Let x1, . . . , xn ∈ Ω, and ω1, . . . , ωn ∈ R+. We say that{
(ωi, xi) : i = 1, . . . ,n

}
, (5)

defines the µ spd-cubature formula∫
Ω

f (x)dx =

n∑
i=1

ωi f (xi) + R
[

f
]
, (6)

if the approximation error R is positive on SCµ(Ω).

Now, the general results derived in Lemmas 2.1 and 2.2 can be applied to the approximation error of
our class of cubature formulas to characterize it as follows:

Theorem 3.2 let µ > 0 and let Ω be a compact subset of Rd. A cubature formula (6) is µ spd-formula if and only if
for all f ∈ C1,1(Ω), its approximation error satisfies

µ

2
R

[
‖.‖2

]
≤ R

[
f
]
≤

L[∇ f ]
2

R
[
‖.‖2

]
. (7)

4. Global error estimates

In this section, we derive optimal global error estimates and also show that the centroidal Voronoi
diagrams give access to efficient algorithms for constructing such cubature formulas. Let Ω ⊂ Rd be a
polytope and letD be a decomposition of Ω. Here the integration domain Ω is decomposed into a disjoint
union of open convex subpolytopes Ω =

⋃
P∈D P. Since∫

Ω

f (x) dx =
∑
P∈D

∫
P

f (x) dx

it produces the cubature formulas∫
Ω

f (x) dx =
∑
P∈D

Qmid
P ( f ) + Emid

Ω ( f ), (8)

where the cubature formulas Qmid
P is given by

Qmid
P ( f ) = |P| f (cP), (9)

here cP is the the center of gravity of P. The resulting cubature formula
∑

P∈DQmid
P ( f ) is a spd−cubature

formula. The following result is a simple consequence of Theorems 3.2.

Theorem 4.1 Let f ∈ C1,1(Ω) with L[∇ f ]-Lipschitz constant. Let the cubature formula be given as in (8). Then, the
following error estimate holds:∣∣∣Emid

Ω ( f )
∣∣∣ ≤ L[∇ f ]

2

∑
P∈D

∫
P
‖x − cP‖

2 dx. (10)
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In order to minimize the energy functional

FE =
∑
P∈D

∫
P
‖x − cP‖

2 dx, (11)

which correlates with the upper bounds of approximation errors, see Theorem 4.1, we first present the
definition and properties of the Centroidal Voronoi Tessellations (CVT). The reader requiring more information
on the subject is referred to the survey paper [1]. Given k points x1, x2, . . . , xk inside the polytope Ω, the
Voronoi diagram is defined as the collection of the Voronoi regions Ωi, i = 1, 2, . . . , k, that are defined as

Ωi =
{
x ∈ Ω : ‖x − xi‖ <

∥∥∥x − x j

∥∥∥ , j , i
}
.

The CVT is a special Voronoi diagram in which each generator point xi coincides with the center of gravity
sΩi of its Voronoi region

xi = sΩi =

∫
Ωi

x dx∫
Ωi
µ(x) dx

.

It is well known that a necessary condition for minimizing (11) is that D is a CVT with generators{
sΩi ,Ωi ∈ D

}
, see [1, Proposition 3.1]. Theorem 4.1 gives the constructive way for building cubature formu-

las with the best global error estimates. To this end one should construct CVT and then apply the formula
Qmid

Ω
.

5. Numerical Examples

In order to validate our approach, we next consider the two following bivariate test functions:

f1(x) = exp(αx + βy), α, β ∈ R, (12)

f2(x) = y arctan(α(x + y)), α ∈ R+, (13)

where x = (x, y) ∈ [−1, 1] × [−1, 1]. These two functions are infinitely differentiable, they have singularities
or large gradients, when α and β are sufficiently large enough, see Figure 1.
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Figure 1: Test functions: (a) f (x, y) for the case α = β = 2 and (b) 1(x, y) for α = 10.

The exact values of their integrals of over Ω := [−1, 1] × [−1, 1] are given by

I( f ) =
4 sinh(α) sinh(β)

αβ
,

I(1) = −
8α2
− 2α(3 + 4α2) arctan(2α) + log(1 + 4α2)

6α3 .
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All the integrals are approximated using cubature formulas Qmid
Ω

(h), see (8). We used CVT generated by
original PolyMesher, see [4]. Here N is the square root of the number of Voronoi regions, and Ωi is the
Voronoi region, i = 1, . . . ,N2. We denote the resulting cubature formula by Qmid

N ( f ).
Let Emid

N ( f ) denote the relative error associated to Qmid
N (h)

Emid
N (h) =

Qmid
N (h) − I(h)

I(h)
, h ∈ { f , 1}. (14)

The following figure shows the corresponding mesh of the centroidal Voronoi cubature formula Qmid
N .

Table 1: The CVT and its generators of the unit square, here N = 20.

Table 2 shows the relative errors for the test function f (x) for the fixed parameters α = β = 1. Table 3
shows the orders of convergence.

N 4 8 16 32 64 128 256

Emid
N ( f ) 2.2E-02 4.31E-03 1.35E-03 3.25E-04 7.99E-05 1.99E-05 4.98E-06

Table 2: Approximation errors of integration for the test function f (x) with parameters α = β = 1

N 8 16 32 64 128 256

Emid
N ( f ) 2.0959 1.9821 1.9723 2.0124 2.0022 1.981

Table 3: Orders of convergence for the test function f (x) with parameters a = b = 1.

Finally, Table 4 and Table 5 show, respectively, the relative errors and orders of convergence for test
function 1(x) with parameter α = 1.

N 4 8 16 32 64 128 256

Emid
N (1) 8.64E-02 .46E-02 3.61E-03 9.95E-04 2.45E-04 6.07E-05 1.52E-05

Table 4: A pproximation errors for the test function 1(x) with parameter a = 1
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N 8 16 32 64 128 256

Emid
N (1) 2.5621 2.0194 1.859 2.0227 2.0125 1.993

Table 5: Orders of convergence forthe test function 1(x) with parameter a = 1.
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