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Abstract. In this paper, the generalized differential operator is applied to derive some
subclasses of function class o of bi-univalent functions defined in unit disk . We estimate
the bounds of the coefficients a, and a, for all functions which belong to the derived
subclasses of .
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1. Introduction

Let A be the class of all functions f of the following form

f@ =z +Eiaan2" , (11)
which are holomorphic in unit disk U
U ={z:|z|<1}
and normalized by the conditions f (0)=0 and f '(0)=1. Let S denote the class of all univalent
and holomorphic functions.
Let ¢(z) be holomorphic function in U and|p(z)| < 1, such that
0(2) =A+A1Z+ Ay 2244373 + -, (1.2)
Where A4-,44, A,, As, .... are real. Let ¢ (z) be a holomorphic and univalent function with positive
real part inl, ¢(0)=1, ¢'(0)>0 and ¢( ) is a region starlike with the respect to land symmetric
with the respect to the real axis. Further, let
&(z) =1+Byz + B,2%+B3z3 + -+, (1.3)

where B;, B,,Bs, .... are real and B:>0.

Here, we suppose that the functions ¢ and ¢ are hold the above conditions one or otherwise
stated.

The Koebe one—quarter Theorem [1] states that the image of U under every function f in S

contains a disk of radius %. So each univalent function has an inverse g = f ! satisfying

fHf @)=z (@zelW),
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f(f* (@) =, (o] <r=(f) ,ro(f)zﬁ), (14)

A holomorphic function is called bi-univalent in 2 if both £ and f * are univalent in U. By o,
we denote the class of all bi-univalent functions defined in (1.1). Since f in o has the form (1.1),
the computation proves that the invers g = f~1 has the following expansion

g(@)=f*(w)=w-a;, w*+2az—az)w® — . (1.5)
A holomorphic function f is subordinate to holomorphic function g, written by
f<gorf@)=<g@ (ze), (1.6)

provided there is holomorphic function £ defined on U,with £ (0)=0 and|#(z)| <1 such that
f(@ = g(#(2)). Moreover if g is univalent inll, then f(z) < g(z) is equivalent to f(0) = g(0)
and f(U) c g(). For more details on the notion of subordination.(see [1]).

In [2], the concept of quasi-subordinate introduced by Robertson. For holomorphic functions f
and g in U, the function f is quasi-subordination to , written as follows:

f(@) <q 9@ (2 € W) (1.7)
if there exist holomorphic functions ¢ and £ with |o( z) [<1, £ (0) = 0 and % (z)|<1 such that
f@ =9(@)g(£(2). (z € W).

Note that when ¢(z) = 1, then f(z) = g(#(z)) so that f(z) < g(z) in U. Also notice that, if
4 (2)= z, then f(z) = 9(2) g(2) and it is said that f is majorized by g , in U. From previous
statement it is clear that quasi-subordination is generalization of subordination as well as
majorization. (For more details related to quasi-subordination see [2].)

Ma and Minda in [3] indicated to the unified classes by S*(¢) and K(¢) and defined as

following
S(O)={f € AT <0(@)iz e U}, (L8)
KO:=(f e A1+ LD (252 e u}.
The classes S*(¢) and K(¢) are amplification of a classical set of starlike and convex functions.
(See [3]).

El-Ashwah and Kanas in [4] studied the classes

Sa*(1.0):={ f € c/l:%/ (fo(—g) —1) <40(2)-1;ze U,0# yeC},

Ko (rd):={f € A2 (L (E?) <40(2)-1ize W0 yeC}.

If p(z) =1, the classes Sq*(y,9) and Kq (y,0) convert respectively, to S*(y,) and K*(y,9) of
Ma.Minda starlike and convex functions of order y ( yC \{0}), in unit disk 2 ([5]). The classes
Sq*(v,9) and Kq (y,¢) minimize, to S*(¢) and K(9), respectively. When y=1, that are similar to
Ma.Minda starlike and convex functions, determined by Mohd and Darus [6].

Let ¢(b,d; z) be function defined by

o(b,d;z) = 3o Lnn+1 (G20, -1,-2,..... 7 € ),

(Dn
where ()n denote the Pochhammer symbol defined by
_{1 fork =0,aec C\ {0},
D o+ 1)(@+2) o (a+k—1)  forkeN= {123 ...}, aeC.

In [7] corresponding to the function ¢ (b, d; z),the generalized deferential operator defined as
D*(b,d)f: U — U,
D (b, d)f (2) = f(2)* ¢(b,d; 2)
Di(b, d)f (@) = (1 = V(f@* d(b,d; 2))+ Az(f (2)* ¢(b,d;2))’
D;(b,d)f (2) = D} (D7 (b, ) ()

Let f €A, then from last two relations, we may deduce that
D*(b,f @) = 2+ Eina[l + (n = DA™ 2 a2,
where m.eN.={0,1,2 ... ... }, and A>0.
From the last relation, we have

(D" (b, d)f (2))'= bD;* (b + 1,d)f (2) — (b-1) D" (b, d)f (2),
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and

22(DJ"(b, d)f (2))'= D**1(b,d)f (2) - (1-2) D}* (b, d)f ).

Lately, Srivastava et al. [8] found estimates for coefficients of the first two factors |a, | and
|as|. For the functions of these classes, we use this motivation in this research to define a unified
subclass of bi- univalent function class o as follows.

A function f ec defined in (1.1) is said to be in the cIasqu”f';Dm(b, d, 7, ¢) if the quasi-
subordination conditions are satisfied:

1 2D (b.d)f (@)’ 27 (b, f(2)"
—_ — —_— —_— < —_—
y[(l o) D7 (b,d)f (2) +o{l+ (Dﬁ”“(b.a)f(z))'} 1< 0@ — 1,

1 w(G (b, d)g(w))’ w(G" (b, d)g(w))”
S0 - D e L+ sy 1 <q 00w) = 1,
where g(w) = f 1 (w) given by (1.5), and
D™ 1(b, d)f (2) = (1-M)D* (b, ) f (2) + Az(D;" (b, d)f (2))’
G (b, d)g(w) = (1-1)G;" (b, dg(w) + 2w(G"™ (b, d)g(w))', 0 <2 <L. (see [7])

For special values of a,A,y,b, d, m,b and @(z), the class M,f_‘;fl)m(b, d, 7, ¢) unify known and
new classes.
Remark (1.1): Putting 2=0 in the classM 2D (b, d, 1, ¢), we get

ME2D™(b,d, 3, §) = M D™ (b, d, 7, §).

For b=d and m =0, we have the class M;ff.(y,@was introduced and studied by
N.Magesh,V.K.Balaji and J.Yamini [9].

In particular for b=d, m =0, and y=1, we have the class
MGDO(b, b, 1, §):= M),
which introduced by Goyal and Kumar [10]. In this case for ¢(z) = 1, we get
Mo(P) = MZ(P),
this class was studied by Ali et al. [11,12].

Remark(1.2):Putting A=c=0 in the class Mq‘fﬁl)m(b, d,y, ¢),we get
MIID™(b,d, 5, §) = My ,D™(b,d,y, ).

In special case for y=1,b=d and m =0, we have the class M, ,D°(b,b,1,$) = Sz (), was
introduced by Goyal and Kumar [10].We observe that, for ¢ (z) = 1, we get the class

Sa,0(v, )= S5y, b),

was studied by Deniz [12].

Remark(1.3): For 4=0 and &=1 in this class M D" (b, d, , ¢), we obtain
MyeD™(b,d, 3, §) = My D™ (b,d, 7, ).

In particular, put b=d, m =0,and y=1,we obtain Mg ,D°(b, b, 1, §) = K, (¢) this is special

Q,

case of the class M7, (¢p) when a=1,this class was studied by Goyal and Kumar [10].

Remark (1.4):Put o=0, we get the class M;'ﬁl)m(b, d, 5 @) = My ,D™(b,d, 4,y ¢) Which
defined as follow.
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A function fec is in the classM, ,D™(b,d, 4,5 #), yeC\ {0}, 0<A<1 if the quasi-
subordination conditions are satisfied:

12D} (b,A)f (2) +22* (D} (b,A)f (2))
1 1< 1
aorear@morearmy ~ W< ¢@ -1

and

1 w(Gl (b d)gw) +w? (G (b.d)gw))”
= —1] < -1
s wagmemGroagmy ~ 1 <a ¢W) —1

In particular for b=d and 72 =0 in above class, we obtain the class
Mq,6D° (b, d, 4, 1, ): =Py o(1 4 ).

The functions of the class 7, (1 4, ¢) are called bi-convex and bi-starlike functions of complex
order y of Ma-Minda type. This class was studied by Nanjundan, Vitalrao and Jagadesan [9].

Remark(1.5): Putting o=1, we get the class M;'ﬁl)m(b, d, 5 ¢) = My ;,D™(b,d, 5, ¢) which is
defined as follow.

A function f eo is said to be in the class M, ;D™ (b,d, 5, ¢) , yeC\ {0}, 0<A<l, if the
following conditions are satisfied

m ' 2 pm " 1953 (pm
l[Z(Dx (b, d)f @) +(1+2M2*(D;” (b,d)f () +22° (D" (b,d)f (2)) - 1<, 6@ -1,

Y 2(DM (b, d)f (2))' +222(D* (b,d) f (2))"
and
1 - w(GM(b,d)g(w)) +(1+21)w2 (G (b,d)g(w))" +Aw3 (G (b,d)g(w))”
- Z 2 —-1< —1.
oL w(G (b, Dg(W)) +.w2 (G (b,d)g(w)) 1= 1<q6w) -1

In particular for b=d and 72 =0 in above class, we obtain the class
MoDO(b, by, ) = Ky (v, 4 )
was studied by Nanjundan, Vitalrao and Jagadesan [9].

To find out our results, we needed to talk about the following lemma.

Lemma (1.6)[13]. If peP, then [c;| < 2for each j, where P is the family of all functions p,
holomorphic in U, for which
Re {p(2)}> 0, (zel),

where
p (Z): l+ciz+ ¢, ZZ"‘C3Z3 + -, (Zeu).

2. Coefficients Bounds
In this section, we find the initial Taylor coefficients |a,| and |a5| for functions in class

MED™(b,d,y, d) -

Theorem(2.1): If f belonging to the class M%2D™ (b, d, y; ¢), then
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_J|y[z(1+2a)(1+u)m+1“’)2 (1+3a)(1+z)2(m+1){(b)1}2]A By 2= (1+a)? (1422 D (2(B,-B,)|
las|< [A?14:1%B,*
|7[2(1+2a)(1+u)m+1(”)1 (1+3a)(1+ﬂ,)2(m+1){(b)1}2]A -B12—(1+0)> (1+A)2<m+1>{<”)1}2(132 By)|
IA1A1]B1 [714°1B1 (2.2)

m+1(0)2 m+1(B)2
2(1+2)(1+22) @3 2(1+2)(1+22) @3

Proof: Let f eM‘”Dm(b d,nd)and g = f~1. Then there exist holomorphic functions
u, v: U — U, with u(0)=v(0)=0, such that

Trrq 32O (b AE) 2D (b @)y 1q1_ _
y [(1 a) Din+1(b‘d)f(z) + a’{]‘ + (D{n*'l(b,d)f(z))'} 1]_ (p(Z)(d)(Z) 1)' (23)
Trea WG b dgw) WG (b d)gw)'y 17_ _

Now, we define the functions p and q by

1+u(z)

PO

—1+clz+c22 + 323 +-

and
1+v(z)

q(z )— —1+blz+bzz + b3z + -

It is obvious, Re p(z) >0 and Re q(z) >0 . From last two relations, we derive

@-1

=B 5 = ezt (cz——)z +- (2.5)
—a1 _ 1 _bhye g

v(z)—q(z)+1 =3 [b1z + (b, 5 )Z% + e (2.6)

It is obvious that p and q are holomorphic functions in U with p(0) = q(0) = 1.

Using (2.5), (2.6) in (2.3) and (2.4), respectively, we obtain

lrrg 2O ) @) z(D}"“(b d)f(Z)) p(z)—1 _

Trer WG )gw) w(ﬁ"“(b d)g(w)) q@-1\

Utilize (2.5), (2.6) together with (1.3) it is evident that

(2)-1 1 1 1 201

0 @) (0 (Z(;H) — 1)=5 AByCiz+{5 A ByCy + 2 ABy(C, — D)+ ABycf} 22 .. (2.9)
-1 1 1 1 b3, 1

o(W) (0 (Z (;H) — 1)= 2 ABy byw+{5 Ay By by + 5 AsBy (b, — D)+> ABybZj w4 (210)

It follows from (2.7),(2,8),(2.9) and (2.10) that

1 b 1
A+ o+ ﬂ)mﬂ%az = ABiCy (2.11)
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201+ 20) (1 + 2™ (P2 as — (14 30)(1+ DD 2aF]= 14,81 Gy +
2

1 2 1 2
EAOBI(CZ - ?) + Z AOBzcl} (212)
-1 b 1
—A+ Q@+ H™ %az = 2A:Byb, (2.13)
1 (b), (D)1,
“[(4(1 + 2a)(1 + 2)™1 =2 — (1 + 3a)(1 + 2)2m+D) -2(1+20)
~I( ( @ a)( @
b 1 1 b?, 1
(14 22)mH %%]z ~AyBiby + S AB, (b — *D) + 2 A-Byb7} . (2.14)
From (2.11) and (2.13), we obtain
o= —-b (2.15)
and
YA-B;Cy —YA-B;by
= = 2.16
@2 20+ A+ L 21+ (142l (2.16)
8(1+a)? (L+0)2mM+ 12 = 2 A.2B, (EZ;I) (b2 + €2, (2.17)
adding (2.12) and (2.14) it follows that
[(4(1 +20)(1 + 2™ (”)2 —(1+30)(1+ /1)2<m+1)((”)1) )] = 2A4-By(c; + by)
- 2 °bP1\t2 2
+ 7‘“ (B 1)( c? +b?) . (2.18)
Substituting (2.15) and (2.16) into (2.18), we have
a% — }’2A°2313(C2+ by) (2 19)

m+1(D)2_ 2(m+1) (D1y214.5 2 _ 2 2(m+1) (P1y2
M2 (1+2)™ 2 (1430) (14+2) (H214B, 2~ 4(B,~B1) (1+0)? (1+7) &

Applying Lemma (1.6), we get the desired inequality (2.1).

Subtracting (2.12) from (2.14) and computation using (2.15), we obtain

_ 2 yA1B1Cq yA-B1 (C2— by)
az=az+ 4(1+20)(1+20)m*H 1 P2 T g11a 42 ymir®2’
(d)2 (d)2

By applying for Lemma (1.6) again, we had the estimate (2.2).
Taking special values for o and A in previous theorem, we obtain the following results

Corollary (2.2): LetyeC \ {0} and o0. If f € M, D™ (b, d, y; ¢), then

< IA14-18 /By
Jrn2a+2082 —aesaBz1an,-(1+a2 (426, -5y)|

and
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las| < IA?14:1%B1° 714118y |A14:|By
3 |;/[2(1+2a)$;1 (1+3 ){(b)l}Z]A B 2—(1+4)2 {(b)l}Z(B2 B)| 201424 )EZ;Z 21424 )EZ;Z

Remark (2.3): For b=d and m =0, the above corollary reduces [9, Corollary 12, p.5].

Corollary (2.4): Let f be in the class M, ;D™ (b, d, 5, ¢), and yeC — {0},a>0. Then

[71140 IBh/_l
NOPRRON 2]4.B,2— )12
\/ |22 ~ (@148~ (g2 (BB
and
las| < IA?14-2 B, * AI411B1 | |AIA-|By
3 =T ®1 Oy, p 2 @i g ®)2 ®)2
|”[ (@1 {(d)l} 14- {(dn} (B Bl)l 2@, Za),

Remark (2.5): For b = d and m = 0, the Corollary (2.4) reduces to [9, Corollary 9, p.5].

Corollary (2.6): Let f be in the class Mql,'gl)m(b, d, 7, ¢), and yeC — {0},.Then

IA14-15; /By
b b b
JIne% 4 @1y214.8,% -4 (21528, -8,)|
and
] < 121425, IA1441B; _ Iil4-IB;
3= ey @epan, e @i e, 5| | 622 602

(©)1 ©1 ©)1 ©)2 (©)2

Remark (2.7): For b=d and m =0, the Corollary (2.6) reduces to[9, Corollary 11,p.5].

Corollary (2.8): Let f be in the class M, ;D™ (b, d, 4, 3, #), and yeC — {0} and 0<A<I. Then
14|y /By

las|<
Jrzarzayme i@z ppomen Bapziap, 2oy D1 ,s,)|
and
las| < [7%]4-2B,3
|7,[2(1+21)m+1éb§1 (1+A)2(m+1){§b§1}2]A By _(1+l)2(m+1){(b)1}2(32 1)|
[A141]B1 [714°|By
m+1(b)2 m+1(PD)2
214222 2(1422) M

Remark (2.9):By taking b=d and m =0,the above corollary gives to the result obtained in
Corollary (13) in [9].

Corollary (2.10): If f be in the class leUDm(b, d, Ay @), yeC— {0} and 0<A<I, then
|1140|By /By

laZ|S +1(0)2 2(m+1) (D142 2 2(m+1) (D152
m _ m B.2_ m _
Jsar2am B2 —aquenyzimen Bayeiap, —aqe 2 B2,y

and
|(1 | ®) I blA l 51 - )
[H6(1+22)m+ 11 — 4(1+ 2D IR ) 4By ~a(1+ D22 (B, -By)|
|}4|A1|B1 [74°| By

m+1(0)2 m+1(0)2
s(1+22m 2 T g(14zpymer D2
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Remark (2.11): If we set b=d and m =0, the above corollary leads to get coefficient estimates
|a,| and |as| in the class K., (7 4, #).[9, Corollary 14, p.5].
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