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Abstract

In this research we developed implicit block
methods which make used of the first and
second derivatives of the problems. The
aim is to give a more accurate as well as
faster numerical results for solving first order
ordinary differential equations. The methods
are then used to solve a set of first order
initial value problems. Numerical results
clearly show that the new proposed methods
performed better than other well-known exist-
ing methods in solving the set of test problems.
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1 Introduction

Many researchers have focused on the block method
for solving first order ordinary differential equations
(ODEs). Such as Majid et al. (2003) developed
two point implicit method for solving a system of
ODEs . Majid et al. (2006) derived three point
block method to solve first order ODEs.Ibrahim
et al. (2007) used block backward diffference for-
mula to solve first order ODEs. This is by comput-
ing two or three points simultaneously using xn−1

∗corresponding author: email address

and xn as the back values of each block. Ibrahim
et al. (2008) developed the block method by adding
a fixed coefficients block backward differentiation
formules to solve first order ODEs. Ibrahim et al.
(2011) also considered the property of convergence
two point block backward differentiation formulas.
Mehrkanoon et al. (2012) used the Gauss-seidel
technique for the implementation of the three point
3-step block multistep method for solving system
of first order ODEs. However, all the work men-
tioned earlier used onlythe first derivative of the
problems in the derivation of the methods. thus,
work on extra derivatives in the derivation of the
methods have been done by Sahi et al. (2012), where
they implemented Simpson’s types second deriva-
tive block method for solving first order ODEs.
A four-step block generalized Adam’s type second
derivative method had been modified by Kumleng
and Sirisena (2014) to solve first order ODEs. Akin-
fenwa et al. (2015) used a family of continuous third
derivative block methods derived from the colloca-
tion and interpolation technique to solve first order
ODEs. This paper considered initial value problems
(IVPs) for first-order ODEs in the form:

y
′

= f
(
x, y), y(x0) = y0. (1)

The second derivative with respect to x gives

g(x, y) = y
′′

= f ′
(
x, y) = fx + f fy

In this work, a new two and three point second
derivative implicit block methods were derived.
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The new methods are derived using Hermite In-
terpolating Polynomial P , which can be defined by :

P (x) =

n∑
i=0

mi−1∑
k=0

f
(k)
i Li,k(x), (2)

where fi = f(xi), xi = a + ih, i = 0, 1, ..., n and
h = b−a

n , n is a positive integer. Li,k(x) is
the generalized Lagrange polynomial which can be
defined by

Li,mi(x) = `i,mi(x), i = 0, 1, ..., n,

`i,k(x) =
(x− xi)k

k!

n∏
j=0,j 6=i

(
x− xj
xi − xj

)mj,

i = 0, 1, ..., n, k = 0, 1, ...,mi.

And recursively for k = mi − 2,mi − 3, ..., 0.

Li,k(x) = `i,k(x)−
mi−1∑
v=k+1

`
(v)
i,k (xi)Li,v(x).

The purpose of including the derivatives in
the formula is that, more accurate numerical
results can be obtained. Some numerical examples
were given to show the effectiveness of these new
methods compared with the existing methods.

2 Derivation of The New
Methods

In order to evaluate the approximate solution in
each block, the interval [a,b] is divided into a series
of blocks that each block contains k points. The
approximate solution at the point xn is used to
start the i th block while the approximate solution
at the point xn+k is the last point in the i th block.
Then, the evaluation information at the last point
in the i th block will be restored as the approximate
solution at the point xn to start the (i+1) th block
and the process continues for the next block.

Figure 1: 2-point block method.

Figure 2: 3-point block method.

2.1 Two - Point Second Derivative
Implicit Block Method

In two point block method, the interval [a,b]
contains two points for each block with the step
size 2h (refer to Figure1). The two values of yn+1

and yn+2 are calculated concurrently in a block.
For the evaluation of yn+1 take xn+1 = xn + h and
integrating (1) over the interval [xn, xn+1] gives :

∫ xn+1

xn

y
′
dx =

∫ xn+1

xn

f(x, y)dx,

y(xn+1) = y(xn) +

∫ xn+1

xn

f(x, y)dx. (3)

Then, f(x, y) in (3) will be replaced by Hermite
Interpolating Polynomial in (2) and define p2(x) as
follows,

p2(x) = [(
x− xn+1

xn − xn+1
)(
x− xn+2

xn − xn+2
)2− ((

2

xn − xn+2
)

+(
1

xn − xn+1
))(x−xn)(

x− xn+1

xn − xn+1
)(
x− xn+2

xn − xn+2
)2]f0

+[(
x− xn

xn+1 − xn
)2(

x− xn+2

xn − xn+2
)2]f1 + [(

x− xn
xn+2 − xn

)2

(
x− xn+1

xn+2 − xn+1
)− ((

1

xn+2 − xn+1
) + (

2

xn+2 − xn
))

(x− xn+2)(
x− xn

xn+2 − xn
)2(

x− xn+1

xn+2 − xn+1
)]f2

2
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+[(x− xn)(
x− xn+1

xn − xn+1
)(
x− xn+2

xn − xn+2
)2]g0

+[(x− xn+2)(
x− xn

xn+2 − xn
)2(

x− xn+1

xn+2 − xn+1
)]g2. (4)

Let x = xn+2 + s h and

s =
x− xn+2

h
. (5)

Replace dx = h ds and change the limit of integra-
tion from -2 to -1 in (3) we obtain:

y(xn+1) = y(xn) +

∫ −1
−2

[f0L0,0(s) + f1L1,0(s)

+f2L2,0(s) + g0L0,1(s) + g2L2,1(s)] h ds. (6)

where

L0,0(s) = −1

4
(s3 + s2)− 1

2
(s3 + 2s2)(s+ 1),

L1,0(s) = s2(s+ 2)2,

L2,0(s) =
1

4
(s+ 2)2(s+ 1)− 1

2
(s2 + s)(s+ 2)2,

L1,0(s) = −h
4
s2 (s+ 2) (s+ 1),

L2,1(s) =
h

4
s (s+ 2)2(s+ 1).

Evaluating the integral in (6) by using MAPLE
produces the first formula of the two-point implicit
block method as follows,

yn+1 = yn +
h

240
[131fn + 128fn+1 − 19fn+2]

+
h2

240
[23gn + 7gn+2]. (7)

Now, integrating (1) over the interval [xn, xn+2]
to obtain the approximate solutions of yn+2 we have∫ xn+2

xn

y
′
dx =

∫ xn+2

xn

f(x, y)dx,

y(xn+2) = y(xn) +

∫ xn+2

xn

f(x, y)dx. (8)

Then, f(x, y) in (8) will be replaced by Hermite
Interpolating Polynomial in (4). Also, by replacing

(5) letting dx = h ds and changing the limit of
integration from -2 to 0 in (8) we obtain:

y(xn+2) = y(xn) +

∫ 0

−2
[f0L0,0(s) + f1L1,0(s)

+f2L2,0(s) + g0L0,1(s) + g2L2,1(s)] h ds. (9)

Evaluating the integral in (9) by using MAPLE pro-
duces the second formula of the two-point Implicit
block method as follows,

yn+2 = yn +
h

15
[7fn + 16fn+1 + 7fn+2]

+
h2

15
[gn − gn+2]. (10)

2.2 Three - Point Second Derivative
Implicit Block Method

In the three points block, the interval [a,b] contains
three points for each block with the step size 3h
(refer to Figure 2). The three approximation values
of yn+1, yn+2 and yn+3 at the point xn+1, xn+2

and xn+3 are calculated concurrently in a block.
The derivations of the three point block method are
similar to the previous derivations of the two point
block method.

Equation (1) will be integrated over the interval
[xn, xn+1], [xn, xn+2] and [xn, xn+3] to obtian the
approximate solutions of yn+1, yn+2 and yn+3, de-
fined p3(x) as follows,

p3(x) = [(
x− xn+1

xn − xn+1
)(
x− xn+1

xn − xn+1
)(
x− xn+3

xn − xn+3
)2

+((
−1

xn − xn+1
) + (

−1

xn − xn+2
) + (

−2

xn − xn+3
))

((x−xn)(
x− xn+1

xn − xn+1
)(
x− xn+2

xn − xn+2
)(
x− xn+3

xn − xn+3
)2)]f0+

[(
x− xn

xn+1 − xn
)2(

x− xn+2

xn+1 − xn+2
)(

x− xn+3

xn+1 − xn+3
)2]f1

+[(
x− xn

xn+2 − xn
)2(

x− xn+1

xn+2 − xn+1
) (

x− xn+3

xn+2 − xn+3
)2]f2

+[(
x− xn

xn+3 − xn
)2(

x− xn+1

xn+3 − xn+1
)(

x− xn+2

xn+3 − xn+2
)

−((
2

xn+3 − xn
) + (

1

xn+3 − xn+1
) + (

1

xn+3 − xn+2
))

((x− xn+3)(
x− xn

xn+3 − xn
)2(

x− xn+1

xn+3 − xn+1
)

3
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(
x− xn+2

xn+3 − xn+2
))]f3 + ((x− xn)(

x− xn+1

xn − xn+1
)

(
x− xn+2

xn − xn+2
)(
x− xn+3

xn − xn+3
)2)g0 + ((x− xn+3)

(
x− xn

xn+3 − xn
)2(

x− xn+1

xn+3 − xn+1
)(

x− xn+2

xn+3 − xn+2
))]g3.

(11)

Then, Hermite Interpolating Polynomial in (11)
will interpolate f(x, y) and let x = xn+3 + sh and
s = x−xn+3

h . For each evaluation of yn+1, yn+2 and
yn+3, we take xn+1 = xn +h, xn+2 = xn+1 +h and
xn+3 = xn+2 + h respectively.

The first , second and third point can be written as
follows,

yn+1 = yn +
h

6480
[3463fn + 3537fn+1 − 783fn+2

+263fn+3] +
h2

1080
[97gn − 17gn+3].

yn+2 = yn +
h

405
[181fn + 459fn+1 + 189fn+2

−19fn+3] +
h2

135
[8gn + 2gn+3].

yn+3 = yn +
h

80
[39fn + 81fn+1 + 81fn+2

+39fn+3] +
h2

40
[3gn − 3gn+3]. (12)

3 Order Conditions And Er-
ror Constant Of The New
Methods

This section presents a definition of the order of the
two and three point block methods that have been
derived in this paper.
According to Fatunla (1991) and Lambert (1991),
the local truncation error associated with nor-
malized form of the new method can be defined as
the linear difference operator

L[Z(x);h] =

k∑
i=0

αiZ(x+ jh)−
k∑
i=0

hβiZ
′(x+ jh)

−
k∑
i=0

h2γiZ
′′(x+ jh). (13)

Assuming that Z(x) is sufficiently differentiable,
(13) can be expanded as a Taylor series expan-
sion about the point x to obtain the expression
L[Z(x);h] = C0Z(x)+C1hZ

′(x)+...+CphpZ
p(x)+

..., where the constant coefficients Cp, p = 0, 1, ...
are given as follows:

C0 =

k∑
i=0

αj ,

C1 =

k∑
i=0

jαj −
k∑
i=0

βj ,

Cp =
1

p!

k∑
i=0

jpαj −
1

(p− 1)!

k∑
i=0

jp−1βj

− 1

(p− 2)!

k∑
i=0

jp−2γj , p = 2, 3, .. (14)

According to Henrici (1962), it can be
said that the new method has order p if
C0 = C1 = ... = Cp = 0, Cp+1 6= 0.

Therefore, Cp+1 is the error constant and
Cp+1h

p+1Z(p+1)(xn) is the principal local trunca-
tion error at the point xn.
The formulae of a new two point block method is
given by (7) and (10) and the formulae is written
into a matrix as follows:

αYm = +hβFm + h2γGm (15)

where α, β and γ are the coefficients with the
m-vector Ym, Fm and Gm be defind as,

α =

[
−1 1 0
−1 0 1

]
, β =

[
131
240

128
240

−19
240

7
15

16
15

7
15

]
,

γ =

[
23
240 0 7

240
1
15 0 −1

15

]
,

Ym =

 yn
yn+1

yn+2

 , Fm =

 fn
fn+1

fn+2

 , Gm =

 gn
gn+1

gn+2

 .

α0 =

[
−1
−1

]
, α1 =

[
1
0

]
, α2 =

[
0
1

]
,

β0 =

[
131
240
7
15

]
, β1 =

[
128
240
16
15

]
, β2 =

[−19
240
7
15

]
,

4
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γ0 =

[
23
240
1
15

]
, γ1 =

[
0
0

]
, γ2 =

[
7

240−1
15

]
.

For p = 0,

C0 =

2∑
i=0

αj =

[
0
0

]
,

For p = 1,

C1 =

2∑
i=0

jαj −
2∑
i=0

βj =

[
0
0

]
,

For p = 2,

C2 =
1

2!

2∑
i=0

j2αj −
2∑
i=0

jβj −
2∑
i=0

γj =

[
0
0

]
,

For p = 3,

C3 =
1

3!

2∑
i=0

j3αj −
1

(2)!

2∑
i=0

j2βj

−
2∑
i=0

jγj =

[
0
0

]
,

For p = 4,

C4 =
1

4!

2∑
i=0

j4αj −
1

(3)!

2∑
i=0

j3βj−

1

(2)!

2∑
i=0

j2γj =

[
0
0

]
,

For p = 5,

C5 =
1

5!

2∑
i=0

j5αj −
1

(4)!

2∑
i=0

j4βj

− 1

(3)!

2∑
i=0

j3γj =

[
0
0

]
,

For p = 6,

C6 =
1

6!

2∑
i=0

j6αj −
1

(5)!

2∑
i=0

j5βj

− 1

(4)!

2∑
i=0

j4γj =

[ −1
720
0

]
6=
[
0
0

]
.

Then, the 2-point implicit block method has
order p = 5 and error constant C6 = [ −1720 , 0]T .

The formulae of a new three point block method
is given by (12) and the formulae is written into a
matrix from (15) as follows:

α =

−1 1 0 0
−1 0 1 0
−1 0 0 1

 ,
β =

 3463
6480

3537
6480

−783
6480

263
6480

181
405

459
405

189
405

−19
405

39
80

81
80

81
80

39
80

 ,
γ =

 97
1080 0 0 −17

1080
8

135 0 0 2
135

3
40 0 0 −3

40

 ,

Ym =


yn
yn+1

yn+2

yn+3

 , Fm =


fn
fn+1

fn+2

fn+3

 , Gm =


gn
gn+1

gn+2

gn+3

 .

α0 =

−1
−1
−1

 , α1 =

1
0
0

 , α2 =

0
1
0

 , α3 =

0
0
1

 ,
β0 =

 3463
6480
181
405
39
80

 , β1 =

 3537
6480
459
405
81
80

 , β2 =

−7836480
189
405
81
80

 ,
β3 =

 263
6480−19
405
39
80

 , γ0 =

 97
1080
8

135
3
40

 , γ1 =

0
0
0

 ,
γ2 =

0
0
0

 and γ3 =

 −171080
2

135−3
40

 .
For p = 0,

C0 =

3∑
i=0

αj =

0
0
0

 ,
For p = 1,

C1 =

3∑
i=0

jαj −
3∑
i=0

βj =

0
0
0

 ,
For p = 2,

C2 =
1

2!

3∑
i=0

j2αj −
3∑
i=0

jβj −
3∑
i=0

γj =

0
0
0

 ,
5
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For p = 3,

C3 =
1

3!

3∑
i=0

j3αj −
1

(2)!

3∑
i=0

j2βj −
3∑
i=0

jγj =

0
0
0

 ,
For p = 4,

C4 =
1

4!

3∑
i=0

j4αj −
1

(3)!

3∑
i=0

j3βj−

1

(2)!

3∑
i=0

j2γj =

0
0
0

 ,
For p = 5,

C5 =
1

5!

3∑
i=0

j5αj −
1

(4)!

3∑
i=0

j4βj

− 1

(3)!

3∑
i=0

j3γj =

0
0
0

 ,
For p = 6,

C6 =
1

6!

3∑
i=0

j6αj −
1

(5)!

3∑
i=0

j5βj

− 1

(4)!

3∑
i=0

j4γj =

0
0
0

 ,
For p = 7,

C7 =
1

7!

3∑
i=0

j7αj −
1

(6)!

3∑
i=0

j6βj

− 1

(5)!

3∑
i=0

j5γj =

 97
100800−1
6300
9

11200

 6=
0

0
0

 .
Then, the 3-point implicit block method
has order p = 6 and error constant
C7 = [ 97

100800 ,
−1
6300 ,

9
11200 ]T .

4 The Zero-Stability Of The
Methods

In this section, the zero-stability of the 2-point and
3-point implicit block method are discussed.

Two point implicit block method

The general form of (7) and (10) can be written
in the matrix form :[

1 0
0 1

] [
yn+1

yn+2

]
=

[
0 1
0 1

] [
yn−1
yn

]

+h

[
131
240

128
240

−19
240

7
15

16
15

7
15

] fn
fn+1

fn+2



+h2
[

23
240 0 7

240
1
15 0 −1

15

] gn
gn+1

gn+2

 .
The first characteristic polynomial of the 2-point
implicit block method is given as follows,

ρ(R) = det [RA(0) −A(1)] = 0,
where

A(0) =

[
1 0
0 1

]
and A(1) =

[
0 1
0 1

]
.

ρ(R) = det

[
R −1
0 R− 1

]
= 0, R(R − 1) =

0, R = 0, 1, | R |≤ 1.

Three point implicit block method

The general form of (12) can be written in the
matrix form :1 0 0

0 1 0
0 0 1

yn+1

yn+2

yn+3

 =

0 0 1
0 0 1
0 0 1

yn−2yn−1
yn



+h

 3463
6480

3537
6480

−783
6480

263
6480

181
405

459
405

189
405

−19
405

39
80

81
80

81
80

39
80



fn
fn+1

fn+2

fn+3



+h2

 97
1080 0 0 −17

1080
8

135 0 0 2
135

3
40 0 0 −3

40



gn
gn+1

gn+2

gn+3

 .
The first characteristic polynomial of the 3-point
implicit block method is given as follows,

ρ(R) = det [RA(0) −A(1)] = 0,
where

A(0) =

1 0 0
0 1 0
0 0 1

 and A(1) =

0 0 1
0 0 1
0 0 1

 .
6



ASM Science Journal Special Issue 2018(1)

ρ(R) = det

R 0 −1
0 R −1
0 0 R− 1

 = 0, R2(R−1) =

0, R = 0, 0, 1 , | R |≤ 1.

According to Fatunla (1991), the two point and
three point implicit block methods are zero-stable,
since the first characteristic polynomial ρ(R) = 0
satisfy | Rj |≤ 1, j = 0, ..., k. Also, the two
point and three point implicit block methods
are consistent as they have order p greater than
one. Following Henrici (1962), we can say that
the two point and three point block methods
are convergence because they are zero-stable and
consistent.

5 Implementation

This section focuses on the explanation of the
implementation of the two and three point implicit
second derivative block methods.

Two point implicit second derivative block
method
The values of yn+1 and yn+2 in (7) and (10) will
be approximated by using the predictor-corrector
equations.
The predictor equations:

ypn+m = ycn +m h f cn, m = 1, 2, (16)

fpn+m = f(xn+m, y
p
n+m),

gpn+m = f ′(xn+m, y
p
n+m).

The corrector equations:

ycn+1 = ycn +
h

240
[131f cn + 128fpn+1 − 19fpn+2]

+
h2

240
[23gcn + 7gpn+2].

ycn+2 = ycn +
h

15
[7f cn + 16fpn+1 + 7fpn+2]

+
h2

15
[gcn − g

p
n+2].

And the next corrector equations will be taken as
follows:

ycn+1 = ycn +
h

240
[131f cn + 128f cn+1 − 19f cn+2]

+
h2

240
[23gcn + 7gcn+2].

ycn+2 = ycn +
h

15
[7f cn + 16f cn+1 + 7f cn+2]

+
h2

15
[gcn − gcn+2].

f cn+m = f(xn+m, y
c
n+m),

gcn+m = f ′(xn+m, y
c
n+m), m = 1, 2.

Three point implicit second derivative block
method
The values of yn+1, yn+2 and yn+3 in (12) will
be approximated by using the predictor-corrector
equations.

The predictor equations:
Define (16) as the predictor equations and let m =
1, 2, 3.
The corrector equations:

ycn+1 = ycn +
h

6480
[3463f cn + 3537fpn+1 − 783fpn+2+

263fpn+3] +
h2

1080
[97gcn − 17gpn+3].

ycn+2 = ycn+
h

405
[181f cn+459fpn+1+189fpn+2−19fpn+3]

+
h2

135
[8gcn + 2gpn+3].

ycn+3 = ycn +
h

80
[39f cn + 81fpn+1 + 81fpn+2 + 39fpn+3]

+
h2

40
[3gcn − 3gcn+3].

And the next corrector equations will be taken as
follows:

ycn+1 = ycn+
h

6480
[3463f cn+3537f cn+1−783f cn+2+263f cn+3]

+
h2

1080
[97gcn − 17gcn+3].

ycn+2 = ycn+
h

405
[181f cn+459f cn+1+189f cn+2−19f cn+3]

+
h2

135
[8gcn + 2gcn+3].

ycn+3 = ycn +
h

80
[39f cn + 81f cn+1 + 81f cn+2 + 39f cn+3]

+
h2

40
[3gcn − 3gcn+3].

f cn+m = f(xn+m, y
c
n+m),

gcn+m = f ′(xn+m, y
c
n+m), m = 1, 2, 3.
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6 Numerical Experiments

In this section, based on the new methods we
developed C codes for solving first - order ordinary
differential equation problems and compared the
numerical results when the same set of problems
are solved by using the existing methods .

Problem 1:

y′ = y − x2 + 1, y(0) =
1

2
, [0, 5].

Exact solution :y(x) = (1 + x)2 − 1

2
ex.

Source Yaacob and Sanugi (1995).

Problem 2:

y′ = xy3 − y, y(0) = 1, [0, 10].

Exact solution :y(x) =
2√

2 + 4x+ 2e2x
.

Source: Famurewa et al. (2011).
Problem 3:

y′1 = y3, y1(0) = 1, [0, π].

y′2 = y4, y2(0) = 1,

y′3 = −e−xy2, y3(0) = 0,

y′4 = 2exy3, y4(0) = 1.

Exact solution :y1(x) = cos(x),

y2(x) = excos(x),

y3(x) = −sin(x),

y4(x) = excos(x)− exsin(x).

Source : Abdul Majid et al. (2012).
Problem 4:

y′i = −βiyi + y2i , i = 1, 2, 3, 4, yi(0) = −1, [0, 20].

with β1 = 0.2, β2 = 0.2, β3 = 0.3, β4 = 0.4.

Exact solution :yi(x) =
βi

1 + cieβix
,

ci = −(1 + βi).

Source : Johnson and Barney (1976).

Notations used are as follows.

• h: step size.

• Time: seconds.

• Max Error: maximum error |y(xi)− yi|.

• New 2P: The new 2-point implicit second
derivative block method derived in this paper.

• New 3P: The new 3-point implicit second
derivative block method derived in this paper.

• method 2A: 2-point Implicit third derivative
block method proposed by Akinfenwa et al.
(2015).

• method 3A: 3-point Implicit third derivative
block method proposed by Akinfenwa et al.
(2015).

• method 2M : 2-point implicit block one-step
method half Gauss-Seidel proposed by Majid
et al. (2003).

• method S : A simpson’s-type second derivative
block method proposed by Sahi et al. (2012).

Table 1: Numerical Results of the New 2P, 2A
and Majid Methods for solving Problem 1.

h Methods MAXE Time

New 2P 3.097580(-7) 0.008
0.1 2A 9.075473(-6) 0.009

Majid 1.028331(-3) 0.007

New 2P 3.096409(-9) 0.027
0.05 2A 2.336125(-7) 0.033

Majid 4.335581(-5) 0.026

New 2P 4.814321(-11) 0.072
0.025 2A 6.980545(-9) 0.074

Majid 2.708640(-6) 0.070

New 2P 6.593552(-13) 0.117
0.0125 2A 5.621164(-10) 0.119

Majid 6.505416(-7) 0.115

8



ASM Science Journal Special Issue 2018(1)

Table 2: Numerical Results of the New 2P, 2A
and Majid Methods for solving Problem 2.

h Methods MAXE Time

New 2P 8.068236(-7) 0.036
0.1 2A 2.407103(-5) 0.038

Majid 5.322828(-5) 0.035

New 2P 1.852646(-8) 0.079
0.05 2A 6.901808(-6) 0.081

Majid 4.287203(-6) 0.078

New 2P 3.577403(-10) 0.130
0.025 2A 1.925143(-6) 0.132

Majid 3.081526(-7) 0.128

New 2P 6.248941(-12) 0.155
0.0125 2A 5.110584(-7) 0.158

Majid 2.073222(-8) 0.154

Table 3: Numerical Results of the New 2P, 2A
and Majid Methods for solving Problem 3.

h Methods MAXE Time

New 2P 4.803249(-6) 0.046
0.1 2A 6.021320(-6) 0.047

Majid 7.434949(-5) 0.045

New 2P 1.380934(-7) 0.094
0.05 2A 9.966465(-7) 0.096

Majid 4.751417(6) 0.093

New 2P 4.138981(-9) 0.141
0.025 2A 8.262003(-8) 0.143

Majid 3.003513(-7) 0.140

New 2P 1.266727(-10) 0.175
0.0125 2A 5.800818(-9) 0.177

Majid 1.887970(-8) 0.174

Table 4: Numerical Results of the New 2P, 2A
and Majid Methods for solving Problem 4.

h Methods MAXE Time

New 2P 1.085710(-5) 0.062
0.1 2A 3.864142(-4) 0.063

Majid 4.230879(-4) 0.060

New 2P 7.773816(-7) 0.171
0.05 2A 3.396333(-5) 0.173

Majid 3.499478(-5) 0.169

New 2P 3.393665(-8) 0.296
0.025 2A 3.873437(-6) 0.298

Majid 2.530419(-6) 0.294

New 2P 1.239543(-9) 0.483
0.0125 2A 4.865963(-7) 0.485

Majid 1.703761(-7) 0.481

Table 5: Numerical Results of the New 3P, 3A
and Sahi Methods for solving Problem 1.

h Methods MAXE Time

New 3P 8.462243(-8) 0.007
0.1 3A 2.311753(-6) 0.007

Sahi 1.605447(-6) 0.010

New 3P 1.309864(-9) 0.025
0.05 3A 5.083822(-8) 0.026

Sahi 2.476227(-8) 0.034

New 3P 2.071335(-11) 0.065
0.025 3A 2.913834(-9) 0.069

Sahi 3.812920(-10) 0.075

New 3P 2.957443(-12) 0.098
0.0125 3A 2.473823(-11) 0.114

Sahi 1.740532(-11) 0.122
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Table 6: Numerical Results of the New 3P, 3A
and Sahi Methods for solving Problem 2.

h Methods MAXE Time

New 3P 1.368469(-7) 0.032
0.1 3A 1.897087(-5) 0.034

Sahi 1.350523(-7) 0.036

New 3P 5.097240(-9) 0.072
0.05 3A 6.888210(-6) 0.074

Sahi 9.439226(-9) 0.080

New 3P 8.308907(-11) 0.126
0.025 3A 2.049793(-6) 0.127

Sahi 6.071470(-10) 0.131

New 3P 1.311735(-12) 0.151
0.0125 3A 5.595309(-7) 0.153

Sahi 3.812597(-11) 0.157

Table 7: Numerical Results of the New 3P, 3A
and Sahi Methods for solving Problem 3.

h Methods MAXE Time

New 3P 2.941061(-6) 0.040
0.1 3A 4.800874(-5) 0.041

Sahi 7.541150(-5) 0.046

New 3P 8.019770(-8) 0.089
0.05 3A 6.981759(-7) 0.091

Sahi 3.244254(-6) 0.095

New 3P 2.349645(-9) 0.136
0.025 3A 1.057838(-8) 0.137

Sahi 1.087780(-7) 0.141

New 3P 7.114069(-11) 0.172
0.0125 3A 1.630123(-10) 0.174

Sahi 3.662937(-9) 0.175

Table 8: Numerical Results of the New 3P, 3A
and Sahi Methods for solving Problem 4.

h Methods MAXE Time

New 3P 5.100885(-6) 0.046
0.1 3A 1.469320(-3) 0.047

Sahi 2.407790(-5) 0.062

New 3P 3.832369(-7) 0.109
0.05 3A 4.396974(-5) 0.110

Sahi 2.257036(-6) 0.171

New 3P 1.772670(-8) 0.218
0.025 3A 1.770248(-6) 0.220

Sahi 1.573703(-7) 0.296

New 3P 6.679853(-10) 0.405
0.0125 3A 5.820560(-7) 0.407

Sahi 1.023594(-8) 0.483

Figure 3: The Efficiency curves for Problem
1 (2-point block method) with step size h =
0.1, 0.05, 0.025, 0.00125.
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Figure 4: The Efficiency curves for Problem
2 (2-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 5: The Efficiency curves for Problem
3 (2-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 6: The Efficiency curves for Problem
4 (2-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 7: The Efficiency curves for Problem
1 (3-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 8: The Efficiency curves for Problem
2 (3-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 9: The Efficiency curves for Problem
3 (3-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

11



ASM Science Journal Special Issue 2018(1)

Figure 10: The Efficiency curves for Problem
4 (3-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

7 Results and Discussion

In this paper, we presented the derivation of
two and three point second derivatives implicit
block methods for solving first-order ODEs. The
numerical results are tabulated in Tables 1-8 and
are plotted in Figures 3-10. Those figures showed
the efficiency curves, where the common logarithm
of the maximum global errors were plotted versus
the computational time. Figures 3-6 revealed
that 2P (2- point order 5 second derivative block
method derived in this paper) is the most efficient
compared to 2A (2-point one-step order 5 implicit
third derivative block multistep method) and
Majid (2-point implicit block method). Tables 1-4
showed that the new 2P method has less maximum
error compared with 2A and Majid methods.
Figures 7-10 showed that the new 3P (3- point
order 6 second derivative block method derived in
this paper) is the most efficient compared to 3A
(order 6, 3-point implicit third derivative block
multistep method) and Sahi (Simpson’s type order
6 second derivative block method). Tables 5-8
showed that the new 3P method has less maximum
error and less computational time compared to 3A
and Sahi’s methods.

Numerical results revealed that the new 2P and
3P methods are more efficient as compared to the
existing methods and they also illustrated that
the new second derivative block methods are more
accurate and competent for solving first order
ODEs.
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