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ABSTRACT

This paper focuses on the construction of two-point and three-point implicit block 
methods for solving general second order Initial Value Problems. The proposed methods 
are formulated using Hermite Interpolating Polynomial. The block methods approximate 
the numerical solutions at more than one point at a time directly without reducing the 
equation into the first order system of ordinary differential equations. In the derivation of 
the method, the higher derivative of the problem is incorporated into the formula to enhance 
the efficiency of the proposed methods. The order and zero- stability of the methods are 
also presented. Numerical results presented show the efficiency of these methods compared 
to the existing block methods. 

Keywords: Block methods, extra derivative, second order IVPs

INTRODUCTION

Many researchers have focused on the block method for directly solving general second 
order initial value problems (IVPs), whereby the IVPs are not reduced to system of first 
order IVPs. Awoyemi et al. (2011) used the collocation technique to develop block linear 
multistep methods to solve second order IVPs. Majid et al. (2012) used two-point block 

method to solve general second order IVPs. 
Badmus (2014) developed an efficient 
seven-point hybrid block method for the 
direct solution of general second order IVPs. 
Abdelrahim and Omar (2016) developed a 
single-step hybrid block method of order 
five, for directly solving second order 
ordinary differential equations (ODEs). For 
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solving the same type of problems, Ramos et al. (2016), developed an efficient Falkner-type 
method of order two and three. Waeleh and Majid (2017) derived block method to solve 
second order IVPs using variable stepsize code. Nasir et al. (2018) presented the diagonal 
block method of order four, for solving the second-order boundary value problems with 
Robin boundary conditions. While Singh and Ramos (2019) derived an optimized two-step 
hybrid block method which was formulated in variable step-size mode for integrating the 
general second order IVPs directly.

In most of the previously mentioned work, the methods did not have the extra derivative 
in the formulation of the methods. The aim of having the extra derivative in the formulation 
of the method is that, numerical solutions which are very accurate can be obtained. 
Furthermore, most of the block methods in the literature were derived using collocation 
and interpolation technique and some of them were derived using linear operator, which 
require more computational effort. 

In this paper, we derived the methods using integration technique which was much 
simpler than the collocation and linear operator techniques.  Previous work on block method 
which were derived using integration technique, only used Newton interpolation for the 
function on the right-hand side of the integration. In this research the function was replaced 
by Hermite interpolation, so that the extra derivatives of the problems to be solved could 
be included into the formula. Here, block methods with extra derivative are derived for 
directly solving the general second order ODEs (Equation 1).

𝑦′′ = 𝑓(𝑡 ,𝑦, 𝑦′),     𝑦(𝑎) = 𝑦0,𝑦′(𝑎) = 𝑦0′      𝑎 ≤ 𝑡 ≤ 𝑏   (1)

The first derivative of f with respect to t can be written as 

𝑦′′′ = 𝑓′(𝑡, 𝑦,𝑦′) = 𝑓𝑡 + 𝑦′  𝑓𝑦 + 𝑓 𝑓𝑦′ = 𝑔(𝑡, 𝑦,𝑦′)..

Hermite Interpolating Polynomial P, can be defined by Equation 2:

𝑃(𝑡) = �� 𝑓𝑖
𝑘

𝑚𝑖−1

𝑘=0

𝑛

𝑖=0

𝐿𝑖,𝑘(𝑡�),     (2)

where 𝑓𝑖 = 𝑓 𝑡𝑖 , 𝑡𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0,1, . . . , 𝑛 and  ℎ = 𝑏−𝑎
𝑛

, 𝑛 is a positive integer. 

Li,k( t ) is the generalized Lagrange polynomial which can be defined by 

𝐿𝑖,𝑚𝑖(𝑡) = ℓ𝑖,𝑚𝑖(𝑡), 𝑖 = 0,1, . . . ,𝑛,

ℓ𝑖,𝑘(𝑡) =
(𝑡 − 𝑡𝑖)𝑘

𝑘! � (
𝑛

𝑗=0,𝑗≠𝑖

𝑡 − 𝑡𝑗
𝑡𝑖 − 𝑡𝑗

)𝑚𝑗, 𝑖 = 0,1, . . . ,𝑛,𝑘 = 0,1, . . . ,𝑚𝑖..
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And recursively for k = mi ─ 2, mi ─ 3, ... , 0. 

𝐿𝑖,𝑘(𝑡) = ℓ𝑖,𝑘(𝑡)− � ℓ𝑖,𝑘
𝑣

𝑚𝑖−1

𝑣=𝑘+1

(𝑡𝑖)𝐿𝑖,𝑣(𝑡).

MATERIALS AND METHODS

Derivation of the Methods

In two-point block method, the interval [a,b ] contains two points for each block. To 
evaluate the first point, 𝑦𝑛+1 and   𝑦𝑛+1′ at  𝑡𝑛+1, we integrate (1) once and twice over 
the interval 𝑡𝑛, 𝑡𝑛+1 , which gives Equation 3

� 𝑦′′
𝑡𝑛+1

𝑡𝑛
𝑑𝑡 = � 𝑓

𝑡𝑛+1

𝑡𝑛
𝑡,𝑦,𝑦′ 𝑑𝑡.     (3)

and Equation 4

� � 𝑦′
𝑡

𝑡𝑛

𝑡𝑛+1

𝑡𝑛
 𝑑𝑡 𝑑𝑡 = � � 𝑓

𝑡

𝑡𝑛

𝑡𝑛+1

𝑡𝑛
𝑡 ,𝑦,𝑦′ 𝑑𝑡 𝑑𝑡.    (4)

Let 𝑡𝑛+1 = 𝑡𝑛 + ℎ and substituting into Equation 3 and 4, we have Equation 5 and 6

𝑦′ 𝑡𝑛+1 = 𝑦′ 𝑡𝑛 +� 𝑓
𝑡𝑛+1

𝑡𝑛
𝑡, 𝑦, 𝑦′ 𝑑𝑡,    (5)

𝑦′ 𝑥𝑛+1 = 𝑦 𝑡𝑛+1 = 𝑦 𝑡𝑛 + ℎ 𝑦′ 𝑡𝑛 + � (
𝑡𝑛+1

𝑡𝑛
𝑡𝑛+1 − 𝑡)𝑓(𝑡, 𝑦,𝑦′) 𝑑𝑡. (6)

Then, 𝑓(𝑡,𝑦,𝑦′) in Equation 5 and 6 will be replaced by Hermite Interpolating 
Polynomial in Equation 2 which is defined by 𝑃2(𝑡) =  as follows (Equation 7):

𝑃2(𝑡) = [(
𝑡 − 𝑡𝑛+1
𝑡𝑛 − 𝑡𝑛+1

)2(
𝑡 − 𝑡𝑛+2
𝑡𝑛 − 𝑡𝑛+2

)2 + (
2

𝑡𝑛 − 𝑡𝑛+1
)(

2
𝑡𝑛 − 𝑡𝑛+2

)(𝑡 − 𝑡𝑛)(
𝑡 − 𝑡𝑛+1
𝑡𝑛 − 𝑡𝑛+1

)2

(
𝑡 − 𝑡𝑛+2
𝑡𝑛 − 𝑡𝑛+2

)2]𝑓0 + [(
𝑡 − 𝑡𝑛+1
𝑡𝑛 − 𝑡𝑛+1

)2(
𝑡 − 𝑡𝑛+2
𝑡𝑛 − 𝑡𝑛+2

)2]𝑓1 + [(
𝑡 − 𝑡𝑛

𝑡𝑛+2− 𝑡𝑛
)2

(
𝑡 − 𝑡𝑛+1

𝑡𝑛+2 − 𝑡𝑛+1
)2 + (

2
𝑡𝑛+2 − 𝑡𝑛+1

)(
2

𝑡𝑛+2− 𝑡𝑛
)(𝑡 − 𝑡𝑛+2)(

𝑡 − 𝑡𝑛
𝑡𝑛+2 − 𝑡𝑛

)2

(
𝑡 − 𝑡𝑛+1

𝑡𝑛+2 − 𝑡𝑛+1
)2]𝑓2 + [(𝑡 − 𝑡𝑛)(

𝑡 − 𝑡𝑛+1
𝑡𝑛 − 𝑡𝑛+1

)2(
𝑡− 𝑡𝑛+2
𝑡− 𝑡𝑛+2

)2]𝑔0 + [(𝑡 − 𝑡𝑛+1)

( 𝑡−𝑡𝑛
𝑡𝑛+1−𝑡𝑛

)2( 𝑡−𝑡𝑛+2
𝑡𝑛+2−𝑡𝑛

)2]𝑔1 + [(𝑡 − 𝑡𝑛+2)( 𝑡−𝑡𝑛
𝑡𝑛+2−𝑡𝑛

)2( 𝑡−𝑡𝑛+1
𝑡𝑛+2−𝑡𝑛+1

)2]𝑔2

(7)
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Where 𝑓0,𝑓1  and 𝑓2  are the function f  (Equation 1) at the first, second and third point of the  
interpolation, while 𝑔0,𝑔1 and 𝑔2  are the derivatives respectively (Equation 8).

Let t= 𝑡𝑛+2 + 𝑠 ℎ and  and 

𝑠 =
𝑡 − 𝑡𝑛+2

ℎ
.       (8)

Taking 𝑑𝑡 = ℎ 𝑑𝑠  and change the limit of integration from ‒2 to ‒1 in Equation 5 and 
6 we obtain Equation 9 and 10

𝑦′(𝑥𝑛+1) = 𝑦′(𝑥𝑛) + ∫ [−1
−2 𝑓0𝐿0,0(𝑠) + 𝑓1𝐿1,0(𝑠) + 𝑓2𝐿2,0(𝑠) +𝑔0𝐿0,1(𝑠) +

                         𝑔1𝐿1,1(𝑠) + 𝑔2𝐿2,1(𝑠)] ℎ 𝑑𝑠             

𝑦′(𝑥𝑛+1) = 𝑦′(𝑥𝑛) + ∫ [−1
−2 𝑓0𝐿0,0(𝑠) + 𝑓1𝐿1,0(𝑠) + 𝑓2𝐿2,0(𝑠) +𝑔0𝐿0,1(𝑠) +

                         𝑔1𝐿1,1(𝑠) + 𝑔2𝐿2,1(𝑠)] ℎ 𝑑𝑠,    (9)

𝑦(𝑥𝑛+1)

= 𝑦(𝑥𝑛) + ℎ𝑦′(𝑥𝑛) +� (−ℎ − 𝑠ℎ)
−1

−2
[𝑓0𝐿0,0(𝑠) + 𝑓1𝐿1,0(𝑠) + 𝑓2𝐿2,0(𝑠�               

+ 𝑔0𝐿0,1(𝑠) + 𝑔1𝐿1,1(𝑠) + 𝑔2𝐿2,1(𝑠)] ℎ 𝑑𝑠

 

𝑦(𝑥𝑛+1)

= 𝑦(𝑥𝑛) + ℎ𝑦′(𝑥𝑛) +� (−ℎ − 𝑠ℎ)
−1

−2
[𝑓0𝐿0,0(𝑠) + 𝑓1𝐿1,0(𝑠) + 𝑓2𝐿2,0(𝑠�               

+ 𝑔0𝐿0,1(𝑠) + 𝑔1𝐿1,1(𝑠) + 𝑔2𝐿2,1(𝑠)] ℎ 𝑑𝑠        

𝑦′(𝑥𝑛+1) = 𝑦′(𝑥𝑛) + ∫ [−1
−2 𝑓0𝐿0,0(𝑠) + 𝑓1𝐿1,0(𝑠) + 𝑓2𝐿2,0(𝑠) +𝑔0𝐿0,1(𝑠) +

                         𝑔1𝐿1,1(𝑠) + 𝑔2𝐿2,1(𝑠)] ℎ 𝑑𝑠 .     (10)

where

𝐿0,0(𝑠) = (𝑠
2

4
(𝑠 + 1)2 + 3

4
𝑠2(𝑠+ 2)(𝑠+ 1)2), 𝐿1,0(𝑠) = 𝑠2(𝑠+ 2)2,

𝐿2,0(𝑠) = 1
4

((𝑠 + 2)2(𝑠+ 1)2− 3𝑠(𝑠+ 2)2(𝑠+ 1)2),

𝐿0,1(𝑠) = ℎ(𝑠
2

4
(𝑠+ 2)(𝑠+ 1)2), 𝐿1,1(𝑠) = ℎ(𝑠2(𝑠+ 1)(𝑠 + 2)2),

                          𝐿2,1(𝑠) = ℎ(𝑠
4

(𝑠 + 1)2(𝑠+ 2)2).

Evaluating the integrals in Equation 9 and 10 produces the first formula of the two-
point implicit block method as follows (Equation 11 and 12): 

𝑦𝑛+1′ = 𝑦𝑛′ + ℎ
240

[101𝑓𝑛 + 128𝑓𝑛+1 + 11𝑓𝑛] + ℎ2

240
[13𝑔𝑛− 40𝑔𝑛+1− 3𝑔𝑛+2]

         (11)

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛′ +
ℎ2

42 [13𝑓𝑛 + 7𝑓𝑛+1 + 𝑓𝑛+2�+
ℎ3

1680 [59𝑔𝑛 − 128𝑔𝑛+1 − 11𝑔𝑛+2]

         (12)

Integrating Equation 1 once and twice over the [𝑡𝑛+1, 𝑡𝑛+2] to obtain the approximate 
solutions of 𝑦𝑛+2 and 𝑦𝑛+2′ , we have Equation 13
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� 𝑦′′
𝑡𝑛+2

𝑡𝑛+1
𝑑𝑡 = � 𝑓

𝑡𝑛+2

𝑡𝑛+1
𝑡,𝑦,𝑦′ 𝑑𝑡.     (13)

and Equation 14

� � 𝑦′
𝑡

𝑡𝑛+1

𝑡𝑛+2

𝑡𝑛+1
 𝑑𝑡 𝑑𝑡= � � 𝑓

𝑡

𝑡𝑛+1

𝑡𝑛+2

𝑡𝑛+1
𝑡, 𝑦,𝑦′ 𝑑𝑡 𝑑𝑡.   (14)

Taking 𝑡𝑛+2 = 𝑡𝑛+1 + ℎ and substituting into Equation 13 and 14 we have Equation 
15 and 16

𝑦′ 𝑡𝑛+2 = 𝑦′ 𝑡𝑛+1 +� 𝑓
𝑡𝑛+2

𝑡𝑛+1
𝑡, 𝑦, 𝑦′ 𝑑𝑡     (15)

𝑦 𝑡𝑛+2 = 𝑦 𝑡𝑛+1 + ℎ𝑦′ 𝑡𝑛 +� (𝑡𝑛+2 − 𝑡)𝑓
𝑡𝑛+2

𝑡𝑛+1
𝑡, 𝑦, 𝑦′ 𝑑𝑡  (16)

Replaced 𝑓(𝑡,𝑦,𝑦′)  in Equation 15 and 16 by Hermite Interpolating Polynomial in 
Equation 7 and changing the limit of integration from ‒1 to 0 in Equation 15 and 16, we 
obtain Equation 17 and 18

𝑦′(𝑥𝑛+2) = 𝑦′(𝑥𝑛+1) + � [
0

−1
𝑓0𝐿0,0(𝑠) + 𝑓1𝐿1,0(𝑠) + 𝑓2𝐿2,0(𝑠)

        +𝑔0𝐿0,1(𝑠) + 𝑔1𝐿1,1(𝑠) + 𝑔2𝐿2,1(𝑠)] ℎ 𝑑𝑠

  
𝑦′(𝑥𝑛+2) = 𝑦′(𝑥𝑛+1) + � [

0

−1
𝑓0𝐿0,0(𝑠) + 𝑓1𝐿1,0(𝑠) + 𝑓2𝐿2,0(𝑠)

        +𝑔0𝐿0,1(𝑠) + 𝑔1𝐿1,1(𝑠) + 𝑔2𝐿2,1(𝑠)] ℎ 𝑑𝑠 .   (17)

𝑦(𝑥𝑛+2) = 𝑦(𝑥𝑛+1) + ℎ𝑦′(𝑥𝑛+1) + � (
0

−1
− 𝑠ℎ)[𝑓0𝐿0,0(𝑠) + 𝑓1𝐿1,0(𝑠)

+𝑓2𝐿2,0(𝑠) + 𝑔0𝐿0,1(𝑠) + 𝑔1𝐿1,1(𝑠) + 𝑔2𝐿2,1(𝑠)] ℎ 𝑑𝑠

 
𝑦(𝑥𝑛+2) = 𝑦(𝑥𝑛+1) + ℎ𝑦′(𝑥𝑛+1) + � (

0

−1
− 𝑠ℎ)[𝑓0𝐿0,0(𝑠) + 𝑓1𝐿1,0(𝑠)

+𝑓2𝐿2,0(𝑠) + 𝑔0𝐿0,1(𝑠) + 𝑔1𝐿1,1(𝑠) + 𝑔2𝐿2,1(𝑠)] ℎ 𝑑𝑠 . (18)

Evaluating the integrals in Equation 17 and 18, produces the second formula of the 
two-point implicit block method as follows (Equation 19 and 20):  

𝑦′𝑛+2 = 𝑦′𝑛+1 +
ℎ

240 [11𝑓𝑛 + 128𝑓𝑛+1 + 101𝑓𝑛+2] +
ℎ2

240 [3𝑔𝑛 + 40𝑔𝑛+1 − 13𝑔𝑛+2�].

         (19)

𝑦𝑛+2 = 𝑦𝑛+1 + ℎ𝑦′𝑛+1 +
ℎ2

1680 [37𝑓𝑛 + 616𝑓𝑛+1 + 187𝑓𝑛+2] +
ℎ3

80 [5𝑔𝑛 + 76𝑔𝑛+1− 16𝑔𝑛+2�].

         (20)

We denote the formula as two-point second derivative block implicit method or 
2PSDBI(2).
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In the three-point block, each block contains three points. The values of 
𝑦𝑛+1, 𝑦𝑛+2 and 𝑦𝑛+3 at the point 𝑡𝑛+1, 𝑡𝑛+2 and 𝑡𝑛+31 are calculated concurrently in a block. 
The approach  is similar to the  derivation  of the two-point implicit method. Equation 1 
will be integrated once and twice over the intervals [𝑡𝑛, 𝑡𝑛+1], [𝑡𝑛+1, 𝑡𝑛+2] and [𝑡𝑛+2, 𝑡𝑛+3]  
to obtain the approximate solutions of 𝑦𝑛+1,𝑦𝑛+1′ , 𝑦𝑛+2,𝑦𝑛+2′ ,𝑦𝑛+3 and 𝑦𝑛+3′ . Define 𝑃3(𝑡) 
as follows (Equation 21): 

                  ((𝑡 − 𝑡𝑛)( 𝑡−𝑡𝑛+1
𝑡𝑛−𝑡𝑛+1

)( 𝑡−𝑡𝑛+2
𝑡𝑛−𝑡𝑛+2

)( 𝑡−𝑡𝑛+3
𝑡𝑛−𝑡𝑛+3

)2)]𝑓0 + [( 𝑡−𝑡𝑛
𝑡𝑛+1−𝑡𝑛

)2( 𝑡−𝑡𝑛+2
𝑡𝑛+1−𝑡𝑛+2

)( 𝑡−𝑡𝑛+3
𝑡𝑛+1−𝑡𝑛+3

)2]𝑓1 +

                   [( 𝑡−𝑡𝑛
𝑡𝑛+2−𝑡𝑛

)2( 𝑡−𝑡𝑛+1
𝑡𝑛+2−𝑡𝑛+1

)      ( 𝑡−𝑡𝑛+3
𝑡𝑛+2−𝑡𝑛+3

)2]𝑓2 + [( 𝑡−𝑡𝑛
𝑡𝑛+3−𝑡𝑛

)2( 𝑡−𝑡𝑛+1
𝑡𝑛+3−𝑡𝑛+1

)( 𝑡−𝑡𝑛+2
𝑡𝑛+3−𝑡𝑛+2

)− (( 2
𝑡𝑛+3−𝑡𝑛

)

                  +( 1
𝑡𝑛+3−𝑡𝑛+1

) + ( 1
𝑡𝑛+3−𝑡𝑛+2

))((𝑡 − 𝑡𝑛+3)( 𝑡−𝑡𝑛
𝑡𝑛+3−𝑡𝑛

)2( 𝑡−𝑡𝑛+1
𝑡𝑛+3−𝑡𝑛+1

) ( 𝑡−𝑡𝑛+2
𝑡𝑛+3−𝑡𝑛+2

))]𝑓3

                  +((𝑡 − 𝑡𝑛)( 𝑡−𝑡𝑛+1
𝑡𝑛−𝑡𝑛+1

)( 𝑡−𝑡𝑛+2
𝑡𝑛−𝑡𝑛+2

)( 𝑡−𝑡𝑛+3
𝑡𝑛−𝑡𝑛+3

)2)𝑔0 +((𝑡 − 𝑡𝑛+3)( 𝑡−𝑡𝑛
𝑡𝑛+3−𝑡𝑛

)2( 𝑡−𝑡𝑛+1
𝑡𝑛+3−𝑡𝑛+1

)( 𝑡−𝑡𝑛+2
𝑥𝑛+3−𝑥𝑛+2

))𝑔3.

         (21)

Hermite Interpolating Polynomial in Equation 21 will interpolate 𝑓(𝑥,𝑦,𝑦′) and let 
t= 𝑡𝑛+3 + 𝑠 ℎ and 𝑠 = 𝑡−𝑡𝑛+3

ℎ . For each evaluation of 𝑦𝑛+1 ,𝑦𝑛+1′ ,  𝑦𝑛+2,𝑦𝑛+2′ and 𝑦𝑛+3, 𝑦𝑛+3′ , 
we obtained the  formulae  which can  be written as follows (Equation 22, 23, 24, 25, 26 
and 27): 

 𝑦𝑛+1
′ = 𝑦𝑛′ +

ℎ
6480 [3463𝑓𝑛 + 3537𝑓𝑛+1 − 783𝑓𝑛+2 + 263𝑓𝑛+3] +

ℎ2

1080 97𝑔𝑛 − 17𝑔𝑛+3 ,

         (22)

𝑦𝑛+1 = 𝑦𝑛 + ℎ 𝑦𝑛′ +
ℎ2

45360 [16384𝑓𝑛 + 7857𝑓𝑛+1 − 2376𝑓𝑛+2 + 815𝑓𝑛+3] +
ℎ3

7560 388𝑔𝑛− 53𝑔𝑛+3 ,

               (23)

𝑦𝑛+2
′ = 𝑦𝑛+1

′ + ℎ
80

[−7𝑓𝑛 + 47𝑓𝑛+1 + 47𝑓𝑛+2 − 7𝑓𝑛+3] + ℎ2

360
−11𝑔𝑛 + 11𝑔𝑛+3 ,

         (24)

𝑦𝑛+2 = 𝑦𝑛+1 + ℎ 𝑦𝑛+1
′ +

ℎ2

15120 [−715𝑓𝑛 + 5832𝑓𝑛+1 + 3051𝑓𝑛+2 − 608𝑓𝑛+3] +
ℎ3

2520 [−41𝑔𝑛 + 36𝑔𝑛+3],

         (25)
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𝑦𝑛+3
′ = 𝑦𝑛+2

′ +
ℎ

6480
[263𝑓𝑛 − 783𝑓𝑛+1 + 3537𝑓𝑛+2 + 3463𝑓𝑛+3] +

ℎ2

1080
17𝑔𝑛 − 97𝑔𝑛+3 ,

         (26)

𝑦𝑛+3 = 𝑦𝑛+2 + ℎ 𝑦𝑛+ 2
′ +

ℎ2

1680
[38𝑓𝑛 − 115𝑓𝑛+ 1 + 626𝑓𝑛+2 + 291𝑓𝑛+3] +

ℎ3

2520
22𝑔𝑛 − 97𝑔𝑛+3 .

         (27)

This method is denoted as three-point second derivative block implicit method or 
3PSDBI(2).

Order and Error Constant

The  local truncation  error  associated  with the normalized form of the proposed method 
can be defined as the linear difference operator (Equation 28)

𝐿[𝜓(𝑡); ℎ] = ∑ [𝛼𝑖𝜓(𝑡+ 𝑗ℎ)𝑘
𝑖=0 − ℎ𝛽𝑖𝜓′(𝑡+ 𝑗ℎ)−ℎ2𝛾𝑖𝜓′′(𝑡+ 𝑗ℎ)−ℎ3𝛿𝑖𝜓′′′(𝑡+ 𝑗ℎ)].

         (28)

Further detail can be seen in Fatunla (1995). Assuming that 𝜓(𝑡) is sufficiently 
differentiable, Equation 28 can be expanded as a Taylor series expansion about the point 
 to obtain the expression 𝐿[𝜓(𝑡); ℎ] = ℂ0𝜓(𝑡) + ℂ1ℎ𝜓′(𝑡)+. . . +ℂ𝑝ℎ𝑝𝜓(𝑝)(𝑡)+. . . , where 

the constant coefficients ℂ𝑝 ,𝑝 = 0,1, . . . are given as follows (Equation 29): 

ℂ0 = ∑ 𝛼𝑗𝑘
𝑖=0 , ℂ1 = ∑ 𝑗𝑘

𝑖=0 𝛼𝑗 −∑ 𝛽𝑗𝑘
𝑖=0 ,

⋮

ℂ𝑝 =
1
𝑝!�𝑗𝑝

𝑘

𝑖=0

𝛼𝑗 −
1

(𝑝 − 1)!�𝑗𝑝−1
𝑘

𝑖=0

𝛽𝑗

ℂ0 = ∑ 𝛼𝑗𝑘
𝑖=0 , ℂ1 = ∑ 𝑗𝑘

𝑖=0 𝛼𝑗 −∑ 𝛽𝑗𝑘
𝑖=0 ,

⋮

ℂ𝑝 =
1
𝑝!�𝑗𝑝

𝑘

𝑖=0

𝛼𝑗 −
1

(𝑝 − 1)!�𝑗𝑝−1
𝑘

𝑖=0

𝛽𝑗 −
1

(𝑝−2)!
∑ 𝑗𝑝−2𝑘
𝑖=0 𝛾𝑗 −

1
(𝑝−3)!

∑ 𝑗𝑝−3𝑘
𝑖=0 𝛿𝑗,𝑝 = 3,4, ..

         (29)

I t  c a n  b e  s a i d  t h a t  t h e  p r o p o s e d  m e t h o d  h a s  o r d e r  p  i f 
ℂ0 = ℂ1 =. . .ℂ𝑝 = ℂ𝑝+1 = 0, ℂ𝑝+2 ≠ 0. Therefore, ℂ𝑝+2  i s  the  e r ro r  cons tan t  and   
ℂ𝑝+2ℎ𝑝+2𝜓 𝑝+2 (𝑡𝑛� is the principal local truncation error at the point t n. 

The formulae of the two-point implicit block method given by Equation 11, 12, 19 
and 20 can be written in the form of a matrix as follows: 

0 0 0 0  
0 −1 1 0  
0 0 0 0  
0 0 −1 1  

𝑦𝑛−1
𝑦𝑛
𝑦𝑛+1
𝑦𝑛+2

= ℎ
0 1 −1 0  
0 1 0 0  
0 0 1 −1  
0 0 1 0  

𝑦′𝑛−1
𝑦′𝑛
𝑦′𝑛+1
𝑦′𝑛+2

+
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0 0 0 0  
0 −1 1 0  
0 0 0 0  
0 0 −1 1  

𝑦𝑛−1
𝑦𝑛
𝑦𝑛+1
𝑦𝑛+2

= ℎ
0 1 −1 0  
0 1 0 0  
0 0 1 −1  
0 0 1 0  

𝑦′𝑛−1
𝑦′𝑛
𝑦′𝑛+1
𝑦′𝑛+2

+

Or Equation 30

𝛼𝑌𝑚 = ℎ𝛽𝑌′𝑚 + ℎ2𝛾𝐹𝑚 + ℎ3𝛿𝐺𝑚      (30)

where 𝛼, 𝛽,𝛾  and 𝛿 are the (4x4) matrix coefficients of 𝑌𝑚,𝑌′𝑚,𝐹𝑚 and  𝐺𝑚  respectively.
By substituting these matrices into Equation 29 we have  

𝐶0 = ℂ1 = ℂ2 = ℂ3= ℂ4 = ℂ5= ℂ6 = ℂ7= 0,̄

where �̄� is the zero vector which can be written as 0̄ = [0,0,0,0]𝑇 .
For 𝑝 = 8, it is found that ℂ8 ≠ �̄�. Hence, the two-point implicit block method has order

𝑝 = 6 with error constant ℂ8 = [ 1
9450

, 1
17280

, 1
9450

, 29
604800

]𝑇. For the three-point implicit block 
method, given by Equation 22, 23, 24, 25, 26 and 27, the formulae can be written in the 
form of a matrix as in Equation 30, where 𝛼, 𝛽,𝛾  and 𝛿 are matrices (6x6) and



EDIBM for Integrating General Second Order Initial Value Problems

959Pertanika J. Sci. & Technol. 28 (3): 951 - 966 (2020)

By substituting these matrices into (29) we have, ℂ0 = ℂ1 = ⋯ℂ6 = ℂ7= 0,̄
It is found that, the three-point implicit block method has order p = 6 and error constant 

is ℂ8 = [
97

100800 ,
269

604800 ,
−113

100800 ,
−113

201600 ,
97

100800 ,
313

604800
] 𝑇 .  

Zero-Stability of the Methods

For the two-point implicit block method, substituting Equation 11 into Equation 19, we 
have Equation 31

    𝑦′𝑛+2 = 𝑦′𝑛 +
ℎ

15 [7𝑓𝑛 + 16𝑓𝑛+1 + 7𝑓𝑛+2 +
ℎ2

15 [𝑔𝑛 −𝑔𝑛+2�]  (31)

And also by substituting Equation 11 and 12 into Equation 20, we have Equation 32

𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦′𝑛 + ℎ2[
79

105𝑓𝑛 +
16
15 𝑓𝑛+1 +

19
105 𝑓𝑛+2] + ℎ3[

2
21𝑔𝑛 −

16
105𝑔𝑛+1−

4
105𝑔𝑛+2

�].

         (32)

The first characteristic polynomial of the two-point implicit block method is given by, 

𝜌(𝑅) = det [𝑅𝐴(0)− 𝐴(1)] = 0, where

                    𝐴(0) =
1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  

and𝐴(1) =
0 0 1 0  
0 0 0 1  
0 0 1 0  
0 0 0 1  

.

𝜌(𝑅) = det

𝑅 0 −1 0  
0 𝑅 0 −1  
0 0 𝑅 − 1 0  
0 0 0 𝑅 − 1  

= 0, 

𝑅2(𝑅 − 1)2 = 0, 𝑅 = 0,0,1,1, |𝑅| ≤ 1.

For the three-point implicit block method, substituting Equation 22 into Equation 24, 
to obtain Equation 33

𝑦′𝑛+2 = 𝑦′𝑛 + ℎ
181
405 𝑓𝑛 +

17
15 𝑓𝑛+1 +

7
15 𝑓𝑛+2 −

19
405 𝑓𝑛+3 +

ℎ2

135 [8𝑔𝑛 + 2𝑔𝑛+3�].

         (33)



Mohammed Yousif Turki, Fudziah Ismail and Norazak Senu   

960 Pertanika J. Sci. & Technol. 28 (3): 951 - 966 (2020)

Substituting Equation 22 and 23 into Equation 25, we obtain Equation 34 

𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦′𝑛 + ℎ2[
481
567𝑓𝑛 +

116
105 𝑓𝑛+1 +

1
35 𝑓𝑛+2 +

52
2835 𝑓𝑛+3] +

ℎ3

945 [118𝑔𝑛− 8𝑔𝑛+3].

         (34)

Substituting Equation 33 into Equation 26, we have Equation 35 

𝑦′𝑛+3 = 𝑦′𝑛 + ℎ
39
80𝑓𝑛 +

81
80 𝑓𝑛+1 +

81
80 𝑓𝑛+2 +

39
80 𝑓𝑛+3 +

ℎ2

40 [3𝑔𝑛− 3𝑔𝑛+3�]

         (35)

And also by substituting Equation 33 and 34 into Equation 27, we have Equation 36

𝑦𝑛+3 = 𝑦𝑛 + 3ℎ𝑦′𝑛 + ℎ2[
369
280𝑓𝑛 +

243
112 𝑓𝑛+1 +

243
280 𝑓𝑛+2 +

81
560 𝑓𝑛+3] + ℎ3[

27
140𝑔𝑛 −

9
280𝑔𝑛+3].

         (36)

The first characteristic polynomial of the three-point implicit block method is given as 

 𝜌(𝑅) = det [𝑅𝐴(0)− 𝐴(1)] = 0,

where

and

det

𝑅 = 0,0,0,0,1,1, |𝑅| ≤ 1.

According to Ackleh et al. (2009), the two-point and three-point implicit block methods 
are zero-stable, since, the characteristic polynomial 𝜌(𝜉) has a modulus less than or equal 
to one, and that the multiplicity of the roots with modulus one be at most two.
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RESULTS AND DISCUSSION

In this section, based on the new methods, codes in C-programming language are developed 
for solving  general second  order ordinary differential equation problems and the numerical 
results are compared when the same set of problems are solved using the existing methods. 
The comparisons are made with block methods of almost the same order and the same or 
higher step number. The values of 𝑦′𝑛+1,𝑦𝑛+1,𝑦′𝑛+2, 𝑦𝑛+2  in the two-point method and 
𝑦′𝑛+1, 𝑦𝑛+1 ,  𝑦′𝑛+2, 𝑦𝑛+2 ,  𝑦′𝑛+3 and 𝑦𝑛+3 in the three-point method are approximated 
using the predictor-corrector equations. Where Taylor method is used as the predictor 
equation, this is the same as in the implementation of other implicit block methods in the 
literature, see Majid et al. (2006) for further details. We are also using Taylor method for 
the predictor equations in the implementation of the comparison methods, hence it is a very 
fair comparison. The predictor equations using Taylor method for the two point method 
can be written as Equation 37, 

 𝑦𝑛+𝑚
′ 𝑝 = 𝑦𝑛+(𝑚−1)

𝑝 +  ℎ 𝑓𝑛+(𝑚−1)
𝑐 ,

𝑦𝑛+𝑚
𝑝 = 𝑦𝑛+(𝑚−1)

𝑝 +  ℎ 𝑦𝑛+(𝑚−1)
′ 𝑝 + 

ℎ2

2!  𝑓𝑛+(𝑚−1)
𝑐 ,   (37)

𝑓𝑛+𝑚
𝑝 = 𝑓(𝑡𝑛+𝑚,𝑦𝑛+𝑚

𝑝 ,𝑦𝑛+𝑚
′  𝑝 ),

                 𝑔𝑛+𝑚
𝑝 = 𝑓′(𝑡𝑛+𝑚,𝑦𝑛+𝑚

𝑝 ,𝑦𝑛+𝑚
′  𝑝 ). 𝑚 = 1,2.

Problem 1 :

𝑦′′ = 2𝑦 − 𝑦′ . 𝑦(0) = 0,  𝑦′(0) = 1,  [0,10].

Exact Solution: 𝑦(𝑡) = 𝑒𝑡−𝑒−2𝑡

3
.

Problem 2 :

𝑡2𝑦′′ + 𝑡𝑦′ + (𝑡2 − 0.25)𝑦 = 0. 𝑦(1) = 2
𝜋
𝑠𝑖𝑛1,  𝑦′(1) = 2𝑐𝑜𝑠1−𝑠𝑖𝑛1

2𝜋
,  [1,8].

Exact Solution: 𝑦(𝑡) = 2
𝜋𝑡
𝑠𝑖𝑛(𝑡).

Problem 3:

𝑦′′ − 𝑡 𝑦′ 2 = 0. 𝑦(0) = 1,  𝑦′(0) = 1
2

,  [0,1].

Exact Solution: 𝑦 𝑡 = 1 + 1
2
𝑙𝑛(2+𝑡

2−𝑡
).

Problem 4 :

𝑦′′1 = −𝑦2 + 𝑠𝑖𝑛𝜋𝑡, 𝑦1(0) = 0,  𝑦′1(0) = −1,

𝑦′′2 = −𝑦1 + 1−𝜋2𝑠𝑖𝑛𝜋𝑡, 𝑦2(0) = 1,  𝑦′2(0) = 1 + 𝜋,  [0,5].

Exact Solution: 𝑦1(𝑡) = 1− 𝑒𝑡 , 𝑦2 𝑡 = 𝑒𝑡 + 𝑠𝑖𝑛𝜋𝑡. 

Problem 5:

𝑦′′1 = −𝑦1
𝑟3

, 𝑦1(0) = 1,  𝑦′1(0) = 0,

𝑦′′2 = −𝑦2
𝑟3

, 𝑦2(0) = 0,  𝑦′2(0) = 1,  𝑟 = 𝑦12 + 𝑦22,  [0,10].

Exact Solution: 𝑦1(𝑡) = 𝑐𝑜𝑠(𝑡), 𝑦2 𝑡 = 𝑠𝑖𝑛 𝑡 .

Problem 6 :

 𝑦′′ = 100𝑦, 𝑦 0 = 1,  𝑦′ 0 = −10,  [0,2].

Exact Solution: 𝑦 𝑡 = 𝑒−10𝑡 .



Mohammed Yousif Turki, Fudziah Ismail and Norazak Senu   

962 Pertanika J. Sci. & Technol. 28 (3): 951 - 966 (2020)

Problem 1 :

𝑦′′ = 2𝑦 − 𝑦′ . 𝑦(0) = 0,  𝑦′(0) = 1,  [0,10].

Exact Solution: 𝑦(𝑡) = 𝑒𝑡−𝑒−2𝑡

3
.

Problem 2 :

𝑡2𝑦′′ + 𝑡𝑦′ + (𝑡2 − 0.25)𝑦 = 0. 𝑦(1) = 2
𝜋
𝑠𝑖𝑛1,  𝑦′(1) = 2𝑐𝑜𝑠1−𝑠𝑖𝑛1

2𝜋
,  [1,8].

Exact Solution: 𝑦(𝑡) = 2
𝜋𝑡
𝑠𝑖𝑛(𝑡).

Problem 3:

𝑦′′ − 𝑡 𝑦′ 2 = 0. 𝑦(0) = 1,  𝑦′(0) = 1
2

,  [0,1].

Exact Solution: 𝑦 𝑡 = 1 + 1
2
𝑙𝑛(2+𝑡

2−𝑡
).

Problem 4 :

𝑦′′1 = −𝑦2 + 𝑠𝑖𝑛𝜋𝑡, 𝑦1(0) = 0,  𝑦′1(0) = −1,

𝑦′′2 = −𝑦1 + 1−𝜋2𝑠𝑖𝑛𝜋𝑡, 𝑦2(0) = 1,  𝑦′2(0) = 1 + 𝜋,  [0,5].

Exact Solution: 𝑦1(𝑡) = 1− 𝑒𝑡 , 𝑦2 𝑡 = 𝑒𝑡 + 𝑠𝑖𝑛𝜋𝑡. 

Problem 5:

𝑦′′1 = −𝑦1
𝑟3

, 𝑦1(0) = 1,  𝑦′1(0) = 0,

𝑦′′2 = −𝑦2
𝑟3

, 𝑦2(0) = 0,  𝑦′2(0) = 1,  𝑟 = 𝑦12 + 𝑦22,  [0,10].

Exact Solution: 𝑦1(𝑡) = 𝑐𝑜𝑠(𝑡), 𝑦2 𝑡 = 𝑠𝑖𝑛 𝑡 .

Problem 6 :

 𝑦′′ = 100𝑦, 𝑦 0 = 1,  𝑦′ 0 = −10,  [0,2].

Exact Solution: 𝑦 𝑡 = 𝑒−10𝑡 .

𝑦′′2 = −𝑦2
𝑟3

, 𝑦2(0) = 0,  𝑦′2(0) = 1,  𝑟 = 𝑦12 + 𝑦22,  [0,10].

Exact Solution: 𝑦1(𝑡) = 𝑐𝑜𝑠(𝑡), 𝑦2 𝑡 = 𝑠𝑖𝑛 𝑡 .

Problem 6:

 𝑦′′ = 100𝑦, 𝑦 0 = 1,  𝑦′ 0 = −10,  [0,2].

Exact Solution: 𝑦 𝑡 = 𝑒−10𝑡 .

From the set of test problems, problems 1, 2 and 4 are linear problems. Problems 3 
and 5 are nonlinear problems and problem 6 is a mildly stiff problem. Problem 5 is also 
the two body problem which determines the motion of two objects interact with each other.

Notations used are:
h  : step size. 
Time : time in seconds. 
Max Error : maximum error |𝑦(𝑡𝑖)−𝑦𝑖|.  
2PSDBI(2) : New two-point implicit second derivative block method of order six.                     
3PSDBI(2) : New three-point implicit second derivative block method of order six.                  
Majid(2) : Order three, Two-point implicit block method in Majid et al. (2012). 
Omar : Order five, Implicit Four-point block method in Omar and Adeyeye 
   (2016)
Awoyemi(2): Order four, Implicit Three-point modified block method in Awoyemi et 
    al. (2011). 
Mukhtar(2) : Four- point implicit block method in Mokhtar et al. (2012). 
1.2345(-6) means 1.2345x10−6. Numerical results for 2PSDBI(2) are given in Figure 

1 to 6, whereas for 3PSDBI(2) are given in Figure 7 to 12 respectively.
For methods with less algebraic order usually the accuracy is less but the total 

computational time is also less since it has less function evaluations or less number of 
steps in the formula. For method with higher algebraic order the accuracy is more but 
the computational time is also more because there are more steps and more function 
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Figure 1. Efficiency curves (2PSDBI(2)) for Problem 1 Figure 2. Efficiency curves (2PSDBI(2)) for Problem 2 

Figure 3. Efficiency curves (2PSDBI(2)) for Problem 3 Figure 4. Efficiency curves (2PSDBI(2)) for Problem 4

Figure 5. Efficiency curves (2PSDBI(2)) for Problem 5 Figure 6. Efficiency curves (2PSDBI(2))for Problem 6
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Figure 7. Efficiency curves (3PSDBI(2)) for Problem 1 Figure 8. Efficiency curves (3PSDBI(2)) for Problem 2 

Figure 9. Efficiency curves (3PSDBI(2)) for Problem 3 Figure 10. Efficiency curves (3PSDBI(2)) for Problem 4

Figure 11. Efficiency curves (3PSDBI(2)) for Problem 5 Figure 12. Efficiency curves (3PSDBI(2)) for Problem 6
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evaluations in the formula. Thus, the right technique of measuring the efficiency of certain 
numerical methods is by using the efficiency curves. Figure1 to 12, showed the efficiency 
curves, where the common logarithm of the maximum global errors were plotted versus 
the computational time. From the efficiency curves given in Figure 1 to 6, it is observed 
that 2PSDBI(2) method is the most efficient compared to Majid(2) and Omar for solving 
the same set of  test problems, since a smaller global maximum error can be attained for 
the same total of computational time. The same observation can be seen in Figure 7 to 
12, it is obvious that the new 3PSDBI(2) method performed better than Awoyemi(2) and 
Mukhtar(2) methods. 

CONCLUSION

We presented the construction of two and three-point extra derivative implicit block 
methods for directly solving general second order IVPs. The order and zero-stability of the 
methods are given. The methods are then used to solve linear, nonlinear and mildly stiff 
IVPs. From the efficiency curves, we can be conclude that the proposed methods performed 
noticeably more efficient than the existing methods, though the methods of comparisons are 
of the same nature as the proposed methods, that is block in nature and can directly solve 
general second order IVPs. Therefore, the proposed methods have a very high potential to 
be an efficient numerical methods for integrating general second order IVPs. 
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