
Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7088

HYBRID ARTIFICIAL NEURAL NETWORK AND FUZZY
LOGIC FOR FUNCTION APPROXIMATION

ABDUL STTAR ISMAIL WDAA

Department of Mathematics, Faculty of Education for Pure Sciences, Anbar University, Anbar, Iraq

Email: sttarwdaa@yahoo.com

ABSTRACT

The problem of intelligent hybrid systems investigated in this study. Intelligent systems consist of fuzzy
systems (FS) and neural networks (NN). This intelligent system has specific properties (modeling, ability
of learning, obtaining empirical rules, solving optimizing tasks, classifying …) fitting certain type of
applications. The combination of NN and FS systems makes fuzzy-NN system, neuron-fuzzy system. Such
type of combination of systems is known as the hybrid intelligent systems (HIS). There are programs
created in C++ and Matlab for these purposes, where many demo applications were made for different HIS
in the area of system control and modeling. There are three programs have developed; Neural Network
program (NNP), fuzzy program (FP) and Neural networks fuzzy program (NNFP), to investigate the
effect of these approaches on ANN learning using several datasets. The results have explored that Neural
networks fuzzy (NNF) give quite better results in terms of small errors and convergence rate. compared to
NN and FUZZY. The aim of the paper is to prove that the process of hybridization between the algorithms
gives better results than the use of separate algorithms. This is known as the soft computing. This is
implementation on the approximation functions.

 Keywords: Function Approximation; Neural Network; Fuzzy logic

1. INTRODUCTION

 An intelligent system called hybrid system
if it combines at least two intelligent systems.
For instance, the combination of fuzzy system
and neural network makes a hybrid system
known as neuron-fuzzy system. The
comparison of several intelligent technologies
is presented in Table 1 [1]. The combination of
fuzzy logic, probabilistic reasoning,
evolutionary computation and neural networks
makes the core of soft computing (SC). It is an
Imprecise and uncertain environment. On the
other hand, the hard computing or traditional
Computing uses numbers and crisp values
while the soft computing deals with fuzzy sets
or soft values [2] . Evolving method to develop
HIS, that have capability of learning and
reasoning in an ‘’Soft computing is capable to
handle incomplete information, uncertain and
Imprecise information in such a way that
Reproduces human thinking. Usually, soft data
is used in the real life of humans and it

Expressed by words instead of numbers. The
sensory body part of humans handles the soft
information such as brain create soft relations and
inferences in imprecise and uncertain
environments. We have an extraordinary
Capability for reasoning and making decisions
without the help of numbers. The soft computing
tries to model our sense of words in decision
making [3]. However, from last few years, the
artificial intelligence area has extended speedily by
including genetic algorithms, artificial, fuzzy set
theory and even neural networks [4]. It connects the
boundaries between soft computing and modern
artificial intelligence elusive and vague. when one
system becomes part of the other system no one can
argue, but it provides an understanding about key
principles to develop HIS. A HIS may be bad or
good, but it depends on the parts that are used to
make hybrid system. Therefore, the selection of
right components to develop a good hybrid system
is our aim [5-7].

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7089

The component used for hybrid system has their
own weaknesses and strengths. The mainly
concerned is probabilistic reasoning with
uncertainty, neural networks with learning,
evolutionary computation with optimization and
fuzzy logic with imprecision. A hybrid system is
good if it carries the benefits of these technologies.
Their combined effect allows a hybrid system to
accommodate common sense, use human-like
reasoning mechanisms, extract knowledge from
raw data, deal with imprecision and uncertainty,
learn to follow an unknown and speedily varying
environment.

2. SOFT COMPUTING (SC).

 “While traditional or ‘hard’ computing uses
crisp values, or numbers, soft computing deals with
soft values, or fuzzy sets. Soft computing is capable
of operating with uncertain, imprecise and
incomplete information in a manner that reflects
human thinking. In real life, humans normally use
soft data represented by words rather than numbers.
Our sensory organs deal with soft information, our
brain makes soft associations and inferences in
uncertain and imprecise environments, and we have
a remarkable ability to reason and make decisions
without using numbers. Humans use words, and
soft computing attempts to model our sense of
words in decision making [12].

Soft computing exploits the tolerance for
uncertainty and imprecision to achieve greater
tractability and robustness, and lower the cost of
solutions [13]. We also use words when the
available data is not precise enough to use numbers.
This is often the case with complex problems, and
while ‘hard’ computing fails to produce any
solution, soft computing is still capable of finding
good solutions. However Figure (1) shows diagram
of soft computing, neural networks and Fuzzy
Logic Systems are often considered as a part of Soft
Computing area”.
Fig 1: Soft computing as a composition fuzzy logic,

 neural networks [9].

Table 1: Comparison of genetic algorithms (GA), neural networks (NN), Fuzzy systems (FS) and expert systems (ES),

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7090

3. FUNCTION OF APPROXIMATION (FA).

 The behavior of very complicated functions is
described by function approximation. This
approximation converts the complicated functions
into simpler functions. Very important results have
been set up in mathematics. In this study we will
describe only a few that have a direct association
with our aim. The Legendre and Gauss polynomials
are used as function approximation for better
understanding of NN. Chebychev established the
idea of uniform approximation. Any continuous
real can be approximated by using polynomial
functions [6].

4. ADAPTIVE NEURON FUZZY INFERENCE
 SYSTEM (ANFIS)

 The Sugeno fuzzy (SF) model was developed to
generate fuzzy rules using input output data set in a
systematic way. A typical SF model can be stated
as:
IF R1 is D1
AND R2 is D2
.
AND Rm is Dm

THEN Z = f (R1; R2; . . . ; Rm)

Where R1; R2; . . . ; Rm are input variables; D1; D2;
. . . ; Dm are fuzzy sets; and z is may be a constant
or linear function of the input variables. In the case
of constant z, the SF model becomes a zero-order in
which the model results are specified by a
singleton. If z is the polynomial of first-order as:
Z = S0 + S1R1 + S2R2 + . . . + SmRm
 The SF model results as first-order model. Jang’s
ANFIS architecture is generally presented by a six
layer feed forward neural network. This
architecture corresponds to the SF first order model
is presented in Figure 2 . It is assumed that the
ANFIS has one output – z and two inputs – R1 and
R2. Every input is denoted by two fuzzy [10]. First
order polynomial output and sets. There are four
rules implemented by ANFIS architecture:

Rule 1:
IF R1 is D1
AND R2 is C1

THEN Z = f1 = S10 + S11x1 + S12R2

Rule 2:

IF R1 is D1
AND R2 is C2

THEN Z = f2 = S20+ S21x1 + S22R2

Rule 3:

IF R1 is D1
AND R2 is C1

THEN Z = f3 = S30+ S31x1 + S32R2

Rule 4:

IF R1 is D1
AND R2 is C2

THEN Z	= f4= S40+ S41x1	+ S42R2

Where the variables for inputs are R1, R2; D1 and
D2 are fuzzy sets on the universe of discourse R1;
C1 and C2 are fuzzy sets on the inverse of discourse
R2; and Si0, Si1 and Si2 is specified parameters set
for ith rule. Moreover, in this study we explain the
purpose of every layer of ANFIS architecture.

Layer 1: Input Layer

 In layer 1 neurons simply pass external crisp
signals to Layer 2 written as:

Where the output and input for ith neuron in Layer
1 are denoted by and respectively.

Layer 2 : Fuzzification

 Neurons performing fuzzification in layer 2. A
bell activation function is associated with
Fuzzification Neurons in the Jang’s model. This
function has a shape like regular bell and is defined
as:

)1()1()1(
ii RZ 

)1(
iR)1(

iz

)2(
1

2)2(

)2(
ci

i

ii

i

o
dR

Z













 


Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7091

Where the output and input of ith neuron in Layer
2 are denoted by Zi

(2) and Ri
(2) respectively ; ci, di

and oi are ith neuron control parameters for the
width, centre and slope of the bell-shaped
activation function respectively.
Layer 3 : Rule Layer

 Every neuron corresponds to a single (SF) rule
in this layer. D rule neuron receives inputs from the
respective neurons of fuzzification and calculates
the firing strength of the rule. The product operator
is used to calculate the conjunction of the rule
antecedents in an ANFIS. Consequently, in Layer 3
the output of ith neuron is obtained as:
Where inputs and output are presented respectively
as and i for rule ith neuron in this Layer.

Layer 4: Normalization

 Every neuron receives inputs from all neurons
in the layer 3, and computes the normalized firing
strength of a given rule in this layer. The
normalized firing strength is the fraction of a given
rule firing strength to the sum of all rules firing. It
describes the role of a given rule to the final result.
Therefore, the ith neuron output of Layer 4 is
defined as:

Where ji is the jth neuron input existed in
Layer 3 to the ith neuron in Layer 4, n is the total
number of rule neurons.

Layer 5: Defuzzification Layer.

 Every neuron in this Layer is associated with
respective normalization neuron. It also receives the
initial inputs, R1 and R2. A defuzzification neuron
computes the value of weighted consequent for a

given rule written as,

Where the output and input of ith defuzzification
neuron in Layer 5 are , respectively , and is
a set of consequent parameters of ith rule. Layer 6
is denoted by a single summation neuron. This
neuron calculates the sum of all outputs
defuzzification neurons and gives the complete
output z of ANFIS.

 Therefore, the ANFIS is functionally equivalent
to the SF first order as shown in Figure 8.10.
Sometimes it is impossible or even hard to specify a
rule results in the polynomial form. However, the
information of previous rule consequent parameters

)3(

11

)4(

)4(

)4(



i

x

j
j

i
x

j
ji

ji
i

R

RZ 




)4(
4321

)4(

1






z X

 )5(22110
11

)6(
rsrssZ iii

x

i i

x

i
in  




)3(
jiR)3(

iz

)4(
jiR

)5(
1iR)3(

iz

2210 , rsandss iii

 La y er 2 L ay e r 3 La y er 4 L ay e r 5 L ay e r 1


z

R 1

D 1

D 2

D 3

C 1

C 2
R 2

C 1

C 2

r 1

r 1

r 1

r 2

r 2

r 2

 C 1

 D 2

 C 3

 C 2

 C 1

 R1

 R3

 R5

 R6

 R4

R 1

R 5

R 4

R 6

 R2

R 3

R 2

C 3

 D 1

w R 3

w R 6

w R 1
w R2

w R 4

w R 5

 D 3

 C 2

Fig 2: Adaptive Neuron Fuzzy Inference System

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7092

is not necessary for an ANFIS to handle a problem.
The ANFIS architecture learns these parameters
and tunes the related functions.

5. HYBRID LEARNING ALGORITHM

 Hybrid learning algorithm is used in an ANFIS
architecture. This algorithm connects the gradient
descent method and least-squares estimator. Firstly,
every membership neuron is assigned by an initial
activation functions. The neurons function centers
are associated to input Ri in such a way that the
domain of Ri is equally divided, the slopes and
widths are adjusted to allow enough overlapping of
the respective functions[11].
Each time is composed from a forward and
backward pass in the training algorithm of an
ANFIS. In the case of forward pass, a set of
training input vector is presented to the ANFIS, the
outputs of neuron are computed layer-by-layer
basis and parameters of rule consequent are
investigated by the least squares estimator. The
output z in the SF model inference is a linear
function. Therefore, for given membership
parameters values and t input-output patterns of a
training set, we can form t system of linear
equations having consequent parameters as:

Where x is the neurons number in the rule layer, v
represents the number of input variables, and

)(tz i
 is the required overall output of the ANFIS

Corresponding to the inputs R1(t), R2(t),…,Rv(t) are
presented to it. In the matrix notation, we have :

Where iz is a 1t desired output vector?

D is a)1(vxt  matrix,

And L is an)1(vx  vector of unknown

consequent parameters,

 E
vxxxxvv LLLLLLLLLLLLL 21022221201121110

Normally, the number of consequent parameters

)1(vx  used in training is lesser than number of

input-output patterns t. It shows that we are solving
here an over determined problem, and it may be
exact solution of Eq. (9) not exist. Therefore, we
need to apply a least-square estimate on *, LL to

minimize the squared error. It is done by using the
pseudo inverse method:

Where is the transpose of D, and
 is the pseudo inverse of A. The matrix
must be non-singular. Once, the parameters of rule
consequent are developed, the actual output vector





























)(

)(

)2(

)1(

tz

tz

z

z

z

i

i

i

i

i





)8(LRzi 

2

iZDL 

ED
EE DDD 1)(

)(DD E

)9()(1*
i

EE zDDDL 





























)()()...()()()...()()...()()(

)()()...()()()...()()...()()(

)2()2()...2()2()2()...2()2()...2()2()2(

)1()1()...1()1()1()...1()1()...1()1()1(

111

111

111

111

tRttRtttRttRtt

tRttRtttRttRtt

RRRR

RRRR

D

vxxx

vxxx

vxxx

vxxx













 
 
 
 
 
 
 
 
 
 
 
 

)7(

)(...)()()(

...)(...)()()(

)(...)()()()(

)(...)()()(

...)(...)()()(

)(...)()()()(

)2(...)2()2()2(

...)2(...)2()2()2(

)1(...)2()2()2()2(

)1(...)1()1()1(

...)1(...)1()1()1(

)1(...)1()1()1()1(

22110

2222121202

1212111101

22110

2222121202

1212111101

22110

2222121202

1212111101

22110

2222121202

1212111101























































tRLtRLtRLLt

tRLtRLtRLLt

tRLtRLtRLLttz

tRLtRLtRLLt

tRLtRLtRLLt

tRLtRLtRLLttz

RLRLRLL

RLRLRLL

RLRLRLLz

RLRLRLL

RLRLRLL

RLRLRLLz

vxvxxxx

vv

vvi

vxvxxxx

vv

vvi

vxvxxxx

vv

vvi

vxvxxxx

vv

vvi
























OR

tfttfttftpz

tfttfttfttz

fffz

fffz

xxi

xxi

xxi

xxi

)6(

)()(......)()()()()(

)()(.......)()()()()(

)2()2(...)2()2()2()2()2(

)1()1(.......)1()1()1()1()1(

2211

2211

2221

2211




































Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7093

of network y can be computed easily we can
compute. The error vector also be computed using
Equation 10:

The back-propagation algorithm is implemented in
the case of backward pass. The antecedent
parameters are updated according to the chain rule
and the error signals are propagated back. For
example, applying a correction to the bell activation
function parameter ‘a’ and it may be expressed
using the chain rule given as:

Where , and E are the learning rate and
instantaneous value of the squared error for the
ANFIS output neuron respectively[8].

Thus, we have

Or

Where

 Following the similar way, we can get correc-
tions for b and c parameters. The antecedent and
consequent parameters are optimized in an ANFIS
training algorithm suggested by Jang. The
consequent parameters are tuned whereas the
antecedent parameters remain constant in the
forward pass. On the other hand, the antecedent
parameters are tuned whereas the consequent
parameters are remained fix in the case of backward
pass. Moreover, in some cases related to relatively
small data of input output, the human experts
defined the membership functions. In such
situations, the consequent parameters are tuned, and
the membership functions are remained fixed
during the training process.

6. OPTIMIZATION ALGORITHMS

 The ANFIS application for Function approx-
imation is applied in this study to follow a non-
linear function trajectory represented by the
equation.

 An ANFIS necessarily have one output – Z and
two inputs – T1 and T2 –. The ANFIS training data

Contains 151 training samples. These samples are
represented by a 151 x 3 Array, where Z is an
output vector and T1, T2 are input vectors. The
input vector T1, starts from -10 with an increment
of 0.10 and ends at 5. The input vector T2, calculate
from equation number 2.

7. DISCUSSION AND RESULTS

This section highlights the results of this study
which are obtained by experiments. Three different
programs have been established: Neural network
Forward (NN), Adaptive Neuron Fuzzy Inference
System (ANFIS) and Fuzzy Logic (FL) using
dataset: with Function Approximation. The results
for each dataset are compared least error.

8. DISCUSSION
 In this study, apply the concept of soft
computers; the hybrid neural networks with the
logic fuzzy resulting, (ANFIS). The rounding flag
was used and then applied to three programs (NN)
(FUZZY) (ANFIS), Table (2) indicates the
application of the above function with neural
networks where the result was compared between
the actual output of the function with the neural
network outputs. There is good convergence and
the error rate is acceptable. Figure (3) indicates the
convergence between the two outputs. When using
the same logic for the same data, the result was
better than the NN. As shown in Figure. (4), but
when using the proposed system (ANFIS).



)10()zzer i 

 
 

)11(
1

1 d

R

R

fi

fi

z

z

er

d

Er

d

Er
d i

i

i

i

i

i 














































 )12(
2

1

2

1 22 zzierEr 

   )14(
1

1

1
1

d

D

D
fizzid ii 









12
2

12
222

12
1

)1()1(2
1

1
1

11











 






















 








c

c
cc

o

dR

o

c
D

dRc
o

o

dRd

D





    
)13(

1

1

1
1

d

D

D
fizzid i

i

ii


















)2.6()1sin(2

)1.6(
)12cos(

)2(

TT
e

T
Z

T





  ,21 ZTT

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7094

7.1 -Results on NN Dataset
Table 2: Result of NN

Figure 3 : NN data set

T1 T2 Target Network Error

-10.0000 0.5440 0.2369 0.6818 -0.4449

-9.9000 0.4575 0.3679 0.6992 -0.3313

-9.8000 0.3665 0.5070 0.7196 -0.2126

-9.7000 0.2718 0.6495 0.7432 -0.0937

.

.

.

5.0000 0.9589 -2.1890 -2.4634 0.2744

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7095

7.2 Results on Fuzzy Dataset
Table 3: Result of Fuzzy

Figure 4: Fuzzy data set

 T1 T2 Target Fuzzy Error

-10.0000 0.5440 0.2369 0.2069 0.0300

-9.9000 0.4575 0.3679 0.3429 0.0250

-9.8000 0.3665 0.5070 0.4951 0.0119

-9.7000 0.2718 0.6495 0.6547 -0.0052

.

.

.

5.0000 0.9589 -2.1890 -2.2205 0.0315

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7096

7.3: Result of ANFIS
Table 4: Result of ANFIS

Figure 5: ANFIS data set

T1 T2 Target ANFIS Error

-10.0000 0.5440 0.2369 0.2319 0.005

-9.9000 0.4575 0.3679 0.3599 0.008

-9.8000 0.3665 0.5070 0.4969 0.0101

-9.7000 0.2718 0.6495 0.6376 0.0119

.

.

.

5.0000 0.9589 -2.1890 -2.1882 -0.0008

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7097

The results were excellent. But when using the
proposed system (ANFIS), the results were
excellent.
The convergence between the output of the function
and the hybrid system was very promising.
As Table (4) and Figure (5) .
Indicate where the error rate was as low as
Possible. The proposed hybrid system has
important and useful results.

8. CONCLUSION

 A neuron-fuzzy system corresponding to the
Mamdani fuzzy inference model can be expressed
by a feed forward neural network containing of five
layers: fuzzification, input, output, defuzzification
and fuzzy rule. A neuron-fuzzy system may be
applied on standard learning algorithms which
established for NN with the algorithm of back-
propagation. Skillful knowledge of fuzzy rules and
linguistic variables may be included in the model of
neuron-fuzzy system.
 A Neuron-fuzzy system cans automatically
transform. It into a set of fuzzy IF-THEN Rules
when a representative set of examples are available.
An adaptive neuron-fuzzy inference system,
ANFIS, corresponds to the first. In the end, ANFIS
has an extraordinary potential to generalize and
rapidly converge. Particularly, it is important in an
on-line learning. Consequently, the model along
with its variables have several applications,
especially in the area of adaptive control. And
finally the use of hybridization or what is known as
soft computers. Gives excellent results compared to

discrete algorithmsas demonstrated in this

paper.

REFERENCES

[1] T. Ba¨ck, D.B. Fogel, and Z. Michalewicz,
“Handbook of Evolutionary Computation”,
Institute of Physics Publishing, Bristol,
Philadelphia and Oxford University Press,
(New York), 1997.

[2] L.M. Fu, “Knowledge-based connectionism for
revising domain theories”, IEEE Transactions
on Systems, Man and Cybernetics, Vol. 23,
No. 1, 1993, pp. 173–182.

[3] S.I. Gallant, “Connectionist expert systems”,
Communications of the ACM, Vol. 31, No. 2,
1988, pp. 152–169.

[4] S.I. Gallant, “Neural Network Learning and
Expert Systems”, MIT Press, (Cambridge,
MA), 1993.

[5] Y. Ichikawa, and T. Sawa, “Neural network
application for direct feedback controllers”,
IEEE Transactions on Neural Networks, Vol.
3, No. 2, 1992, pp. 224–231.

[6] H. Ishibuchi, , K. Nozaki, and H. Tanaka, “

Distributed representation of fuzzy rules and its
application to pattern classification”, IEEE
Transactions on Fuzzy Systems, Vol. 3, No. 3,
1992, pp. 260–270.

[7] X. Yao, “Evolving artificial neural networks”,
Proceedings of the IEEE. Vol. 87, No. 9, 1999,
pp. 1423 -1447.

[8] A. Hussein Abbass, Ruhul Sarker, and Charles
Newton. “A pareto differential evolution
approach to vector optimization problems”, In
Proceedings of the IEEE Congress on
Evolutionary Computation, CEC2001, (Seoul,
Korea, IEEE Press), 2001.

[9] J.-S.R. Jang, “ANFIS: Adaptive Network-based
Fuzzy Inference Systems”, IEEE Transactions
on Systems, Man and Cybernetics, Vol. 23, No.
3, 1993, 665–685.

[10] G.F. Miller, P.M. Todd, and S.U. Hedge,
“Designing neural networks using genetic
algorithms”, Proceedings of the Third
International Conference on Genetic
Algorithms, J.D. Schaffer, ed., Morgan
Kaufmann, (San Mateo, CA), 1989, pp. 379–
384.

[11] S. Abe and M.-S. Lan, “A classifier using fuzzy
rules extracted directly from numerical data”,
in: Proceedings of IEEE Internet Conf. on
Fuzzy Systems, (San Francisco), 1993,
pp.1911-1198.

[12] N. Kasabov, “Foundations of Neural Networks,
Fuzzy Logic, and Knowledge Engineering”,
MIT Press, (Cambridge, MA), 1996.

[13] C. Nikolopoulos, “Expert Systems:
Introduction to First and Second Generation
and Hybrid Knowledge Based Systems”,
Marcel Dekker, Inc., (New York), 1997.

