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ABSTRACT 

The problem of  intelligent hybrid systems investigated in this study. Intelligent systems consist of fuzzy 
systems (FS) and neural networks (NN). This intelligent system has specific properties (modeling, ability 
of learning, obtaining empirical rules, solving optimizing tasks, classifying …) fitting certain type of 
applications. The combination of NN and FS systems makes fuzzy-NN system, neuron-fuzzy system. Such 
type of combination of systems is known as the hybrid intelligent systems (HIS). There are programs 
created in C++ and Matlab  for these purposes, where many demo applications were made for different HIS 
in the area of system control and modeling. There are three programs have developed; Neural Network 
program (NNP), fuzzy program (FP) and Neural networks fuzzy   program ( NNFP), to investigate the 
effect of these approaches on ANN learning using several datasets. The results have explored that Neural 
networks fuzzy (NNF) give quite better results in terms of small errors and convergence rate. compared to 
NN and FUZZY. The aim of the paper is to prove that the process of hybridization between the algorithms 
gives better results than the use of separate algorithms. This is known as the soft computing. This is 
implementation on the approximation functions. 

 Keywords: Function Approximation; Neural Network; Fuzzy logic 
 

1. INTRODUCTION 

       An intelligent system called hybrid system 
if it combines at least two intelligent systems. 
For instance, the combination of fuzzy system 
and neural network makes a hybrid system 
known as neuron-fuzzy system. The 
comparison of several intelligent technologies 
is presented in Table 1 [1]. The combination of 
fuzzy logic, probabilistic reasoning, 
evolutionary computation and neural networks 
makes the core of soft computing (SC). It is an  
Imprecise and uncertain environment. On the 
other hand, the hard computing or traditional 
Computing uses numbers and crisp values 
while the soft computing deals with fuzzy sets 
or soft values [2] . Evolving method to develop 
HIS, that have capability of learning and 
reasoning in an ‘’Soft computing is capable to 
handle incomplete information, uncertain and  
Imprecise information in such a way that 
Reproduces human thinking. Usually, soft data 
is used in the real life of humans and it 

 
Expressed by words instead of numbers. The 
sensory body part of humans handles the soft 
information such as brain create soft relations and 
inferences in imprecise and uncertain 
environments. We have an extraordinary  
Capability for reasoning and making decisions 
without the help of numbers. The soft computing 
tries to model our sense of words in decision 
making [3]. However, from last few years, the 
artificial intelligence area has extended speedily by 
including genetic algorithms, artificial, fuzzy set 
theory and even neural networks [4]. It connects the 
boundaries between soft computing and modern 
artificial intelligence elusive and vague. when one 
system becomes part of the other system no one can 
argue, but it provides an understanding about key 
principles to develop HIS. A HIS may be bad or 
good, but it depends on the parts that are used to 
make hybrid system. Therefore, the selection of 
right components to develop a good hybrid system 
is our aim [5-7]. 
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The component used for hybrid system has their 
own weaknesses and strengths. The mainly 
concerned is probabilistic reasoning with 
uncertainty, neural networks with learning, 
evolutionary computation with optimization and 
fuzzy logic with imprecision. A hybrid system is 
good if it carries the benefits of these technologies. 
Their combined effect allows a hybrid system to 
accommodate common sense, use human-like 
reasoning mechanisms, extract knowledge from 
raw data, deal with imprecision and uncertainty, 
learn to follow an unknown and speedily varying 
environment. 
 
2. SOFT COMPUTING (SC). 
 
      “While traditional or ‘hard’ computing uses 
crisp values, or numbers, soft computing deals with 
soft values, or fuzzy sets. Soft computing is capable 
of operating with uncertain, imprecise and 
incomplete information in a manner that reflects 
human thinking. In real life, humans normally use 
soft data represented by words rather than numbers. 
Our sensory organs deal with soft information, our 
brain makes soft associations and inferences in 
uncertain and imprecise environments, and we have  
a remarkable ability to reason and make decisions  
without using numbers. Humans use words, and 
soft computing attempts to model our sense of 
words in decision making [12]. 
 

Soft computing exploits the tolerance for 
uncertainty and imprecision to achieve greater 
tractability and robustness, and lower the cost of 
solutions [13]. We also use words when the 
available data is not precise enough to use numbers. 
This is often the case with complex problems, and 
while ‘hard’ computing fails to produce any 
solution, soft computing is still capable of finding 
good solutions. However Figure (1) shows diagram 
of soft computing,  neural networks and Fuzzy 
Logic Systems are often considered as a part of Soft 
Computing area”. 
Fig 1: Soft computing as a composition fuzzy logic,           

         neural networks [9]. 

 

 

Table 1: Comparison of genetic algorithms (GA), neural networks (NN), Fuzzy systems (FS) and expert systems (ES), 
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3. FUNCTION OF APPROXIMATION (FA). 
 
      The behavior of very complicated functions is 
described by function approximation. This 
approximation converts the complicated functions 
into simpler functions. Very important results have 
been set up in mathematics. In this study we will 
describe only a few that have a direct association 
with our aim. The Legendre and Gauss polynomials 
are used as function approximation for better 
understanding of NN. Chebychev established the  
idea of uniform approximation. Any continuous 
real can be approximated by using polynomial 
functions [6]. 
 
4. ADAPTIVE NEURON FUZZY INFERENCE   
         SYSTEM (ANFIS) 
 
     The Sugeno fuzzy (SF) model was developed to 
generate fuzzy rules using input output data set in a 
systematic way. A typical SF model can be stated 
as: 
IF          R1 is D1 
AND     R2 is D2 
. . . . . 
AND    Rm is Dm 

 
THEN Z = f (R1; R2; . . . ; Rm) 
 
Where R1; R2; . . . ; Rm are input variables; D1; D2; 
. . . ; Dm are fuzzy sets; and z is may be a constant 
or linear function of the input variables. In the case 
of constant z, the SF model becomes a zero-order in 
which the  model results are specified by a 
singleton. If z is the polynomial of first-order as: 
Z = S0 + S1R1 + S2R2 + . . . + SmRm 
    The SF model results as first-order model. Jang’s 
ANFIS architecture is generally presented by a six 
layer feed forward neural network. This 
architecture corresponds to the SF first order model 
is presented in Figure 2 . It is assumed that the 
ANFIS has one output – z and two inputs – R1 and 
R2. Every input is denoted by two fuzzy [10]. First 
order polynomial output and sets. There are four 
rules implemented by ANFIS architecture: 
 
 
 
 

 
Rule 1: 
IF         R1 is D1 
AND    R2 is C1 

THEN  Z = f1 = S10 + S11x1 + S12R2 

Rule 2: 

IF         R1 is D1 
AND    R2 is C2 

THEN  Z = f2 = S20+ S21x1 + S22R2 

Rule 3: 

IF          R1 is D1 
AND     R2 is C1 

THEN   Z = f3 = S30+ S31x1 + S32R2 

Rule 4: 

IF           R1 is D1 
AND      R2 is C2 

THEN    Z	= f4= S40+ S41x1	+ S42R2 

Where the variables for inputs are R1, R2; D1 and 
D2 are fuzzy sets on the universe of discourse R1; 
C1 and C2 are fuzzy sets on the  inverse of discourse 
R2; and Si0, Si1 and Si2 is specified parameters set 
for ith rule. Moreover, in this study we explain the 
purpose of every layer of ANFIS architecture. 
 
Layer 1: Input Layer 
 
     In layer 1 neurons simply pass external crisp 
signals to Layer 2 written as: 

 
 
Where the output and input for ith neuron in Layer 
1 are denoted by         and        respectively. 
 
Layer 2 : Fuzzification 
 
     Neurons performing fuzzification in layer 2. A 
bell activation function is associated with 
Fuzzification Neurons in the Jang’s model. This 
function has a shape like regular bell and is defined 
as: 
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Where the output and input of ith neuron  in Layer 
2 are denoted by Zi

(2) and   Ri
(2) respectively  ; ci, di 

and oi are ith neuron control parameters for the 
width, centre and slope of the bell-shaped 
activation function respectively. 
Layer 3 : Rule Layer 
 

      Every neuron corresponds to a single (SF) rule 
in this layer. D rule neuron receives inputs from the 
respective neurons of fuzzification and calculates 
the firing strength of the rule. The product operator 
is used to calculate the conjunction of the rule 
antecedents in an ANFIS. Consequently, in Layer 3 
the output of ith neuron is obtained as: 
Where inputs and output are presented respectively 
as           and        i for rule ith neuron in this Layer. 
 
Layer 4: Normalization 
 

       Every neuron receives inputs from all neurons 
in the layer 3, and computes the normalized firing 
strength of a given rule in this layer. The 
normalized firing strength is the fraction of a given 
rule firing strength to the sum of all rules firing. It 
describes the role of a given rule to the final result. 
Therefore, the ith neuron output of Layer 4 is 
defined as: 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Where        ji is the jth neuron input existed in 
Layer 3 to the ith neuron in Layer 4,  n is the total 
number of rule neurons. 

 

 
 
 
Layer 5: Defuzzification Layer.  
 
       Every neuron in this Layer is associated with 
respective normalization neuron. It also receives the 
initial inputs, R1 and R2. A defuzzification neuron 
computes the value of weighted consequent for a 

given rule written as, 
 

Where the output and input of ith defuzzification 
neuron in Layer 5 are      ,        respectively , and  is 
a set of consequent parameters of ith rule. Layer 6 
is denoted by a single summation neuron. This 
neuron calculates the sum of all outputs 
defuzzification neurons and gives the complete 
output z of ANFIS. 
 
 
 
      Therefore, the ANFIS is functionally equivalent 
to the SF first order as shown in Figure 8.10. 
Sometimes it is impossible or even hard to specify a 
rule results in the polynomial form. However, the 
information of previous rule consequent parameters 
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Fig 2:  Adaptive Neuron Fuzzy Inference System 



Journal of Theoretical and Applied Information Technology 
15th November 2018. Vol.96. No 21 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
7092 

 

is not necessary for an ANFIS to handle a problem. 
The ANFIS architecture learns these parameters 
and tunes the related functions. 
 

5. HYBRID LEARNING ALGORITHM  
 

      Hybrid learning algorithm is used in an ANFIS 
architecture. This algorithm connects the gradient 
descent method and least-squares estimator. Firstly, 
every membership neuron is assigned by an initial 
activation functions. The neurons function centers 
are associated to input Ri in such a way that the 
domain of Ri is equally divided, the slopes and 
widths are adjusted to allow enough overlapping of 
the respective functions[11]. 
Each time is composed from a forward and 
backward pass in the training algorithm of an 
ANFIS. In the case of forward pass, a set of 
training input vector is presented to the ANFIS, the 
outputs of neuron are computed layer-by-layer 
basis and parameters of rule consequent are 
investigated by the least squares estimator. The 
output z in the SF model inference is a linear 
function. Therefore, for given  membership 
parameters values and t input-output patterns of a 
training set, we can form t system of linear 
equations having consequent parameters as: 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 
 

Where x is the neurons number in the rule layer, v 
represents the number of input variables, and  

)( tz i
   is the required overall output of the ANFIS  

Corresponding to the inputs R1(t), R2(t),…,Rv(t) are 
presented to it. In the matrix notation, we have : 

 

 

 

 

 

 

 

Where iz   is a  1t   desired output vector? 

 
 
 
 
 
 
 
 
D is a )1( vxt   matrix, 

And L is an )1( vx  vector of unknown 

consequent parameters, 

 E
vxxxxvv LLLLLLLLLLLLL ............ 21022221201121110  

Normally, the number of consequent parameters

)1( vx   used in training is lesser than number of 

input-output patterns t. It shows that we are solving 
here an over determined problem, and it may be 
exact solution of Eq. (9) not exist. Therefore, we 
need to apply a least-square estimate on *, LL   to 

minimize the squared error. It is done by using the 
pseudo inverse method: 

 
 
 
Where      is the transpose of D, and  
 is the pseudo inverse of A. The       matrix                                  
must be non-singular. Once, the parameters of rule 
consequent are developed, the actual output vector  





























)(

)(

)2(

)1(

tz

tz

z

z

z

i

i

i

i

i





)8(LRzi 

2

iZDL 

ED
EE DDD 1)( 

)( DD E

)9()( 1*
i

EE zDDDL 





























)()()...()()()...()()...()()(

)()()...()()()...()()...()()(

)2()2()...2()2()2()...2()2()...2()2()2(

)1()1()...1()1()1()...1()1()...1()1()1(

111

111

111

111

tRttRtttRttRtt

tRttRtttRttRtt

RRRR

RRRR

D

vxxx

vxxx

vxxx

vxxx













 
 
 
 
 
 
 
 
 
 
 
 

)7(

)(...)()()(

...)(...)()()(

)(...)()()()(

)(...)()()(

...)(...)()()(

)(...)()()()(

)2(...)2()2()2(

...)2(...)2()2()2(

)1(...)2()2()2()2(

)1(...)1()1()1(

...)1(...)1()1()1(

)1(...)1()1()1()1(

22110

2222121202

1212111101

22110

2222121202

1212111101

22110

2222121202

1212111101

22110

2222121202

1212111101























































tRLtRLtRLLt

tRLtRLtRLLt

tRLtRLtRLLttz

tRLtRLtRLLt

tRLtRLtRLLt

tRLtRLtRLLttz

RLRLRLL

RLRLRLL

RLRLRLLz

RLRLRLL

RLRLRLL

RLRLRLLz

vxvxxxx

vv

vvi

vxvxxxx

vv

vvi

vxvxxxx

vv

vvi

vxvxxxx

vv

vvi
























OR

tfttfttftpz

tfttfttfttz

fffz

fffz

xxi

xxi

xxi

xxi

)6(

)()(......)()()()()(

)()(.......)()()()()(

)2()2(...)2()2()2()2()2(

)1()1(.......)1()1()1()1()1(

2211

2211

2221

2211






































Journal of Theoretical and Applied Information Technology 
15th November 2018. Vol.96. No 21 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
7093 

 

of network y can be computed easily we can 
compute. The error vector also be computed using 
Equation 10: 

 
 
The back-propagation algorithm is implemented in 
the case of backward pass. The antecedent 
parameters are updated according to the chain rule 
and the error signals are propagated back. For 
example, applying a correction to the bell activation 
function parameter ‘a’ and it may be expressed 
using the chain rule given as: 

 
 
 
Where     , and E are the learning rate and 
instantaneous value of the squared error for the 
ANFIS output neuron respectively[8]. 

 

Thus, we have 
 
 
 
Or 
 
 
Where 
 
 
 
 
 
       Following the similar way, we can get correc- 
tions for b and c parameters. The antecedent and 
consequent parameters are optimized in an ANFIS 
training algorithm suggested by Jang. The 
consequent parameters are tuned whereas the 
antecedent parameters remain constant in the 
forward pass. On the other hand, the antecedent 
parameters are tuned whereas the consequent 
parameters are remained fix in the case of backward 
pass. Moreover, in some cases related to relatively 
small data of input output, the human experts 
defined the membership functions. In such 
situations, the consequent parameters are tuned, and 
the membership functions are remained fixed 
during the training process. 

6. OPTIMIZATION ALGORITHMS 
 
    The ANFIS application for Function approx- 
imation is applied in this study to follow a non-
linear function trajectory represented by the 
equation. 

 
 
 
 
      An ANFIS necessarily have one output – Z and 
two inputs – T1 and T2 –. The ANFIS training data 

 
 

Contains 151 training samples. These samples are 
represented by a 151 x 3 Array, where Z is an 
output vector and T1, T2 are input vectors. The 
input vector T1, starts from -10 with an increment 
of 0.10 and ends at 5. The input vector T2, calculate 
from equation number 2. 
 
7. DISCUSSION AND RESULTS  
 
This section highlights the results of this study 
which are obtained by experiments. Three different 
programs have been established: Neural network 
Forward (NN), Adaptive Neuron Fuzzy Inference 
System (ANFIS) and Fuzzy Logic (FL) using 
dataset: with Function Approximation. The results 
for each dataset are compared least error. 

8. DISCUSSION 
        In this study, apply the concept of soft 
computers; the hybrid neural networks with the 
logic fuzzy resulting, (ANFIS). The rounding flag 
was used and then applied to three programs (NN) 
(FUZZY) (ANFIS), Table (2) indicates the 
application of the above function with neural 
networks where the result was compared between 
the actual output of the function with the neural 
network outputs. There is good convergence and 
the error rate is acceptable. Figure (3) indicates the 
convergence between the two outputs. When using 
the same logic for the same data, the result was 
better than the NN. As shown in Figure. (4), but 
when using the proposed system (ANFIS). 
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7.1 -Results on NN Dataset   
Table 2: Result of NN 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 : NN data set 

 

 

 

 

 

 

 

 

T1 T2 Target Network Error 

-10.0000 0.5440 0.2369 0.6818 -0.4449 

-9.9000 0.4575 0.3679 0.6992 -0.3313 

-9.8000 0.3665 0.5070 0.7196 -0.2126 

-9.7000 0.2718 0.6495 0.7432 -0.0937 

. . . . . 

. . . . . 

. . . . . 

5.0000 0.9589 -2.1890 -2.4634 0.2744 
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7.2 Results on Fuzzy Dataset 
Table 3: Result of Fuzzy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    

 

Figure 4:   Fuzzy data set 

 

 

 

 

 

 

    T1 T2 Target Fuzzy Error 

-10.0000 0.5440 0.2369 0.2069 0.0300 

-9.9000 0.4575 0.3679 0.3429 0.0250 

-9.8000 0.3665 0.5070 0.4951 0.0119 

-9.7000 0.2718 0.6495 0.6547 -0.0052 

. . . . . 

. . . . . 

. . . . . 

5.0000 0.9589 -2.1890 -2.2205 0.0315 
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7.3: Result of ANFIS 
Table 4: Result of ANFIS 

 

 

 

Figure 5: ANFIS data set 

 

 

  

 

 

 

T1 T2 Target ANFIS Error 

-10.0000 0.5440 0.2369 0.2319 0.005 

-9.9000 0.4575 0.3679 0.3599 0.008 

-9.8000 0.3665 0.5070 0.4969 0.0101 

-9.7000 0.2718 0.6495 0.6376 0.0119 

. . . . . 

. . . . . 

. . . . . 

5.0000 0.9589 -2.1890 -2.1882 -0.0008 
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The results were excellent. But when using the 
proposed system (ANFIS), the results were 
excellent.  
The convergence between the output of the function 
and the hybrid system was very promising.  
As Table (4) and Figure (5) . 
Indicate where the error rate was as low as 
Possible. The proposed hybrid system has 
important and useful results. 
 

8. CONCLUSION 
 

        A neuron-fuzzy system corresponding to the 
Mamdani fuzzy inference model can be expressed 
by a feed forward neural network containing of five 
layers: fuzzification, input, output, defuzzification 
and fuzzy rule. A neuron-fuzzy system may be 
applied on standard learning algorithms which 
established for NN with the algorithm of back-
propagation. Skillful knowledge of fuzzy rules and 
linguistic variables may be included in the model of 
neuron-fuzzy system. 
       A Neuron-fuzzy system cans automatically 
transform. It into a set of fuzzy IF-THEN Rules 
when a representative set of examples are available. 
An adaptive neuron-fuzzy inference system, 
ANFIS, corresponds to the first. In the end, ANFIS 
has an extraordinary potential to generalize and 
rapidly converge. Particularly, it is important in an 
on-line learning. Consequently, the model along 
with its variables have several applications, 
especially in the area of adaptive control. And 
finally the use of hybridization or what is known as 
soft computers. Gives excellent results compared to 

discrete algorithmsas  demonstrated  in  this 

paper.  
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