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In this article, we introduce a new stochastic restricted estimator for the unknown
vector parameter in the linear regression model when stochastic linear restrictions on
the parameters hold. We show that the new estimator is a generalization of the ordinary
mixed estimator (OME), Liu estimator (LE), ordinary ridge estimator (ORR), (k-d)
class estimator, stochastic restricted Liu estimator (SRLE), and stochastic restricted
ridge estimator (SRRE). Performance of the new estimator in comparison to other
estimators in terms of the mean squares error matrix (MMSE) is examined. Numerical
example from literature have been given to illustrate the results.

Keywords Linear regression model; Multicollinearity; Ordinary mixed estimator;
Stochastic linear restrictions.

Mathematics Subject Classification 62J05; 62J07.

1. Introduction

We consider the standard multiple linear regression model

Y = Xβ + ε, (1)

where Y is an n × 1 vector of observations on the response (or dependent) variable, X is an
n×p model matrix of observations on p non-stochastic explanatory variables, β is a p × 1
vector of unknown parameters associated with the p explanatory variables, and ε is an n×1
vector of residuals with expectation E(ε) = 0 and dispersion matrix Var(ε) = σ 2In.

If the least squares method is applied to (1), we get the ordinary least squares estimator
(OLSE) as

β̂ = S−1X′Y, (2)
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4416 Alheety and Golam Kibria

where S = X′X. The OLSE in (2) is unbiased and has minimum variance among all linear
unbiased estimators. However, many results have proved that the OLSE is no longer a
good estimator when the multicollinearity is present. Due to multicollinearity, estimates
of the correlation coefficients can be large in magnitude and their signs can be contrary
to intuition. The regression coefficients can be unstable with respect to the correlation
coefficients. The correlation matrix has one or more small eigenvalues. Several techniques
have been proposed for reducing multicollinearity. Biased estimation as an alternative to
OLSE has been recommended in order to obtain some reduction in variance. In addition to
model (1), we suppose that, there are some prior information about β in the form of a set
of independent stochastic linear restrictions (Theil, 1963)

r = Rβ + ε∗, (3)

where R is an q × p non zero matrix with rank (R) = q < p, r is an q × 1 known vector
which is interpreted as a random variable with E(r) = Rβ, and ε∗ is an q × 1 vector of
disturbances with zero mean and variance-covariance matrix σ 2V , V is known and positive
definite. It is clear that the stochastic restrictions in (3) do not hold exactly but will hold at
the mean. Further, it is also assumed that ε∗ is stochastically independent of ε. By unifying
the sample and prior information (3) in a common model(

Y

r

)
=
(

X

R

)
β +

(
ε

ε∗

)
, (4)

where E(εε∗′) = 0 and

E

(
ε

ε∗

)
( ε′ ε∗′ ) = σ 2

(
I 0
0 V

)
.

We can use the least squares method for model (4) to get the ordinary mixed estimator
(OME) which is introduced by Theill and Goldberger (1961). The OME is defined as
follows:

β̂OME = (S + R′V −1R)−1(X′Y + R′V −1r), (5)

where S = X′X. Since we assumed the stochastic restrictions are held, i.e., E(r)−Rβ = 0,
the mixed estimator is unbiased. Considering the model (1), Hoerl and Kennard (1970a,b)
proposed the ridge estimator of β:

β̂(k) = (S + kI )−1X′Y, for k > 0. (6)

Ridge regression methods have been considered by many researchers, beginning with Hoerl
and Kennard (1970a,b), followed by Farebrother (1976), Gibbons (1981), Sarkar (1992),
Kibria (2003), Saleh (2006), Muniz and Kibria (2010), and very recently Saleh and Kibria
(2012), among others. Also, considering model (1), Liu (1993) proposed a new biased
estimator of β , called Liu estimator (LE). The LE is defined as

β̂(d) = (S + I )−1(X′Y + dβ̂), for 0 < d < 1. (7)

Liu estimator has been considered by several researchers in several times for different
perspectives. To mention a few, Kaciranlar et al. (1999), Yuksel and Akdeniz (2002),
Alheety et al. (2008), Alheety and Ramanathan (2009), Yang et al. (2009), and very recently

D
ow

nl
oa

de
d 

by
 [

D
r 

B
. M

. G
ol

am
 K

ib
ri

a]
 a

t 1
8:

59
 2

1 
M

ay
 2

01
5 



Stochastic Restricted Ridge Regression Estimators 4417

Kibria (2012). Considering model (1), Sakallioglu and Kaçiranlar (2008) introduced the
(k − d) class estimator as a new biased estimator of β

β̂(k, d) = (S + I )−1(X′Y + dβ̂(k)), (8)

where k > 0,−∞ < d < ∞. They showed that, the (k−d) class estimator has an advantage
over the LE and ORR estimators. Also the (k−d) class estimator is a general estimator which
includes OLSE, ORR, and LE estimators. Considering model (4), Hubert and Wijekoon
(2006) introduced an alternative Liu estimator of β as

β̂SRD = Fdβ̂OME, (9)

where Fd = (S + I )−1(S + dI ). Yang et al. (2007) introduced the stochastic restricted Liu
estimator (SRLE) as:

β̂SRLE(d) = (S + R′V −1R)−1(FdX
′Y + R′V −1r). (10)

If we replace Fk = (S + kI )−1S with Fd , we get the stochastic restricted ridge regression
estimator (SRRRE) as follows:

β̂SRRRE(k) = (S + R′V −1R)−1(FkX
′Y + R′V −1r). (11)

In this article, we introduce an alternative stochastic restricted estimator as a generalization
of OME, SRLE, SRRRE, LE , ORR, and (k − d) estimators. The organization of the article
is as follows. The proposed estimators and their properties are given in Sec. 2. In Sec. 3,
the performance of the new estimator compared with other estimators with respect to the
mean squares error matrix criteria is given. A numerical example is consider in Sec. 4,
while some concluding remarks are presented in Sec. 5.

2. The New Estimator and its Properties

The new proposed estimator is motivated by the following fact.
By using the identity

(A + BCD)−1 = A−1 − A−1B(C−1 + CA−1B)−1DA−1,

where A, B, C, and D are the positive definite matrices, the OME estimator can be rewritten
as follows:

β̂OME = β̂ + S−1R′(V + RS−1R′)−1(r − Rβ̂).

Now, if we replace β̂ with β̂(k, d) we get the new proposed estimator:

β̂SR(k−d)E(k, d) = β̂(k, d) + S−1R′(V + RS−1R′)−1(r − Rβ̂(k, d)), (12)

which will be called (SR(k − d)E). Since the (k − d) class estimator has advantages over
ORR and LE estimators, we hope that, these advantages will inherit to the SR(k − d)
estimator. The SR(k − d)E is a general estimator which includes OME, SRRE, SRLE, LE,
ORR, and (k − d) estimators:

β̂SR(k−d)E(0, 1) = β̂OME
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4418 Alheety and Golam Kibria

β̂SR(k−d)E(0, d) = β̂SRLE(d)

β̂SR(k−d)E(k, 1 − k) = β̂SRRE(k).

If R = 0 then

β̂SR(k−d)E(0, 1) = β̂

β̂SR(k−d)E(0, d) = β̂(d)

β̂SR(k−d)E(k, 1 − k) = β̂(k)

β̂SR(k−d)E(k, d) = β̂(k, d).

The expected value, variance, and bias of the SR(k − d)E are given as follows:

E
(
β̂SR(k−d)E(k, d)

) = A(Fk,dS + R′V −1R)β
V ar

(
β̂SR(k−d)E(k, d)

) = σ 2A
(
Fk,dSF ′

k,d + R′V −1R
)
A′

Bias
(
β̂SR(k−d)E(k, d)

) = (
A(Fk,dS + R′V −1R) − I

)
β

= B1,

where A = (S + R′V −1R)−1 and Fk,d = (S + I )−1(S + d(S + kI )−1S).
The bias and the variance of an estimator β∗ are measured simultaneously by the mean

squares error matrix (MSE)

MSE(β∗) = V ar(β∗) + Bias(β∗)(Bias(β∗))′.

For this purpose,

MSE(β̂OME) = σ 2A. (13)

MSE(β̂SRLE(d)) = σ 2A
(
FdSF ′

d + R′V −1R
)
A′ + B2B

′
2, (14)

MSE(β̂SRRE(k)) = σ 2A
(
FkSF ′

k + R′V −1R
)
A′ + B3B

′
3, (15)

MSE(β̂SR(k−d)E(k, d) = σ 2A
(
Fk,dSF ′

k,d + R′V −1R
)
A′ + B1B

′
1, (16)

MSE(β̂(k, d)) = σ 2
(
Fk,dSF ′

k,d

)+ B4B
′
4, (17)

where

B2 = (A(FdS + R′V −1R) − I )β,

B3 = (A(FkS + R′V −1R) − I )β,

B4 = (Fk,dS − I )β.

So, it is obvious that β̂SR(k−d)E(k, d) is always biased unless k = 0 and d = 1.

3. Superiority of the New Estimator

Let β∗
i = AiY, i = 1, 2 be any two estimators. We know that

MSE(β∗
1 ) − MSE(β∗

2 ) = V ar(β∗
1 ) − V ar(β∗

2 ) + B1B
′
1 − B2B

′
2

= σ 2D + B1B
′
1 − B2B

′
2,
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Stochastic Restricted Ridge Regression Estimators 4419

Table 1
Estimated eigenvalues of �1,�2,�3, and �4 for different values d , when kHK = 0.0029

kHK = 0.0029

d 0.3 0.6 0.9

λ1(�1) 0.5455 × 10−3 0.34597 × 10−3 0.9507 × 10−4

λ2(�1) 0.0116 × 10−3 0.00688 × 10−3 0.01766 × 10−4

λ3(�1) 0.000003 × 10−3 0.000002 × 10−3 0.000005 × 10−4

λ4(�1) 0.00022 × 10−3 0.00013 × 10−3 0.00032 × 10−4

λ1(�2) 0.0000006 × 109 0.6132 × 103 0.6167 × 103

λ2(�2) 0.0000048 × 109 0.47561 × 104 0.47597 × 104

λ3(�2) 0.0000349 × 109 0.349319 × 105 0.349355 × 106

λ4(�2) 5349823435.2 5349895568.2 5349968183.6
λ1(�3) 0.4793757 × 10−8 0.1241 × 10−7 0.2287 × 10−7

λ2(�3) 0.0014 × 10−8 0.00034 × 10−7 0.0005 × 10−7

λ3(�3) −0.0000004 × 10−8 −0.00000001 × 10−7 0.00002 × 10−11

λ1(�4) 0.5427 × 10−3 0.3431 × 10−3 0.922 × 10−4

λ4(�3) 0.000004 × 10−8 0.0000009 × 10−7 0.00143 × 10−10

λ2(�4) 0.0116 × 10−3 0.0068 × 10−3 0.0171 × 10−4

λ3(�4) 0.000003 × 10−3 0.000002 × 10−3 0.005 × 10−7

λ4(�4) 0.0002 × 10−3 0.00013 × 10−3 0.0003 × 10−4

Table 2
Estimated eiagenvalues of �1,�2,�3, and �4 for different values of d when

kHKB = 0.01163

kHKB = 0.01163

d 0.3 0.6 0.9

λ1(�1) 0.545 × 10−3 0.346 × 10−3 0.951 × 10−4

λ2(�1) 0.011 × 10−3 0.006 × 10−3 0.017 × 10−4

λ3(�1) 0.003 × 10−6 0.002 × 10−6 0.0057 × 10−8

λ4(�1) 0.0002 × 10−3 0.13 × 10−6 0.0003 × 10−4

λ1(�2) 0.61 × 103 0.61 × 103 0.62 × 103

λ2(�2) 0.475 × 104 0.476 × 104 0.476 × 104

λ3(�2) 0.3493 × 105 0.3493 × 105 0.3494 × 105

λ4(�2) 534982295 534989557 534996818
λ1(�3) 0.1917 × 10−7 0.496 × 10−7 0.914 × 10−7

λ2(�3) 0.56 × 10−10 0.0013 × 10−7 0.002 × 10−7

λ3(�3) −0.0016 × 10−11 −0.006 × 10−12 0.0001 × 10−11

λ4(�3) 0.0017 × 10−10 0.0037 × 10−10 0.575 × 10−12

λ1(�4) 0.534 × 10−3 0.334 × 10−3 0.836 × 10−4

λ2(�4) 0.011 × 10−3 0.006 × 10−3 0.015 × 10−4

λ3(�4) 0.003 × 10−6 0.0020 × 10−6 0.05 × 10−8

λ4(�4) 0.225 × 10−6 0.00012 × 10−3 0.0002 × 10−4
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4420 Alheety and Golam Kibria

Table 3
Estimated eiagenvalues of �1,�2,�3, and �4 for different values of d when

kLW = 0.00798

kLW = 0.00798

d 0.3 0.6 0.9

λ1(�1) 0.545 × 10−3 0.345 × 10−3 0.951 × 10−4

λ2(�1) 0.01 × 10−3 0.006 × 10−3 0.017 × 10−4

λ3(�1) 0.003 × 10−6 0.002 × 10−6 0.05 × 10−8

λ4(�1) 0.0002 × 10−3 0.0001 × 10−3 0.0003 × 10−4

λ1(�2) 0.61 × 103 0.61 × 103 0.62 × 103

λ2(�2) 0.475 × 104 0.476 × 104 0.476 × 104

λ3(�2) 0.3493 × 105 0.3493 × 105 0.3494 × 105

λ4(�2) 534982295 534989557 534996818
λ1(�3) 0.131 × 10−7 0.34 × 10−7 0.628 × 10−7

λ2(�3) 0.0003 × 10−7 0.0009 × 10−7 0.0015 × 10−7

λ3(�3) −0.001 × 10−11 −0.004 × 10−12 0.001 × 10−12

λ4(�3) 0.0012 × 10−10 0.0025 × 10−10 0.0039 × 10−12

λ1(�4) 0.537 × 10−3 0.338 × 10−3 0.872 × 10−4

λ2(�4) 0.01 × 10−3 0.006 × 10−3 0.016 × 10−4

λ3(�4) 0.0031 × 10−6 0.002 × 10−6 0.005 × 10−7

λ4(�4) 0.0002 × 10−3 0.0001 × 10−3 0.0003 × 10−3

where D = A1A
′
1 − A2A

′
2. If we want to know whether � = MSE(β∗

1 ) − MSE(β∗
2 ) is a

positive definite (p.d.) or not, we may confine ourselves to the following fact.
Let β̂j = AjY, j = 1, 2 be two linear estimators of β. Suppose that D = Cov(β̂1) −

Cov(β̂2) is p.d. then � = MSE(β̂1)−MSE(β̂2) is n.n.d. if and only if b′
2(D+b1b

′
1)−1b2 ≤

1, where bj denotes the bias vector of β̂j (see Trenkler and Toutenburg, 1990). Thus,
showing � is a p.d. it is reduced to the matrix type θA − cc′ is p.d. when A is p.d. Now, we
will give some lemmas which are used in order to be compared with any two estimators.

Lemma 3.1. Let A be a p.d. matrix, c be an non zero vector, and θ be a positive scaler.
Then θA − cc′ is p.d. if and only if c′A−1c < θ.

Lemma 3.2. Let β̂∗
j = AjY , j = 1, 2 be two homogeneous linear estimator of β such that

D = A1A
′
1 − A2A

′
2 is p.d.. If B ′

2D
−1B2 < σ 2 then � is p.d.

Lemma 3.3. Let β̂∗
j = AjY , j = 1, 2 be two homogeneous linear estimator of β such that

D = A1A
′
1 − A2A

′
2 is p.d.. then � is p.d. if and only if B ′

2(σ 2D + B1B
′
1)−1B2 < 1.

Lemma 3.4. Let B be a p.d. matrix and A be a n.n.d. matrix, and � = diag
(
λB

i (A)
)

is the
diagonal matrix of the eigen values of A in the matrix B. Then there exists a non singular
matrix W such that B = W ′W and A = W ′�W .

Lemma 3.5. (Yang et al., 2009). Suppose A is a real symmetric matrix, P is a matrix then
A ≥ 0⇔ ∀ P, P’AP ≥ 0 ⇔ each eigenvalue of A is non negative.
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Figure 1. Various MSE of the proposed estimator compared to others for different values of d when
k = 2..

Let us consider the difference between the proposed SR(k − d)E and other estimators:

�1 = MSE(b̂OME) − MSE
(
b̂SR(k−d)E(k, d)

) = σ 2D1 − B1B
′
1,

�2 = MSE(b̂(k, d)) − MSE
(
b̂SR(k−d)E(k, d)

) = σ 2D2 + B4B
′
4 − B1B

′
1,

�3 = MSE(b̂SRLE(d)) − MSE
(
b̂SR(k−d)E(k, d)

) = σ 2D3 + B2B
′
2 − B1B

′
1,

�4 = MSE(b̂SRRR(k)) − MSE
(
b̂SR(k−d)E(k, d)

) = σ 2D4 + B3B
′
3 − B1B

′
1,

where

D1 = A − A
[
Fk,dSF ′

k,d + R′V −1R
]
A′,

D2 = Fk,dS
−1F ′

k,d − A
[
Fk,dSF ′

k,d + R′V −1R
]
A′,

D3 = A
[
FdSF ′

d + R′V −1R
]
A′ − A

[
Fk,dSF ′

k,d + R′V −1R
]
A′,

D4 = A
[
FkSF ′

k + R′V −1R
]
A′ − A

[
Fk,dSF ′

k,d + R′V −1R
]
A′.

Now we can start showing the performance of the new estimator compared with others:
In order to prove that �1, �2, �3, and �4 are n.n.d., we need to apply Lemma 3.3,

that means, we need to show under which condition D1, D2, D3, and D4 will be p.d. We
can rewrite D1 as follows:

D1 = A
(
S − Fk,dSF ′

k,d

)
A′.
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Figure 2. Various MSE of the proposed estimator compared to others for different values of d when
k = 15.

Therefore D1 is p.d. if and only if S − Fk,dSF ′
k,d is p.d. Because S is p.d., there exists an

orthogonal matrix T such that T ′T = T T ′ = I and T ′ST = � = diag{λ1, . . . , λp} where
� is the diagonal matrix whose elements are the eigen values of the matrix S. Hence,
T ′S − Fk,dSF ′

k,dT = diag
{
γ1, . . . , γp

}
, where

γi = λi

(
1 −

(
λi(λi + k + d)

(λi + k)(λi + 1)

)2
)

.

Therefore, D1 is p.d. if γi > 0,∀i. That means D1 is p.d. if and only if

λ2
i (λi + k + d)2

(λi + k)2 (λi + 1)2 < 1 ⇔

d < 1 + k

λi

.

After applying Lemma 3.1, we can state the following theorem.

Theorem 3.1. Under the linear regression model with the stochastic restrictions (3), for
d < 1 + k

λi
, then �1 is n.n.d. if and only if

B ′
1D

−1
1 B1 < σ 2.
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Figure 3. Various MSE of the proposed estimator compared to others for different values of d when
k = 50..

Let D2 = B−C, where B = Fk,dS
−1F ′

k,d and C = A[Fk,dSF ′
k,d+R′V −1R]A′. By applying

Lemma 3.4 we can derive the necessary and sufficient condition for D2 to be n.n.d. Since
B is p.d. and C is a symmetric matrix, then there exists a non singular matrix W such that
Ip = WBW ′ and WCW ′ = �. If B−C is n.n.d matrix, WBW ′−WCW ′ = I −� is n.n.d.,
then 1−λi ≥ 0. So, we get λmax(B−1C) ≤ 1. Now, suppose that λmax(B−1C) ≤ 1. Since B is
p.d. and C is a symmetric matrix, then λp ≤ x ′Cx

x ′Bx
≤ λ1, where λ1(B−1C) ≥ ... ≥ λp(B−1C)

are the roots of |C − λB| = 0. From that we get x ′Cx ≤ x ′Bx. So, B − C is an n.n.d.
matrix. Therefore, it is obvious that D2 is n.n.d if and only if λmax(B−1C). Now we are
ready to give the following theorem.

Theorem 3.2. Under the linear regression model with the stochastic restrictions (3), then
D2 is n.n.d. if and only if λmax(B−1C) ≤ 1. From Theorem 3.2 and after applying Lemma
3.3, we can give the following theorem.

Theorem 3.3. Under the linear regression model with the stochastic restrictions (3), if
λmax(B−1C) ≤ 1 then �1 is n.n.d. if and only if,

B ′
1

(
σ 2D2 + B4B

′
4

)−1
B1 < 1.
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Figure 4. Various MSE of the proposed estimator compared to others for different values of d when
k = 150..

As done in D1, D3 = A(FdSF ′
d − Fk,dSF ′

k,d )A′ and T ′(FdSF ′
d − Fk,dSF ′

k,d )T =
diag{τ1, ..., τp}. Therefore, D3 is p.d. if and only if τi > 0, i = 1, ..., p.

τi =
(λi + d)2λi − (λi + dλi

λi+k
)2λi

(λi + 1)2
> 0

⇔ (λi + d)

(λi + 1)
− λi(λi + k + d)

(λi + k)(λi + 1)
> 0.

Let k be defined to be fixed. Therefore,

τi > 0 ⇔ d > 0.

Now we can present the following theorem

Theorem 3.4. Under the linear regression model with the stochastic restrictions (3). For
d > 0, then �3 is n.n.d. if and only if,

B ′
1

(
σ 2D3 + B2B

′
2

)−1
B1 < 1.

Since, the proof of the D4 to be p.d. is similar to the proof of D3, therefore, we state the
following theorem.
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Figure 5. Various MSE of the proposed estimator compared to others for different values of d when
k = 300..

Theorem 3.5. Let k considered to be fixed. Under the linear regression model with the
stochastic restrictions (3). For d < 1 + 1

λi
− (λi + k), then �4 is n.n.d. if and only if,

B ′
1(σ 2D4 + B3B

′
3)−1B1 < 1.

4. Numerical Example

To illustrate the performance of the proposed estimator in the MSE, a numerical example
is given. We consider the widely used Portland cement data, which has been analyzed by
many researchers, among them like Alheety and Gore (2008) and Alheety et al. (2009) are
notable. By using Lemma 3.5 we can get �i, i = 1, ...4 is n.n.d if and only if each eigenvalue
of �i is non negative. Following Kibria (2003), we have estimated the ridge parameter k
and given them in Tabels 1 to 3. From Tables 1–3, we observed that the numerical results
are corresponding to the theoretical results except �3 where the condition is not satisfied.
Figures 1–3, clearly showed the advantage of considering (k − d) estimator to use k > 1
which is adjusted by d.

5. Some Concluding Remarks

A generalized stochastic restricted ridge regression estimator for the unknown vector pa-
rameter in the linear regression model is proposed. The ordinary mixed estimator (OME),
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Liu estimator (LE), ordinary ridge estimator (ORR), (k-d) class estimator, stochastic re-
stricted Liu estimator (SRLE) and stochastic restricted ridge estimator (SRRE) are special
cases of the proposed estimator. Performance of the new estimator in comparison to other
estimators in terms of the mean squares error matrix (MMSE) is discussed. Numerical
example from literature have been given to illustrate the results of this article. Our wish is
that the findings of this article will be useful for practitioners.
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