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ABSTRACT

The performance of shrinkage ridge estimators in the linear regression model has been studied
to reduce the effect of multicollinearity on the estimation of the linear regression parameters.
Trenkler (1984) proposed a ridge estimator in the linear regression model when the assump-
tion of uncorrelatedness is not satisfied. Since there is no attempt to study the recent types
of estimated ridge parameter when the assumption of uncorrelatedness is not satisfied, this
paper tries to show the performance of some ridge estimators in the linear regression model
with correlated error based on the minimum mean squared error (MSE) criterion. A simu-
lation study and a numerical example have been made to evaluate the performance of these
estimators of ridge parameter k. The simulation study suggests that some ridge estimators
are promising and can be recommenced for the practitioners.
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1 Introduction

Consider the following multiple linear regression model

Y = Xβ + ε, (1.1)

where Y is an n×1 vector of observations, X is an n×p matrix , β is an p×1 vector of unknown
parameters, and ε is an n× 1 vector of non observable errors with E(ε) = 0 and Cov(ε) = σ2In.

The most common method used for estimating the regression coefficients in (1.1) is the ordinary
least squares (OLS) method which is defined as:

β̂ = (X ′X)−1X ′Y. (1.2)
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Both OLS estimator and its covariance matrix heavily depend on the characteristics of X ′X
matrix. If XX is ill-conditioned, i.e. the column vectors of X are linearly dependent, then
the OLS estimators are sensitive to a number of errors. For example, some of the regression
coefficients may be statistically insignificant or have the wrong sign, and they may result to wide
confidence intervals for individual parameters. With ill-conditioned X ′X matrix, it is difficult
to make valid statistical inferences about the regression parameters.
One of the most popular estimators dealing with multicollinearity is the ordinary ridge regression
(ORR) estimator proposed by Hoerl and Kennard (1970a,b) and defined as:

β̂k = [X ′X + kIp]−1X ′Y = [Ip + k(X ′X)−1]−1β̂. (1.3)

The constant k > 0 is known as shrinkage or biasing or ridge parameter. As k increase from zero
upto infinity, the regression estimates go to zero. Though this estimator is biased, for certain
value of k, they yield minimum mean squares error (MSE) compared to OLS (see Hoerl and
Kennard (1970a,b)). However, the MSE(β̂(k)) will depend on unknown parameters k, β and σ2,
which can not be calculated in practice. But k, has to be estimated from the real data instead.
Much of the discussions on ridge regression concern the problem of finding good empirical value
of k. Many different techniques for estimating k have been proposed or suggested by different
researchers. Hoerl and Kennard (1970a,b), Hoerl et al. (1975), McDonald and Galarneau (1975),
Lawless (1978), Lawless and Wang (1976), Dempster et al. (1977), Gunst and Mason (1977),
Hemmerle and Brantle (1978), Wichern and Churchill (1978), Golub et al. (1979), Gibbons
(1981), Nordberg (1982), Saleh and Kibria (1993), Haq and Kibria (1996), Kibria (1996, 2003),
Singh and Tracy (1999), Wencheko (2000), Khalaf and Shukur (2005), Alkhamisi et al. (2006),
Alkhamisi and Shukur (2008), Alheety and Ramanathan (2009), Muniz and Kibria (2009) and
very recently Mansson et al. (2010) to mention a few.

Time series data occur frequently in business, economics, and some fields of engineering and the
assumption of uncorrelated or homoscedastic errors for time series data is often inappropriate.
The presence of autocorrelation in the errors has several effects on OLS regression procedure.
In this case, we note that OLS will no longer be efficient and that the usual estimator for the
variance-covariance matrix will be biased. Having a biased variance-covariance matrix estimator
means that confidence intervals and hypothesis tests are no longer soundly based procedures
(Griffiths et al. (1993)). To overcome these effects, alternative methods of estimation were
used. Weighted or generalized least squares (GLS) method could be used if there is sufficient
knowledge of the autocorrelation structure. The generalized least squares estimator (GLS) is
also unbiased and has lower variance than OLS. In model (1.1) we assumed that Cov(ε) = σ2I

which is called homoscedasticity i.e. V ar(εi) = σ2, for i = 1, · · · , n and uncorrelated i.e.
Cov(εi, εj) = 0 for i �= j. Now we make a broader assumption of unequal error variances , that
is,

E(ε) = 0, Cov(ε) = σ2V.

Since σ2V is the variance-covariance matrix of the errors, V must be positive definite (p.d.), so
there exist an n×n symmetric matrix T , such that T ′T = V so that model (1.1) can be written
as

T−1Y = T−1XB + T−1ε.
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Let Y∗ = T−1Y, X∗ = T−1X and ε∗ = T−1ε then E(ε∗) = 0 and Cov(ε∗) = σ2I . Therefore the
transformed model

Y∗ = X∗+
¯
ε∗ (1.4)

satisfies the assumption of error ε∗ ∼ N(0, σ2I). So OLS estimator for model (1.3) is

β̃ = (X ′
∗X∗)−1X ′

∗Y∗ = (X ′V −1X)−1X ′V −1Y, (1.5)

which is called the generalized least squares (GLS) estimator of β . The GLS estimator is the
best linear unbiased estimator of β with Cov(β̃) = σ2(X ′V −1X)−1. Since the rank of X∗ is
equal to that of X , then the multicollinearity still also effects the GLS estimator.

Trenkler (1984) proposed the ridge estimator of β as:

β̃k = (X ′V −1X + kI)−1X ′V −1Y. (1.6)

Because β̃k is a biased estimator, Özkale (2008) proposed a jackknife ridge estimator to reduce
the bias of β̃k.

Since the literature on the estimation of ridge regression parameters under correlated error is
limited, the objective of the paper is to investigate the performance of some of the existing
popular techniques for the estimator in (1.6) and to make a comparison among them based on
mean square properties. The organization of the paper is as follows. We review some methods
for estimating the ridge parameter k and consider a criterion for comparing the estimators in
Section 2. Section 3 describes the Monte Carlo simulation An example has been considered in
Section 4. Finally, some concluding remarks are presented in Section 5.

2 Some Ridge Regression Estimators

Hoerl and Kennard (1970a,b) showed that the estimated k which minimizes the MSE for the
generalized ridge regression estimator β̂(k) = (X ′X + K)−1X ′Y for model (1.1), where K =
diag(k1, k2, . . . , kp), ki > 0 ,where

MSE(β̂k) = σ2
p∑

i=1

λi

(λi + ki)2
+

p∑
i=1

k2
i β

2
i

(λi + ki)2
, (2.1)

when

ki =
σ2

β2
i

. (2.2)

For more information about that , we refer to Muniz and Kibria (2009). Therefore, in this
section, we review some of these types of estimated ridge parameters according to model (1.3)
as follows

1. The estimated k due to Hoerl and Kennard (1970a) (thereafter k̂HK or HK), is

k̂HK =
σ̂2

β̃2
max

, (2.3)
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where σ̂2 =
∑

ê2
i

n−p is the residual mean square estimate, which is an unbiased estimator of
σ2, where σ2 represents the error variance of model (1.3).

2. The estimated k due to Hoerl, Kennard and Baldwin (1975) (thereafter k̂HKB or HKB),
by taking the harmonic mean of k̂i is

k̂HKB =
pσ̂2∑p
i=1 β̃2

i

. (2.4)

3. From the Bayesian point of view, the estimated k due to Lawless and Wang (1976) (there-
after k̂LW or LW), is

k̂LW =
pσ̂2

β̃′Λβ̃
. (2.5)

4. The estimated k due to Hocking, Speed and Lynn (1976) (thereafter k̂HSL or HSL), is

k̂HSL = σ̂2

∑p
i=1(λiβ̃i)2

(
∑p

i=1 λiβ̃
2
i )2

. (2.6)

5. The estimated k due to Kibria (2003) (thereafter k̂AM or AM) by using the arithmetic
mean of k̂i is

k̂AM =
1
p

p∑
i=1

σ̂2

β̃2
i

. (2.7)

6. The estimated k due to Kibria (2003) (thereafter k̂GM or GM) by using the geometric
mean of k̂i is

k̂GM =
σ̂2

(
∏p

i=1 β̃2
i )

1
p

. (2.8)

7. The estimated k due to Kibria (2003) (thereafter k̂MED or MED) by using the median of
k̂i is

k̂MED = Median

{
σ̂2

β̃2
i

}
, i = 1, 2, . . . , p. (2.9)

8. The estimated k due to Khalaf and Shukur (2005) (thereafter k̂KS or KS)as a modification
of k̂HK is

k̂KS =
tmaxσ̂2

(n − p)σ̂2 + tmaxβ̃2
max

, (2.10)

where tmax is the maximum eigenvalue of X ′∗X∗ matrix

9. The estimated k due to Alkhamisi et al. (2006) by using both Khalaf and Shukur (2005)
and Kibria (2003) methods are

k̂arith
KS = MKS =

1
p

p∑
i=1

(
tiσ̂

2

(n − p)σ̂2 + tiβ̃
2
i

)
(2.11)
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k̂max
KS = XMS = max

(
tiσ̂

2

(n − p)σ̂2 + tiβ̃
2
i

)
(2.12)

k̂med
KS = MEKS = median

(
tiσ̂

2

(n − p)σ̂2 + tiβ̃
2
i

)
(2.13)

10. The estimated k due to Muniz and Kibria (2009) (thereafter k̂GM
KS or KM1), by using the

geometric mean of
(

tiσ̂
2

(n−p)σ̂2+tiβ̃2
i

)
is

k̂GM
KS =

(
p∏
i

tiσ̂
2

(n − p)σ̂2 + tiβ̃
2
i

) 1
p

(2.14)

11. The estimated k due to Muniz and Kibria (2009) the square root transformations are

k̂KM2 = KM2 = max

(
1

mi

)
, (2.15)

k̂KM3 = KM3 = max (mi) , (2.16)

k̂KM4 = KM4 =

(
p∏
i

1
mi

) 1
p

, (2.17)

k̂KM5 = KM5 =

(
p∏
i

mi

) 1
p

, (2.18)

k̂KM6 = KM6 = median

(
1
mi

)
, (2.19)

k̂KM7 = KM7 = median (mi) , (2.20)

where mi =
√

σ̂2

β̃2
i

.

To make a comparison among the estimators, a criterion for measuring “goodness” of an estima-
tor is needed. Therefore, the mean squares error (MSE) criterion is used throughout our study
to measure the goodness of an estimator. Since we are interested to see the performance of the
estimators under the assumption of autocorrelated error, the proposed V matrix in equation
(1.4) would be as follows

V =
1

1 − ρ2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
...

...
...

ρn−1 ρn−2 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.21)
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3 The Monte Carlo Simulation

3.1 Simulation Technique

Based on Golsling and Puterman (1985) and then followed by Firinguetti (1989), this section
conducts a simulation study to compare the performance of the estimated k given from equations
(2.3) to (2.20) when the error terms are correlated. To achieve different degrees of collinearity,
following McDonald and Galarneau (1975), Gibbons (1981) and Kibria (2003), the explanatory
variables are generated by using the following equation.

xij = (1 − γ2)1/2zij + γzip, i = 1, · · · , n, j = 1, 2, · · · , p, (3.1)

where zij are independent standard normal pseudo-random numbers , p is the number of the
explanatory variables, n is the sample size and γ is specified so that the correlation between
any two explanatory variables is given by γ2. In this simulation we consider p = 5 and n =
10, 20, 30, 50 and 100. Three different sets of correlation are considered according to the value
of γ = 0.85 0.95 and 0.99. Also the explanatory variables are standardized so that X ′X will
be in a correlation form.

The V matrix given in (2.21) is used in this simulation study where two values of ρ are given as
0.1, 0.9. According to Kibria (2003), Alheety and Gore (2008) and Muniz and Kibria (2009),
we consider the coefficient vector corresponding to the largest eigenvalue of X ′V −1X matrix.
The n observations for the dependent variable are determined by the following equation:

yi = β0 + β1xi1 + β2xi2 + β3xi3 + · · · + βpxip + ei, (3.2)

where ei = ρei−1 + ui is the terms of the error vector from the AR(1) process (see Ozkale,
2009). The term ui is generated from each of the following symmetric distributions: N(0, 32)
and N(0, 102) distributions. In this study, β0 is taken to be zero. The experiment is repeated
2000 times by generating new error terms. The MSEs for the estimators are calculated as
follows

MSE(β̂∗) =
1

2000

2000∑
r=1

(β̂∗
(r) − β)′(β̂∗

(r) − β), (3.3)

where β̂∗ is the ridge estimator for different estimated value of k considered for comparison
reasons.

3.2 Results Discussion

The simulated results for different methods that used to choose the ridge parameter k are
presented in Tables 3.1 to 3.4. From these tables, we observed that as sample size increase
the MSE decrease for all estimators. All estimators are sensitive to number of observations(n),
correlation between regressors (γ) and ρ. The performance of the estimators do not vary greatly
when n = 100 or more specifically, when the sample sizes are large. However, for n < 100, all
proposed ridge regression estimators are performing better than the GLS estimator for all γ
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and ρ. We also noticed that, the estimators LW , GM , XKS, KM2, KM3, KM4, KM6 and
KM7 are performing better than the rest when the sample sizes are small. There is significant
effect of n and γ on the performance of the estimators, GLS, HKB, HLS, AM , MEKS and
GKS. We also notice that on average KM2 and KM3 performed the best compared to the
rest for small sample sizes.

4 Numerical example

We illustrate the results by considering the dataset discussed by Bayhan and Bayhan (1998).
Tables 4.1 and 4.3 give 75 weekly observations of sales. Sixty observations in Table 4.1 are
taken as historical data and fifteen observations in Table 4.2 are taken from the last 15 weeks
as a fresh data. In these two Tables yi and yj denote weekly quantities of shampoos sold, while
xi1,xi2 and xj1,xj2 denote the weekly list prices (averages from selected supermarkets) of the
firm’s shampoos and of a certain brand of soap, substituted from shampoos, respectively.

Using the data in Table 2, the matrix X ′X has eigenvalues λ1 = 41392.6, λ2 = 0.5. The
condition number (CN)is CN = 91873.2 and it is very large. That is, this data has strong
multicollinearity. The Durbin-Watson statistics d =

∑n
i=2(êi− ˆei−1)2∑n

i=1 ê2
i

can be used to detect the

presence of autocorrelation, where êi denote the residuals of a linear regression model. If we
use the data in Table 4.2 for computing d, we find that d = 0.38. For a significance level of 0.05
and for n = 15, the critical values of the Durbin-Watson statistic are dL = 0.95 and dU = 1.54.
Since d < dL, it is concluded that autocorrelation is present in this data. First we give the
model for the rescaled variables:

yt = β1x1t + β2x2t + εt , E(εt) = 0 , E(εtεt+p) = σ2ρi , (4.1)

where the term ρj is the j-lagged autocorrelation of the error terms and expressed as ρj = Cj

C0

and Cj = E(εiεi+j), j = 0, 1, ..., 14. To compute β̃ , we need the matrix V , which is defined as
in (2.21). An estimate of V requires the knowledge of the correlation structure of the residuals.
Therefore, we followed Bayhan and Bayhans (1998) approach, which uses historical data to
estimate V, and used ρ̂j ,

ρ̂j =
Ĉj

Ĉ0

, Ĉj =
1
n

n−j∑
i=1

(êi − ē)(êi+j − ē), j = 0, ..., 14, n = 60, (4.2)

where ê = Y − Xβ̂ is the OLS residuals of historical data.

The estimated off diagonal elements of V matrix is 0.72284,0.42003,0.28663,0.15967,0.10987,0.16687,
0.20766,0.20862,0.17573,0.17168,0.12975,-0.02658,-0.13842 and -0.12330. GLS of the regression
coefficients are:

β̃ =

(
0.8944
−0.0087

)
.

Therefore, the estimator of σ2 is obtained as

σ̂2 =
(Y − Xβ̃)′(Y − Xβ̃)

n − p
= 0.28.
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To evaluate the shrinkage parameter k, the values of the estimated ridge parameter methods
given in equations (2.3) to (2.20) with their MSE are given in Table 4.3. From the table we
observed that all estimators performed better than GLS in the sense of smaller MSE except
the estimators KS, MKS, MEKS and XKS. However, XKS and MKS have almost the doubled
MSE than the KS or MEKS. The estimators HKB, LW, GM, MED, KM3, KM7, performed
equivalently well. The estimators of Muniz and Kibria (2009) preformed better than others.
Therefore, According to this study, if we need to fit the linear regression model that suffers for
Multicollinearity and correlated error, we recommend to use in practice the estimators of ridge
parameter due to Muniz and Kibria (2009).

5 Summary and Concluding Remarks

This paper considered some recent estimators for estimating the ridge parameter k when the
assumption of uncorrelatedness is not satisfied. We have considered several estimators based
on the work of Kibria (2003), Alkhamisi et al. (2006) and Muniz and Kibria (2009). Most of
their work were based on the assumption that the error variables are uncorrelated. However, we
have considered these estimators when the error of the regression model follow AR(1) process.
To see the performance of the estimators, a simulation study has been made. Based on the
simulation study, some of the estimated k due to Muniz and Kibria (2009) have smaller MSE
than the generalized least squared estimator and some other estimators. Also in some cases
the performance of these types (Muniz and Kibria (2009)) is changed when the value of ρ is
changed from low to high. Estimators KM2 and KM3 performed the best compared to the
rest when sample size is small. To illustrate the findings of the paper, a real life data has been
analyzed.
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Table 4.1: Historical data for weekly sales of shampoos and prices

Obs. yi1 xi1 xi2 Obs. yi1 xi1 xi2

1 28.445 49 12.5 31 31.446 84.4 21.2
2 28.547 49 12.5 32 31.549 85 21.2
3 28.644 51.2 13 33 31.641 85 21.2
4 28.746 51.2 13 34 31.743 78 20.1
5 28.849 40.3 13 35 31.848 78 20.1
6 28.94 52 13 36 31.94 81.3 20.1
7 29.045 52.3 13.8 37 32.043 83.1 21
8 29.142 58 14.4 38 32.146 83 21
9 29.248 58 14.4 39 32.25 88.5 22.3
10 29.25 58 14.4 40 32.344 88.5 22.3
11 29.443 62 16 41 32.441 88.5 22.3
12 29.545 62 16 42 32.545 68.7 22.9
13 29.644 62 16 43 32.643 68.7 22.9
14 29.747 52 17.1 44 32.748 91.3 22.9
15 29.841 67.2 17.1 45 32.842 91.3 22.9
16 29.045 67.2 17.1 46 32.95 91.3 23
17 30.046 67.2 18 47 33.039 92.8 23
18 30.142 67.2 18 48 33.144 92.8 23
19 30.245 72.4 18 49 33.249 76 25.4
20 30.348 72.4 18 50 33.347 76 26
21 30.441 72.4 18 51 33.442 93.4 24.1
22 30.549 72.4 21 52 33.543 93.4 24.1
23 30.641 80 21 53 33.647 93.4 24.1
24 30.739 72 18.3 54 33.746 96.3 24.1
25 30.849 72 18.3 55 33.849 96.3 24.3
26 30.949 55 19 56 33.94 97.2 24.3
27 31.051 48 19 57 34.041 97.2 24.3
28 31.148 80.1 19.4 58 34.143 75.2 25.1
29 31.245 80.1 21.2 59 34.248 100 25.1
30 31.342 84.4 21.2 60 34.345 101.5 25.4
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Table 4.2: Fresh data for weekly sales of shampoos and prices

Obs. yj1 xj1 xj2

1 34.481 101.3 25.3
2 34.369 102 25.5
3 34.268 102.7 25.7
4 34.16 102.35 25.9
5 34.215 104.2 26.1
6 34.308 104.9 26.2
7 34.402 105.6 26.4
8 34.479 106.9 26.6
9 34.58 107 26.8
10 34.682 107.7 27
11 34.78 108.5 27.1
12 34.875 109.1 27.3
13 34.963 109.9 27.5
14 35.054 110.6 27.7
15 35.173 111.3 27.8
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Table 4.3: The values of estimated ridge parameter with MSE of ridge estimator in (5) for
each value

EST. k̂ MSE

GLS 0 11.48
HK 0.3500 2.24

HKB 0.7000 0.81
LW 0.7060 0.8
HSL 0.3500 2.24
AM 0.1750 7.27
GM 35.9838 0.76
MED 0.0018 0.79
KS 0.0554 43.5

MKS 0.0287 97.14
MEKS 0.0554 43.5
XKS 0.0287 97.14
GKS 0.010 2.32
KM2 1.6903 0.49
KM3 60.8219 0.77
KM4 0.1667 7.89
KM5 5.9986 0.62
KM6 0.8533 0.65
KM7 30.7 0.75
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