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Modified Liu-Type Estimator Based
on �r − k�Class Estimator
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1Department of Mathematics, University of Al-Anbar, Ramadi, Iraq
2Department of Mathematics & Statistics, Florida International
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In this article, we introduced a new Liu-type estimator which includes the ordinary
least squares estimator �OLS�, ordinary ridge regression estimator �ORR�, Liu
estimator �LE�, �k− d� class estimator, principal components regression �PCR�
estimator, �r − d� class estimator, and �r − k� class estimator. Under some
conditions, the performance of the proposed estimator is superior to the other
estimators by using the scalar mean squares error criterion. A simulation study has
been conducted to compare the performance of the estimators. Finally, a numerical
example has been analyzed to illustrate the theoretical results of the article.

Keywords �r − d� class estimator; �r − k� class estimator; �k− d� class
estimator; Liu estimator; Mean squares error; Multicollinearity; Ordinary least
squares estimator; Ordinary ridge regression estimator.

Mathematics Subject Classification 62J12; 62J05; 62J07.

1. Introduction

In multiple linear regression model, we usually assume that the explanatory
variables are independent. However, in practice, there may be moderate to strong
linear relationships that exist among the explanatory variables. In that case,
the independence assumptions are no longer valid, which causes the problem of
multicollinearity. In the presence of multicollinearity, it is very difficult to estimate
the unique effects of individual variables in the regression equation. Moreover,
the regression coefficient will may experience with unexpected large sampling
variance which affects both inference and prediction. Therefore, multicollinearity
becomes one of the serious problems in the linear regression analysis. There are
various methods available to solve this problem in the literature and different
remedial actions have been proposed. Hoerl and Kennard (1970a,b) proposed a
popular numerical technique to deal with multicollinearity which is known as ridge
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Modified Liu-Type Estimator 305

regression. The ordinary ridge regression (ORR) estimator is biased, but under
certain conditions it gives smaller mean squares error compared to ordinary least
squares (OLS) estimator. Also, Liu (1993) combined the Stein (1956) estimator with
the ORR estimator to obtain Liu estimator (LE). Baye and Parker (1984) proposed
a generalized estimator, known as �r − k� class estimator, which includes as special
cases the principal component regression (PCR), ORR and, of course, ordinary
least squares (OLS) estimators. Kaçiranlar and Sakallioğlu (2001) combined both
LE estimator and PCR estimator and called this the r − d class estimator which
includes as special cases the PCR, LE, and OLS estimators. Liu (2003) introduced a
new estimator by combining the ORR estimator with any estimator of �. He called
this new estimator as the Liu-type estimator. Using both theoretical results and
simulation study, he showed that the new estimator has two advantages over ridge
regression. Sakallioglu and Kaciranlar (2008) introduced a new biased estimator
which includes as a special cases the OLS estimator, ridge regression estimator, and
Liu estimator that provides an alternative method of dealing with multicollinearity.
They called this new estimator as the �k− d� class estimator.

In this article, we proposed a new estimator, which is defined by combining the
Liu estimator and the �r − k� class estimator. We will call this new estimator as
the �r − �k− d�� class estimator and we will discuss its properties in details. Under
some conditions, the proposed estimator is superior by the scalar mean squares error
criterion compare to other estimators. The organization of the article is as follows.
The model and the proposed estimators are given in Sec. 2. The comparison of the
estimators are provided in Sec. 3. A Monte-Carlo simulation has been conducted in
Sec. 4. An example has been considered in Sec. 5. Finally, some concluding remarks
are given in Sec. 6.

2. The Model and Some Estimators

We consider the following multiple linear regression model:

Y = X� + �� (2.1)

where Y is an n× 1 vector of observations on the response (or dependent) variable,
X is an n× p model matrix of observations on p non stochastic explanatory (or
independent) variables, � is an p× 1 vector of unknown parameters associated
with the p independent variables and � is an n× 1 vector of errors with
expectation E��� = 0 and dispersion matrix Var��� = �2In� Throughout this article,
we assume that the model matrix X has full column rank. Suppose there exists
an orthogonal matrix T = �t1� � � � � tp� such that T ′ST = �, where S = X′X and
� = diag�	1� � � � � 	p� contains the eigen values of the matrix S. The orthogonal
(canonical form) version of the model (2.1) is

Y = Z
+ �� (2.2)

where Z = XTr and 
 = T ′
r�. Let Tr = �t1� � � � � tr�, where r ≤ p. So, T ′

rSTr = �r =
diag�	1� � � � � 	r� and T ′

p−rSTp−r = �p−r = diag�	p−r � � � � � 	p�. It is well known that
the ordinary least squares (OLS) estimator, �̂ = S−1X′Y , is unbiased and has
minimum variance among all linear unbiased estimators when the fundamental
assumptions of the linear model are satisfied. One of these assumptions is that
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306 Alheety and Kibria

the explanatory variables are independent. If a linear relationship exists among
the explanatory variables, the situation is called multicollinearity. Hoerl and
Kennard (1970a,b) stated that multicollinearity is a common problem in the field of
engineering. To resolve this problem they suggested to use S + kIp� �k ≥ 0� instead
of S, for estimating �. The resulting estimator is given as

�̂k = �S + kIp�
−1X′Y � (2.3)

which is known as the ridge regression estimator (RRE). The constant, k > 0, is
known as shrinkage or biasing or ridge parameter. As k increases from zero and
continues up to infinity, the regression estimates tend toward zero. Although these
estimators result in biased, for certain value of k, they yield minimum mean square
error (MMSE) compared to the OLS estimator. For more with applications on ridge
regression we refer to Hoerl and Kennard (1981), Saleh and Kibria (1993), Khalaf
and Shukur (2005), Alkhamisi et al. (2006), Alkhamisi and Shukur (2008), and
very recently, Alkhamisi (2010), among others. The combination of two different
estimators might inherit the advantages of both estimators surely motivated Liu
(1993) to study new biased estimator. Liu combined the Stein (1956) estimator with
the ORR and defined the new estimator as

�̂d = �X′X + I�−1�X′Y + d�̂�� 0 < d < 1� (2.4)

Liu (2003) introduced another estimator, which is defined as

�̂k�d = �X′X + kI�−1�X′Y − d�∗�� k > 0�−� < d < �� (2.5)

where �∗ can be any estimator of �. This estimator is known as the Liu-type
estimator. Sakallioglu and Kaciranlar (2008) introduced a new biased estimator
based on the ridge regression estimator, which is defined as

�̂�k� d� = �X′X + I�−1�X′Y + d�̂k�� k > 0�−� < d < �� (2.6)

and known as the �k− d� class estimator.
Baye and Parker (1984) introduced a new estimator based on ridge estimation

and the principal components regression (PCR), which is defined as

�̂r �k� = Tr�T
′
rX

′XTr + kIr�
−1T ′

rX
′Y� k ≥ 0 (2.7)

and known as the �r − k� class estimator.
Kaçiranlar and Sakallioğlu (2001) introduced a new estimator based on Liu

estimation and the principal components regression (PCR), which is defined as

�̂r �d� = Tr�T
′
rX

′XTr + Ir�
−1�T ′

rX
′Y + dT ′

r �̂r �� 0 < d < 1� (2.8)

where �̂r = Tr�T
′
rX

′XTr�
−1T ′

rX
′Y is PCR. The �̂r �d� is known as the �r − d� class

estimator.
Now, we are ready to introduce a new alternative estimator for � as follows:

�̂r �k� d� = Tr�T
′
rX

′XTr + Ir�
−1�T ′

rX
′Y + dT ′

r �̂r �k��� (2.9)
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Modified Liu-Type Estimator 307

−� < d < � and k > 0. We will call the estimator in (2.9) as the �r − �k− d�� class
estimator for �. This new estimator �̂r �k� d� is a general estimator, which includes
the OLS, ORR, LE,�k− d�, PCR, �r − k�, and �r − d� estimators:

�̂p�0� 1� = �̂�

�̂p�0� d� = �̂�d��

�̂p�k� d� = �̂�k� d��

�̂r�0� 1� = �̂r �

�̂r�0� d� = �̂r �d��

3. Comparison of the Estimators by MSE Criterion

The mean squares error matrix of an estimator b∗ for � is defined as:

MSE�b∗� = E�b∗ − ���b∗ − ��′ = Var�b∗�+ �Bias�b∗���Bias�b∗��′� (3.1)

where Bias�b∗� = E�b∗�− � is the bias of b∗ and Var�b∗� = E��b∗ − E�b∗���b∗ −
E�b∗��′� is a variance of b∗. For a given value of �� b∗1 is preferred to an alternative
estimator b∗2� when MSE�b∗2�−MSE�b∗1� is a non negative definite (nnd) matrix.

Another criterion measure of the goodness of an estimator is called the scalar
mean squares error of b∗ and it is given as: mse�b∗� = tr�MSE�b∗�� = tr�Var�b∗��+
Bias�b∗��′�Bias�b∗��, where tr is a trace. If MSE�b∗2�−MSE�b∗1� is a non negative
definite (nnd) matrix, then mse�b∗2�−mse�b∗1� ≥ 0.

3.1. Comparison between the �r − �k− d�� Class Estimator and �r − d� Class
Estimator

The matrix (MSE) and scalar (mse) for the �̂r �k� d� and �̂r �d� are given as:

MMSE��̂r�k� d�� = �2TrS
−1
r �1��Ir + dS−1

r �k��T ′
rSTr�Ir + dS−1

r �k��S−1
r �1�T ′

r

+ �TrS
−1
r �1��Ir − dS−1

r �k�T ′
rSTr�T

′
r + Tp−rT

′
p−r ���

′

�TrS
−1
r �1��Ir − dT ′

rSTrS
−1
r �k��T ′

r + Tp−rT
′
p−r �� (3.2)

mse��̂r�k� d�� =
r∑

i=1

�2	i�	i + k+ d�2 + �	i + k− d	i�
2
2i

�	i + k�2�	i + 1�2
+

p∑
i=p−r


2i � (3.3)

where S−1
r �1� = ��r + Ir�.

By minimize mse ��̂r�k� d�� with respect to d we get

dopt =
∑r

i=1 	i�

2
i − �2�/�	i + k��	i + 1�2∑r

i=1 	i�	i

2
i + �2�/�	i + k�2�	i + 1�2

� (3.4)

When k = 0 in (3.3), we get the mse of the �r − d� class estimator

mse��̂r�d�� = mse��̂r�0� d�� =
r∑

i=1

�2�	i + d�2 + 	i�1− d�2
2i
	i�	i + 1�2

+
p∑

i=p−r


2i � (3.5)
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308 Alheety and Kibria

Now let k be fixed. So,

mse��̂r�k� d��−mse��̂r�d�� = d2
r∑

i=1

�	i

2
i + �2��	2i − �	i + k�2�

	i�	i + k�2��	i + 1�2

+ 2dk
r∑

i=1

�
2i − �2�

�	i + k��	i + 1�2
�

Since k� 
2i � 	i, and �2 are positive numbers, then

r∑
i=1

�	i

2
i + �2��	2i − �	i + k�2�

	i�	i + k�2��	i + 1�2
< 0 →

r∑
i=1

�	i

2
i + �2���	i + k�2 − 	2i �

	i�	i + k�2��	i + 1�2�
> 0�

Let C1 =
∑r

i=1
�	i


2
i +�2��	2i −�	i+k�2�

	i�	i+k�2��	i+1�2 and C2 = k
∑r

i=1
�
2i −�2�

�	i+k��	i+1�2 ; then,

mse��̂r�k� d��−mse��̂r�d�� = d2C1 + 2dC2

Now, when C2 > 0, we want to find the conditions that make mse��̂r�k� d��−
mse��̂r�d�� > 0.

mse��̂r�k� d��−mse��̂r�d�� = d2C1 + 2dC2 = d�dC1 + 2C2��

Therefore, mse��̂r�k� d��−mse��̂r�d�� will be positive when d < 0 and dC1 + 2C2 <
0. In this case,

dC1 + 2C2 < 0 ⇔ dC1 < −2C2 ⇔ d�−C1� > 2C2 ⇔ d >
2C2

−C1

= d∗ > 0�

This result means that the values of d are not all negative, therefore, this result will
be canceled.

Also, mse��̂r�k� d��−mse��̂r�d�� will be positive when d > 0 and dC1 + 2C2 > 0.
In this case,

dC1 + 2C2 > 0 ⇔ dC1 > −2C2 ⇔ d�−C1� < 2C2 ⇔ d < d∗ > 0�

Therefore, mse��̂r�k� d��−mse��̂r�d�� > 0 for 0 < d < d∗.
Now, we are searching for the condition that makes mse��̂r�k� d��−

mse��̂r�d�� < 0. This inequality will be held when d < 0 and dC1 + 2C2 > 0 ⇔ d <
d∗ > 0. Therefore, mse��̂r�k� d��−mse��̂r�d�� < 0 for d < 0 or d < d∗.

By the same way, when C2 < 0, mse��̂r�k� d��−mse��̂r�d�� > 0 for d∗ < d < 0.
Also, mse��̂r�k� d��−mse��̂r�d�� < 0 for d > 0 and d > d∗.

Thus, we may state Theorem 3.1.

Theorem 3.1.

(a) When
∑r

i=1
�
2i −�2�

�	i+k��	i+1�2 > 0 then:

(1) mse��̂r�k� d�� > mse��̂r�d�� for 0 < d < d∗.
(2) mse��̂r�k� d�� < mse��̂r�d�� for d < d∗ or d < 0.
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Modified Liu-Type Estimator 309

(b) When
∑r

i=1
�
2i −�2�

�	i+k��	i+1�2 < 0 then:

(1) mse��̂r�k� d�� > mse��̂r�d�� for d
∗ < d < 0.

(2) mse��̂r�k� d�� < mse��̂r�d�� for d > 0 and d > d∗.

where

d∗ = 2k
∑r

i=1
�
̂2i −�2�

�	i+1�2�	i+k�∑r
i=1

��	i+k�2−	2i ��	i

2
i +�2�

	i�	i+1�2�	i+k�2

�

3.2. Comparison between the �r − �k− d�� Class Estimator and �r − k� Class
Estimator

The MSE and mse of �r − k� class estimator are, respectively,

MSE��̂r�k�� = �2TrS
−1
r �k��rS

−1
r �k�T ′

r

+ �TrS
−1
r �k��rT

′
r − Ip���

′�TrS
−1
r �k��rT

′
r − Ip�� (3.6)

mse��̂r�k�� = mse��̂r�k� 1− k��

=
r∑

i=1

�2	i + k2
2i
�	i + k�2

+
p∑

i=p−r


2i � (3.7)

When d = 1− k in (3.3), we get the mse of the �r − k� class estimator. However,
mse��̂r�k� d�� is minimized at dopt, thus, we may state the following theorem.

Theorem 3.2. When

d =
∑r

i=1 	i�

2
i − �2�/�	i + k��	i + 1�2∑r

i=1 	i�	i

2
i + �2�/�	i + k�2�	i + 1�2

mse��̂r�k� d�� ≤ mse��̂r�k��.

3.3. Comparison between the �r − �k− d�� Class Estimator and PCR Estimator

The MSE and mse of PCR class estimator are, respectively,

MSE��̂r� = �2TrS
−1
r T ′

r + �TrS
−1
r �rT

′
r − Ip���

′�TrS
−1
r �rT

′
r − Ip�� (3.8)

mse��̂r� = mse��̂r�0� 1��

=
r∑

i=1

�2

	i
+

p∑
i=p−r


2i � (3.9)

Baye and Parker (1984) showed that mse��̂r�k�� < mse��̂r� for k > �2

max
2i
> 0.

But, when d = 1− k, mse��̂r�k� 1− k�� = mse��̂r�k��. For this, we may state the
following theorem.

Theorem 3.3. For k > �2

max
2i
> 0, there exist d < 1− k such that the mse��̂r�k� d�� is

better than mse��̂r��
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310 Alheety and Kibria

We can note from our theorems that the comparison results depend on the
unknown parameters 
 and �2. In consequence of that, we cannot exclude that our
results obtained in the theorems will be held and the results may be changeable. So,
we replace them (
 and �2) by their unbiased estimators. Since d depends on k and
on the unknown parameters �
� �2� we replace k by its estimator (in this study k is
estimated using the estimator that suggested by Hoerl and Kennard (1970a) and we
denoted k̂HK = �̂2/

∑r
i=1 
̂

2
i ). We like to mention here that there are a lot of estimator

that suggestion by the researchers to estimate the ridge parameter k, therefore we
refer to Kibria (2003) and Muniz and Kibria (2009) for more details about that. So,
the estimated dopt will be given as follows:

d̂opt =
∑r

i=1 	i�
̂
2
i − �̂2�/�	i + k̂HK��	i + 1�2∑r

i=1 	i�	i
̂
2
i + �̂2�/�	i + k̂HK�

2�	i + 1�2
� (3.10)

4. The Monte Carlo Simulation

This section conducted a simulation study to compare the performance of the
�r − �k− d�� class estimator with other estimators. To achieve different degrees of
collinearity, following McDonald and Galarneau (1975), Gibbons (1981) and Kibria
(2003), the explanatory variables are generated by using the following equation:

xij = �1− 2�1/2zij + zip� i = 1� � � � � n� j = 1� 2� � � � � p�

where zij are independent standard normal pseudo-random numbers, p = 5 is the
number of the explanatory variables, n = 20� 50� and 100, and  is specified so that
the correlation between any two explanatory variables is given by 2. Four different
sets of correlation are considered according to the value of  = 0�80, 0.85, 0.95,
and 0.99. Also, the explanatory variables are standardized so that X′X will be in
correlation form.

According to Alheety and Gore (2008) and Muniz and Kibria (2009), we
consider the coefficient vector that corresponded to the largest eigenvalue of X′X
matrix. The n observations for the dependent variable are determined by the
following equation:

yi = �0 + �1xi1 + �2xi2 + �3xi3 + · · · + �pxip + ei�

where ei are independent normal pseudo-random numbers with mean 0 and variance
�2. In this study, �0 is taken to be zero. The values of �2 are considered as
0.001, 0.05, 0.09, 0.1, 0.5, 1,5, and 25. The experiment is replicated 2,000 times by
generating new error terms. The MSEs for the estimators are calculated as follows:

MSE��̂∗� = 1
2000

2000∑
r=1

��̂∗
�r� − ��′��̂∗

�r� − ���

where �̂∗ is any estimator that used in this study for making a comparison.
The simulated MSEs for all estimators are presented in Table 1. It is observed

that the proposed AULE estimator performing well compare to others for small �.
It is also noted that the performance of the estimators depend on �2, ,

D
ow

nl
oa

de
d 

by
 [

D
eb

bi
e 

Is
co

e]
 a

t 1
0:

55
 2

3 
Ju

ly
 2

01
3 



T
ab
le

1
T
he

es
ti
m
at
ed

m
ea
n
sq
ua

re
er
ro
rs

of
th
e
O
L
S,

P
C
,
�r

−
k
�,
�r

−
d
�,
an

d
�r

−
�d

−
k
��

es
ti
m
at
or
s


=

0�
80


=

0�
90

n
�
2

O
L
S

P
C

�r
−

k
�

�r
−

d
�

�r
−

�k
−

d
��

O
L
S

P
C

�r
−

k
�

�r
−

d
�

�r
−

�k
−

d
��

0�
00

1
3�
28

83
0�
27

26
0�
27

21
0�
27

21
0�
27

18
5�
34

78
1�
24

16
1�
23

9
0�
19

79
1�
23

72
0�
05

1�
66

12
3�
26

3
1�
74

32
1�
88

11
1�
15

18
2�
92

16
4�
70

19
1�
58

91
1�
74

27
1�
16

37
0�
09

1�
35

95
2�
76

22
1�
61

37
1�
61

37
1�
85

66
2�
04

43
3�
47

84
1�
08

43
1�
08

43
2�
17

65
10

0
0�
1

1�
29

1
2�
64

11
1�
11

73
1�
15

69
1�
06

37
1�
88

14
3�
23

67
1�
05

66
1�
07

9
1�
25

93
0�
5

0�
84

52
1�
26

16
1�
00

04
1�
00

27
1�
00

03
1�
00

27
1�
35

05
1�
00

03
1�
00

21
1�
05

97
1

1�
15

11
1�
15

11
1�
00

01
1�
00

2
1�
04

91
1�
24

74
1�
24

74
1�
00

01
1�
00

18
1�
03

13
5

1�
11

2
1�
11

2
1

1�
00

17
1�
03

76
1�
21

4
1�
21

4
1

1�
00

17
1�
02

71
25

1�
11

01
1�
11

01
1

1�
00

17
1�
03

69
1�
21

28
1�
21

28
1

1�
00

17
1�
02

68

0�
00

1
4�
19

68
0�
66

46
0�
66

33
0�
66

37
0�
66

27
0�
78

68
0�
26

93
0�
26

93
0�
26

93
0�
26

93
0�
05

3�
26

64
3�
42

14
1�
83

34
1�
90

49
1�
14

48
2�
82

07
4�
52

62
1�
92

4
1�
80

3
1�
14

07
0�
09

2�
75

78
2�
89

2
1�
84

08
1�
84

08
1�
92

45
2�
18

2
3�
61

54
1�
21

1
1�
21

1
1�
19

32
50

0�
1

2�
63

64
2�
76

52
1�
13

76
1�
16

97
1�
12

44
2�
05

19
3�
41

87
1�
15

83
1�
16

44
1�
45

89
0�
5

1�
34

79
1�
38

38
1�
00

1
1�
00

47
1�
00

09
1�
25

86
1�
65

5
1�
00

58
1�
01

46
1�
15

03
1

1�
28

46
1�
28

46
1�
00

04
1�
00

4
1�
07

84
1�
54

17
1�
54

17
1�
00

22
1�
00

71
1�
06

43
5

1�
25

47
1�
25

47
1�
00

03
1�
00

38
1�
06

85
1�
50

09
1�
50

09
1�
00

02
1�
00

2
1�
05

06
25

1�
25

44
1�
25

44
1�
00

03
1�
00

38
1�
06

84
1�
49

84
1�
49

84
0�
99

99
1�
00

11
1�
04

9

0�
00

1
1�
75

16
0�
79

72
0�
79

63
0�
79

65
0�
79

6
3�
56

03
2�
26

78
2�
26

38
2�
26

73
2�
26

36
0�
05

7�
89

03
6�
25

73
2�
31

33
3�
51

03
1�
31

3
11

�9
72

5
1�
46

98
1�
16

34
1�
02

88
1�
05

84
0�
09

6�
01

19
4�
69

43
2�
28

22
2�
28

22
1�
80

68
8�
01

21
1�
67

4
1�
09

39
1�
09

39
1�
48

33
20

0�
1

5�
63

16
4�
38

66
1�
27

03
1�
61

39
1�
10

5
7�
38

07
1�
70

4
1�
08

33
1�
03

13
1�
09

77
0�
5

2�
36

83
2�
04

48
1�
02

33
1�
05

03
1�
02

17
3�
17

28
1�
86

11
1�
02

59
1�
03

16
1�
34

56
1

1�
91

18
1�
91

18
1�
01

77
1�
03

18
1�
18

99
2�
64

77
1�
86

37
1�
02

33
1�
03

62
1�
16

52
5

1�
86

13
1�
86

13
1�
01

55
1�
02

88
1�
17

78
2�
60

06
1�
86

19
1�
02

21
1�
03

18
1�
15

34
25

1�
85

74
1�
85

74
1�
01

53
1�
02

83
1�
17

47
2�
59

73
1�
86

11
1�
02

19
1�
03

1
1�
15

09

(c
on

ti
nu

ed
)

311

D
ow

nl
oa

de
d 

by
 [

D
eb

bi
e 

Is
co

e]
 a

t 1
0:

55
 2

3 
Ju

ly
 2

01
3 



T
ab
le

1
C
on

ti
nu

ed


=

0�
95


=

0�
99

n
�
2

O
L
S

P
C

�r
−

k
�

�r
−

d
�

�r
−

�k
−

d
��

O
L
S

P
C

�r
−

k
�

�r
−

d
�

�r
−

�k
−

d
��

0�
00

1
0�
80

19
0�
28

58
0�
28

58
0�
28

68
0�
28

58
0�
79

89
0�
30

18
0�
30

19
0�
30

18
0�
30

18
0�
05

4�
47

75
6�
47

59
1�
59

29
2�
50

5
2�
34

63
2�
54

22
1�
01

73
1�
01

68
1�
01

58
1�
00

11
0�
09

2�
83

87
4�
26

64
1�
07

51
1�
07

51
2�
54

38
5�
75

31
1�
01

22
1�
01

04
1�
01

04
1�
02

18
10

0
0�
1

2�
57

11
3�
88

3
1�
05

12
1�
16

61
1�
49

51
5�
16

52
1�
01

15
1�
00

95
1�
00

94
1�
00

04
0�
5

1�
24

53
1�
33

74
1�
00

19
1�
00

45
1�
00

76
3�
04

05
1�
00

5
1�
00

34
1�
00

36
1�
00

39
1

1�
50

07
1�
21

51
1�
00

14
1�
00

33
1�
01

8
3�
31

93
1�
00

41
1�
00

28
1�
00

29
1�
00

48
5

1�
46

13
1�
17

41
1�
00

11
1�
00

26
1�
01

42
3�
27

76
1�
00

34
1�
00

24
1�
00

23
0�
09

56
25

1�
45

94
1�
17

22
1�
00

11
1�
00

25
1�
01

39
3�
27

55
1�
00

33
1�
00

23
1�
00

22
1�
01

39

0�
00

1
0�
80

85
0�
28

99
0�
28

99
0�
29

03
0�
28

99
0�
79

56
0�
30

24
0�
30

25
0�
30

24
0�
30

24
0�
05

5�
40

37
7�
32

94
1�
83

38
4�
24

34
2�
49

09
3�
56

97
0�
98

05
0�
98

09
0�
98

2
0�
99

74
0�
09

3�
64

33
4�
76

65
1�
14

27
1�
14

27
3�
04

35
8�
89

71
0�
98

89
0�
98

97
0�
98

97
0�
98

58
50

0�
1

3�
35

63
4�
32

2
1�
10

51
1�
60

42
1�
82

02
8�
33

01
0�
99

02
0�
99

08
0�
99

12
0�
99

91
0�
5

1�
95

16
1�
38

89
1�
00

53
1�
01

29
1�
01

08
6�
35

38
0�
99

98
0�
99

88
0�
99

92
0�
99

93
1

2�
20

92
1�
24

75
1�
00

23
1�
00

56
1�
02

24
6�
63

48
1�
00

11
0�
99

98
1�
00

02
1�
00

11
5

2�
16

6
1�
19

87
1�
00

04
1�
00

25
1�
01

52
6�
59

87
1�
00

21
1�
00

06
1�
00

1
0�
09

54
25

2�
16

37
1�
19

6
1�
00

01
1�
00

2
1�
01

42
6�
59

76
1�
00

23
1�
00

08
1�
00

11
1�
01

43

0�
00

1
4�
41

04
2�
31

95
2�
31

31
2�
31

72
2�
31

23
0�
80

46
0�
30

05
0�
30

08
0�
30

06
0�
30

05
0�
05

3�
76

13
4�
47

92
1�
62

03
2�
11

85
1�
58

07
9�
56

81
1�
05

83
1�
05

66
1�
05

29
1�
01

65
0�
09

3�
32

05
3�
16

79
1�
17

1�
17

2�
46

45
12

�1
66

8
1�
04

08
1�
03

71
1�
03

71
1�
06

72
20

0�
1

3�
26

37
2�
95

99
1�
13

75
1�
23

41
1�
46

97
12

�2
07

3
1�
03

83
1�
03

46
1�
03

19
1�
00

6
0�
5

3�
21

24
1�
71

52
1�
02

83
1�
03

2
1�
02

12
12

�2
54

3
1�
01

74
1�
01

52
1�
01

25
1�
01

29
1

3�
39

54
1�
65

92
1�
02

57
1�
03

18
1�
12

76
12

�4
84

3
1�
01

46
1�
01

27
1�
01

01
1�
01

16
5

3�
38

09
1�
63

93
1�
02

49
1�
02

79
1�
12

09
12

�5
67

6
1�
01

23
1�
01

06
1�
00

81
0�
09

61
25

3�
37

97
1�
63

8
1�
02

48
1�
02

72
1�
11

95
12

�7
76

1
1�
01

19
1�
01

02
1�
00

78
1�
11

11

312

D
ow

nl
oa

de
d 

by
 [

D
eb

bi
e 

Is
co

e]
 a

t 1
0:

55
 2

3 
Ju

ly
 2

01
3 



Modified Liu-Type Estimator 313

and the sample size n. For some values of d and k, the proposed estimator
performed better than the rest. After a careful observation of Table 1, we may state
that the simulation results are consistent with the theorems in Sec. 3.

5. An Example

To illustrate the theoretical results of this article we now consider a dataset
on Portland cement originally due to Wood et al. (1932), and which has been
widely analyzed since, (cf. e.g., Alheety and Gore, 2008; Hald, 1952; Kibria,
2003; Kaçiranlar et al., 1999; Liu, 2003; Muniz and Kibria, 2009; Mansson
et al., 2010; Nomura, 1988). These data came from an experimental investigation
of the heat evolved during the setting and hardening of Portland cements of
varied composition and the dependence of this heat on the percentages of four
compounds in the clinkers from which the cement was produced. In this example,
the dependent variable Y is defined as heat evolved in calories per gram of cement.
The independent variables are amounts of the following compounds: tricalcium
aluminate (X1), tricalcium silicate (X2), tetracelcium alumino femrrite (X3), and
dicalcium silicate (X4). The data set is given in the following Table 2.

Marqaards (1980) introduced the variance inflation factor (VIF) as a formal
method of detecting multicollinearity which is now widely accepted. VIF measures
how much the variances of the estimated regression coefficients are inflated as
compared to the independent variables which are not linearly related.

When the model fitted by least squares method, the variances of the estimates
�̂1� � � � � �̂p are

Var
(
�̂i

)
= VIFi

(
�2

Sii

)
� i = 1� 2� � � � � p�

Table 2
Hald data

x1 x2 x3 x4 y

7 26 6 60 78�5
1 29 15 52 74�3
11 56 8 20 104�3
11 31 8 47 87�6
7 52 6 33 95�9

11 55 9 22 109�2
3 71 17 6 102�7
1 31 22 44 72�5
2 54 18 22 93�1
21 47 4 26 115�9
1 40 23 34 83�8

11 66 9 12 113�3
10 68 8 12 109�4
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314 Alheety and Kibria

where

Sii =
n∑

u=1

�xiu − x̄i�
2

is the usual corrected sum of squares of xi.
If a column xi is orthogonal to all other columns of the X matrix, then VIFi = 1.

Thus, VIFi is a measure of how much �2/Sii is inflated by the relationship of other
columns of X with xi. The VIFi can be defined specifically in the following way.
Suppose that R2

i is the coefficient of determination obtained when the i-th predictor
variable xi is regressed on all the remaining predictors xj with j �= i in the model.
Then

VIFi =
1(

1− R2
i

) � (5.1)

From (5.1), if R2
i equals 0, then VIFi will be 1. As R2

i approaches 1, VIFi will
approach infinity. Marqaards (1980) suggested that a VIF greater than 10 indicates
the presence of strong multicollinearity.

In terms of correlation matrix RX′X , VIFi can be considered as the �i� i�th
diagonal element of the inverse of RX′X:

VIF = diag
(
R−1

X′X
)
� (5.2)

If we make the independent variables in the standard form then we use the
variance inflation factor as a measure for existing the multicollinearity, for the Hald
data we get VIFx1

= 38�49, VIFx2
= 254�42, VIFx3

= 46�86, and VIFx4
= 282�51 which

indicate that there is a strong multicollinearity. The model includes the intercept
item. The matrix X′X has singular values 	1 = 44663�3027� 	2 = 5965�3394� 	3 =
809�9521� 	4 = 10�267� and 	5 = 105�4058. The condition number of X is � =
	max/	min = 6056�37 and so X may be considered as being quite “ill-conditioned.”
The least squares estimator of the regression coefficients is:

�̂ = �X′X�−1X′Y = ��̂0� �̂1� �̂2� �̂3� �̂4�
′ = �62�4052� 1�5511� 0�5102� 0�1019�−0�1441�′�

Most authors recommend standardizing the data so that X′X matrix is in the form
of a correlation matrix. An advantage of standardization of the data is that the
regression coefficients will then be expressed in comparable numerical units. The
standardization is accomplished by transforming the linear model Y = X� + � to
Ys = Xs�s + �. Another advantage of standardizing the matrix is that it can show
which variables are highly correlated. The corresponding least squares estimator is

�̂s = �X′
sXs�

−1X′
sYs = �0�6065� 0�5277� 0�0434�−0�1603�′�

Since there are 13 observations and 4 parameters for the standardized data, we
obtain the estimator of �2 as follows:

�̂2
s =

�Ys − Xs�̂s�
′�Ys − Xs�̂s�

n− p
= 0�00196�
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Modified Liu-Type Estimator 315

Table 3
Values of estimates and
mse for the estimators

mse


̂ 1�22
d = 0�1

̂r �d� 0�162

̂r �k� d� 0�24
d̂∗ = 0�84

̂r �d� 0�167

̂r �k� d� 0�158
d̂opt = 0�928

̂r �k� 0�163

̂r �k� d� 0�153

̂r 0�165

̂r �k� d� 0�161

The four eigenvalues of X′
sXs are 26�8284� 18�9128� 2�2393� and 0�0195. Since the

smallest eigenvalue is not zero, the factors do define a four-dimensional space in the
mathematical sense. The 4× 4 matrix V is the matrix of normalized eigenvectors,
� is a 4× 4 diagonal matrix of eigenvalues of X′

sXs such that X′
sXs = V�V ′. Then

Z = XsV and 
 = V ′�s so that Ys = Xs�s + � = XsVV
′�s + � = Z
+ �. In orthogonal

coordinates the least squares estimator of the regression coefficients is:


̂ = �−1Z′Ys = �−0�65696�−0�00831� 0�30277�−0�38804�′�

Numerical results are summarized in Table 3 to compare our new proposed
estimator with OLS estimator, �r − k� estimator, PCR estimator, and �r − d�
estimator. Values of dopt, d

∗, and mse estimates are obtained by replacing in the
corresponding theoretical expressions all unknown model parameters by their OLS
estimates.

(i) By using the formula (3.10), d̂opt = 0�9284, k̂HK = 0�00374, and d̂∗ = 0�84. Now
if we look at Table 3, we see that 
̂r �d� has a smaller estimated mse value than

̂r �k� d� for 0 < d < d̂∗ where

∑r
i=1

�
2i −�2�

�	i+k��	i+1�2 > 0. For example,

mse�
̂r�d = 0�1�� = 0�1623 < mse�
̂r�k̂ = 0�00374� d = 0�1�� = 0�2385�

And this is will be the same theoretical result in Theorem 3.1, part a(1). Also

̂r �k� d� has a smaller estimated mse value than 
̂r �d� for d < d∗ . For example,

mse�
̂r�k = 0�00374� d = 0�80�� = 0�158 < mse�
̂r�d = 0�80�� = 0�167�

And this is will be the same theoretical result in Theorem 3.1, part a(2).
(ii) By comparing mse�
̂r�k = 0�00374� d = 0�9284� = 0�161 with mse�
̂r�k̂ =

0�00374�� = 0�163, we see that 
̂r �k� d� has a smaller estimated mse value than

̂r �k� and this is will also be the same as the theoretical result of Theorem 3.2.
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316 Alheety and Kibria

Figure 1. Plot of MSE��̂r�k� d�� and �̂r �d� vs. d when k is fixed at k = 0�00374.

(iii) Let k = 0�005 and d = 0�95 < 1− 0�005. By comparing mse�
̂r�k = 0�005� d =
0�95� = 0�162 with mse�
̂r = 0�1632,we see that 
̂r �k� d� has a smaller estimated
mse value than 
̂r , which supported the theoretical result of Theorem 3.3.

The plot of MSE��̂r�k� d�� and MSE��̂r�d�� vs. d in the interval [0, 1] when
k is fixed at k = 0�00374 has been presented in Fig. 1. This figure indicates that
MSE��̂r�k� d�� decreases as d increases and large value of d, �̂r �k� d� dominates
�̂r �d�. On the other hand, MSE��̂r�d�� increases as d increases slowly and �̂r �d�
dominates the estimator �̂r �k� d� for larger space of d. This figure has supported the
results in Sec. 3.1.

The plot of MSE��̂r�k� d�� and MSE��̂r�k�� vs. k in the interval [0, 1] when
d is fixed at d = 0�9284 has been presented in Fig. 2. This figure indicates that
both MSE��̂r�k� d�� and MSE��̂r�k�� increase as k increases. The estimator �̂r �k� d�
dominates �̂r �k� when k > 0�10. This figure has supported the results in Sec. 3.2.

The plot of MSE��̂r�k� d�� and MSE��̂r� vs k in the interval [0, 0.05] when d
is fixed at d = 0�928 has been presented in Fig. 3. It is evident from Fig. 3 that
both estimators dominate each other for some values of k. For small value of k, the
proposed estimator dominates the PCR and for large values of k PCR dominates
the proposed estimator. Fig. 3 has supported the results in Sec. 3.3

6. Summary and Concluding Remarks

A new Liu-type estimator, namely �r − �k− d�� class estimator, has been proposed
in this article. The ordinary least squares estimator (OLS), ordinary ridge regression
estimator (ORR), Liu estimator (LE), �k− d� class estimator, principal components
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Modified Liu-Type Estimator 317

Figure 2. Plot of MSE��̂r�k� d�� and �̂r �k� vs. k when d is fixed at d = 0�928. (color figure
available online)

regression (PCR), �r − d� class estimator, and �r − k� class estimator are the
special cases of the proposed estimator. We observed that under some conditions
on d, the proposed estimator performed well compared to others. A simulation
study was conducted to compare the perfromance of the estimators. We found

Figure 3. Plot of MSE��̂r�k� d�� and �̂r vs. k when d is fixed at d = 0�928. (color figure
available online)
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318 Alheety and Kibria

that the simulation results are supported the theoretical results of the article. A
numerical example based on Portland cement data has been analyzed to illustrate
the theoretical results of the article. We believe that the proposed estimator would
be useful for the practitioners.
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