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Abstract 
 

An analysis is conducted to study the problem of heat transfer with 
thermal radiation effect of a non-Newtonian power-law fluid over a vertical 
stretching sheet with momentum slip boundary condition. The partial differential 
equations governing the physical situation are converted into a set of nonlinear 
coupled ordinary differential equations using scaling group of transformation. 
These equations are then solved numerically using the Runge–Kutta–Fehlberg 
fourth-fifth order numerical method under Maple 13. The radiation parameter 
leads to increased velocity and temperature, but it decreases the rate of heat 
transfer and skin friction coefficient for both Newtonian and non-Newtonian fluid. 
The velocity decreases, whereas the temperature increases with momentum slip 
parameter for Newtonian and non-Newtonian. The skin friction coefficient 
decreases with both momentum slip and power-law parameter. The rate of heat 
transfer falls with momentum slip, but rises with power-law parameter. Good 
agreement is found between the numerical results of this paper with published 
results both for Newtonian and non-Newtonian fluid. 

 
Keywords Momentum slip boundary condition, Non-Newtonian fluid, Power law 
fluid, Scaling group transformation, Thermal radiation. 
 
 
1. Introduction 

 
The study of non-Newtonian fluid flows has gained considerable interest 

for their numerous engineering applications. Details of the behavior of 
non-Newtonian fluid for both steady and unsteady flow situations, along with 
mathematical models can be found in the books by Astarita and Marrucci [6] and 
Bohme [14]. Over recent years, applications of non-Newtonian fluids in many 
industrial processes have been increasing. Many particulate slurries, multiphase 
mixtures, pharmaceutical formulations, cosmetics and toiletries, paints, biological 
fluids, and food items are examples of non-Newtonian fluids (Schowalter, [38]; 
Bird et al., [12]; Crochet et al. [18]; Shenoy and Mashelkar, [39]; Andersson and 
Irgens, [4], Irvine and Karni, [26], and Postelnicu and Pop, [33]). 

 
Non-Newtonian fluids have received the attention of numerous 

investigators due to their diverse applications. Acrivos was investigated 
boundary-layer flows for such fluids in 1960[2] and since then, a large number of 
related studies have been conducted because of the importance and presence of 
such fluids in chemicals, polymers, molten plastics and others. Cheng [16] studied 
non-Newtonian power-law fluids with coupled heat and mass transfer via natural 
convection from a vertical truncated cone in a saturated porous medium. Ishak et 
al. [27] examined the steady boundary-layer flow past a moving wedge on a flat  
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plate in a non-Newtonian power-law fluid. Mukhopadhyay [30] presented the 
effect of buoyancy and thermal radiation on unsteady boundary layer flow and 
heat transfer on a permeable stretching sheet embedded in a porous medium. 
Abdul Hakeem and Sathiyanathan [1] described the flow of an unsteady free 
convection past an infinite vertical plate with time dependent suction under the 
effects of radiation. Tai and Char [40] studied the effects of the radiation 
parameter on the free convection flow of a non-Newtonian power law fluid along 
a vertical plate in a porous medium. Hayat et al. [22] studied the effect of 
radiation on the magnetohydrodynamic (MHD) mixed convection stagnation point 
flow in a porous medium. Cortell [17] examined the thermal radiation effects on 
the steady flow and heat transfer of a non-Newtonian power-law fluid past a 
semi-infinite, non-isothermal, porous flat plate, subject to suction. Molla et al. [29] 
investigated the influence of thermal radiation on a steady two-dimensional 
natural convection laminar flow of an optically thick (it is a measure of 
transparency) and incompressible fluid along a vertical flat plate with streamwise 
surface temperature, i.e., wall temperature varies with the axial distance from the 
leading edge of the plate. More recently, Pal and Talukdar [32] examined the 
effects of thermal radiation on the free convective flow and mass transfer of a 
viscous incompressible fluid past an infinite vertical plate. Gonzalez et al. [20] 
calculated heat transfer via natural convection and surface thermal radiation in a 
square open cavity receiver with large temperature differences and variable 
properties. 

 
Non-Newtonian flows with slip boundary condition have been studied by 

other researchers (Tanner, [41]; Roux, [35]; Ariel et al., [5]; and Hayat et al., [23]). 
The study of the non-Newtonian flows with slip boundary has become active in 
recent because of the wide application of such fluids in food engineering, 
petroleum production, power engineering, and in polymer melt and polymer 
solutions used in plastic processing industries (Postelnicu and Pop, [33]). Sahoo 
and Do [37] investigated the effects of partial slip on the steady flow of an 
incompressible, electrically conducting third-grade fluid over to a stretching sheet 
taking into account magnetic field. Turkyilmazoglu [42] investigated the MHD 
slip flow of an electrically conducting, viscoelastic fluid past a stretching surface. 
Sahoo [36] investigated the effects of the slip parameter on the steady flow of an 
incompressible, electrically conducting third grade fluid over a stretching sheet. 
Very recently, Zheng et al. [44] discussed the effect of slip with the MHD flow of 
an incompressible, generalized Oldroyd-B fluid induced by an accelerating plate. 
Bagai and Nishad [11] investigated the similarity solutions for the problem of free 
convection flow over a non-isothermal horizontal plate embedded in porous media 
in the presence of internal heat generation with non-Newtonian power-law fluid. 

 
Group theory was introduced by Lie to find symmetries of differential 

equations (Bluman and Kumei, [13]; Ibragimov, [25]; Atalik, [7]). The invariance 
of partial differential equations under Lie symmetry groups has been shown to  
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possibly result in similarity or invariant solutions, which remain invariant under 
some subgroup of the full symmetry group admitted by the governing system 
(Bluman and Kumei, [25]; Atalik, [7]). This approach has been applied to a large 
number of differential equation systems in fluid mechanics and mathematical 
physics (Bluman and Kumei, [13]; Ibragimov, [25]; Atalık, [7]). 

 
Scaling group of transformation is a special form of Lie group analysis. 

This method unifies almost all known exact integration techniques for both 
ordinary and partial differential equations (Cebeci and Bradshaw, [15], 
Avramenko et al. [8], Dolap and Pakdemirli, [19]). Scaling group of 
transformation is used to similarity transformations of the equations governing the 
problem. Similarity transformations are utilized to transform the non-linear partial 
differential equations into ordinary differential equations with corresponding 
boundary conditions. 

 
In this paper, the problem of flow and heat transfer of a non-Newtonian 

power-law fluid over a vertical stretching sheet is investigated numerically. The 
effects of momentum slip condition and thermal radiation are taken into account. 
The obtain similarity equations were solved numerically to show the effects of the 
governing parameters, namely, the power-law index, momentum slip, and thermal 
radiation parameters, on dimensionless velocity and temperature profiles. 
 
 
2. Governing transport equations  
 
Let us consider the case of a steady two-dimensional flow and heat transfer of a 
non-Newtonian power law fluid over a solid vertical stretching sheet. We consider 
the effects of hydrodynamic slip condition and thermal radiation. Further, a 
Cartesian coordinate system ( ),x y is used, where x  and y  are the coordinates 
measured along and normal to the surface, respectively. Under the above 
assumptions, the partial differential equations in dimensional form governing the 
problem and the corresponding boundary conditions are given by: (Prasad et al. 
[34]), (Molla et al. [29]). 

0,u v
x y
∂ ∂

+ =
∂ ∂

                                                     (1) 

( ) ,
n

u u K uu v g T T
x y y y

β
ρ ∞

⎛ ⎞∂ ∂ − ∂ ∂
+ = − ± −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                          (2) 

32 2
1

2 2
1

16 .
3 p

TT T T Tu v
x y y c k y

σα
ρ

∞∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
                                   (3) 

The appropriate boundary conditions are  
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, 0 , at 0,

0 , as .

w slip w
xu u u v T T T A y
L

u T T y

∞

∞

⎛ ⎞= + = = = + =⎜ ⎟
⎝ ⎠

= → →∞
                       (4) 

In the above equations, r
w

Uu x
L

= is the velocity of the plate, 

1n

slip
u uu a
y y

−
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠
is the slip velocity, u and v are the velocity components 

along the x  and y  axes, respectively, K  is the consistency coefficient of the 
fluid, n  is the power law index, ρ  is the fluid density, g  is the acceleration 
due to gravity, β  is the coefficient of thermal expansion, a  is the momentum 

slip factor with dimension ( ) 1velocity −  , A  is a constant with paper dimension, . 
We introduce now the following dimensionless variables 

1 1
1 1, Re , , Re , ,n n

r r w

T Tx y u vx y u v
L L U U T T

θ ∞+ +

∞

−
= = = = =

−
                     (5) 

where 
2

Re
n n

rU L
γ

−

= is the Reynolds number based  the characteristic length L . 

The dimensionless forms of the governing equations are 

0,u v
x y
∂ ∂

+ =
∂ ∂

                                         (6) 

,
n

u u uu v x
x y y y

λ θ
⎛ ⎞∂ ∂ ∂ ∂

+ =− − ±⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
                                   (7) 

2
3 21

1
2

1

16Re .
3

n

r p

Tu u v
x x y LU c y

σθ θ θ θα
ρ κ

+
∞

⎛ ⎞∂ ∂ ∂
+ + = +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

                         (8) 

Boundary conditions (4) become 
1

12 1Re , 0, 1 at 0,

0 , 0 as .

nn n
r

n

aU u uu x v y
L y y

u y

θ

θ

−− + ⎛ ⎞∂ ∂
= + − = = =⎜ ⎟∂ ∂⎝ ⎠
= = →∞

                 (9) 

Here 
2

2
r

g AL
U
βλ =  is the buoyancy or mixed convection parameter.  

We introduce stream function ψ  which is defined as yu ∂∂= /ψ  and 
xv ∂∂−= /ψ  to reduce the number of equations and number of dependent 

variables into Eqs. (6-8). Note that continuity equation (6) is satisfied 
automatically. 
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Boundary conditions (9) become 
1

12 2 21

2 2

Re , 0 , 1 at 0,

0 , 0 as .

nn n
r

n

aUx y
y L y y x

y
y

ψ ψ ψ ψ θ

ψ θ

−− + ⎛ ⎞∂ ∂ ∂ ∂
= + − − = = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂
= = →∞

∂

        (12) 

We consider following scaling group of transformations which is a special form of 
Lie group analysis (Jalil et al. [28], Mukhopadhyay and Layek [31], Aziz et al. al. 
[10])  

31 2 4* * * *: , , , .cc c cx e x y e y e eεε ε εψ ψ θ θ−− − −Γ = = = =                     (13) 
Here ε is the parameter of the group Γ  and ( ), 1, 2,3, 4ic i =  are arbitrary real 
numbers. 
For invariant of the differential equations and boundary conditions, (i.e. the 
structure of the equations before and after the transformations will be remained 
same), we must have.  

2 3 1 3 4
1 1, , 0.

2 2
n nc c c c c

n n
− +⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                         (14) 

The characteristic equation is  

.1 1 0
2 2

dx dy d d
n nx y

n n

ψ θ
ψ

= = =
+ −

                                       (15) 

Solving (15), we have  

( ) ( )
1 2
1 1, , .

n n
n ny x x fη ψ η θ θ η

−
+ += = =                                (16) 

Using (16), Eqs. (10) - (11) becomes 

( ) 1 2 2''' '' 0
1

n nn f f f ff
n

λθ−′′ ′− − + + =
+

,                              (17) 

4 21 Pr ' 0
3 1m

nR f f
n

θ θ θ⎛ ⎞ ⎛ ⎞′′ ′+ + − =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
,                              (18) 

Subject to the boundary conditions  
( ) 1' 1 '' '', 0 , 1 at 0,

' 0 , 0 as .

nf f f f
f

δ θ η
θ η

−= + − = = =

= = →∞
                  (19) 

Here primes denote differentiation with respect toη . 
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The modified Prandtl number (for power law fluids) is

2
2 21

1RePr
nn

r n
m

LU x
α

−
−+
+= , the 

radiation parameter is
3

1

1

4 TR σ
κ κ

∞= ,
22 1

1Re
n

nn n
r n

n

aU x
L

δ
− +

+= , δ  is slip parameter. 

Expressions for the quantities of physical interests, the skin friction factor and the 
rate of heat transfer can be found from the following definitions  
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1
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K u uC
u x y yρ

−

=
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              (20) 

Using (5) and (16) we have from (20) 

( ) ( ) ( )
1 1

11 1Re 0 0 , Re 0 .
x

nn n
f x x xC f f Nu θ

−
−

+ +′′ ′′ ′⎡ ⎤= − =−⎣ ⎦                   (21) 

where
2

Re
n n

w
x

u x
K

ρ −

=  is the local Reynolds number. 

 
 
3. Results and discussions 
 
The ordinary differential Eqs. (17) and (18) with the boundary conditions (19) 
have been solved using the Runge–Kutta–Fehlberg fourth- fifth numerical method 
as proposed by Aziz [9]. Numerical results are obtained to study the effect of the 
various values of the radiation parameter R , slip parameterδ , power law index 
n  and mixed convection parameter λ on dimensionless velocity, temperature, 
shear stress coefficient and rate of heat transfer. The numerical results of the 
dimensionless velocity '( )f η  and the temperature ( )θ η  are shown in Figs. 2-9. 
Our present results have also been compared with those of the corresponding 
published data by Hamad et al. [21] and Hayat et al. [24] for Newtonian fluid 

1n =  in the absence of mixed convection 0λ = . The present results are 
compatible with those of the published data. The comparison results are given in 
Table 1. We also compare our results with Andersson and Besb [3] and Xu and 
Laio [43] for non-Newtonian fluid in Table 2 and found good agreement. The 
numerical results of skin friction coefficient ''(0)f−  and the heat transfer rate at 
the wall '(0)−θ  are given in Tables 3, 4. We notice from Table 3 that the 
increase of the slip parameter δ  decreases the rate of heat transfer and skin 
friction coefficient. Also, one can see that the increase of power law index 
parameter n  increases the heat transfer rate at the wall and decreases the skin 
friction coefficient. We notice from Table 4 skin friction coefficient and the heat 
transfer rate at the wall increase while power law index parameter increases, and 
decreases with the increase of the radiation parameter. 
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The effects of thermal radiation parameter on the profile of dimensionless velocity 
and temperature for (a) Newtonian fluid ( )1n = , (b) non–Newtonian fluid 
( )0.3n =  profiles are shown in Figs. 2 and 3, respectively. We notice that the 
dimensionless velocity and temperature increases as R  increases for two cases; 
of Newtonian and non-Newtonian. 
Figs. 4 and 5 illustrate the effects of mixed convection parameter on the profile of 
dimensionless velocity and temperature for (a) Newtonian fluid ( )1n = , (b) 

non-Newtonian fluid ( )0.4n = . We see that the velocity profiles increases as the 
mixed convection parameter increases, but we note that from Fig. 5, the 
temperature decreases when A increases for two case of Newtonian and 
non-Newtonian. 
Figs. 6 and 7 depict the effects of the slip parameter δ  on the dimensionless 
velocity and temperature profiles, respectively. It is clear from these figures that 
the velocity decreases with the increase of the slip parameter, while the 
temperature is increased with the increase of the slip parameter, both for 
Newtonian and non-Newtonian. 
Figs. 8 and 9 depict the effects of fluid power law index parameter n  on the 
dimensionless velocity and temperature profiles. We notice that the velocity and 
temperature decreases when an increase in n . It is found that a cross flow occurs 
at 1.6336η =  (approx). 
 
 
4. Conclusions 
 
The heat transfer characteristics of a non-Newtonian power law fluid over a 
vertical stretching sheet with effects of the thermal radiation and hydrodynamic 
linear slip parameter is studied numerically in this paper. Using scaling 
transformation the governing equations were converted to a coupled non-linear 
system of ordinary differential equations, which was then solved numerically by 
Runge–Kutta–Fehlberg fourth-fifth order numerical method. From the our 
analysis we found that 
• R  leads to increases the dimensionless velocity and the temperature both for 

Newtonian and non-Newtonian, while the rate of heat transfer at the wall and 
skin friction coefficient decrease.  

• δ  leads to decrease the dimensionless fluid velocity, increase the 
temperature both for Newtonian and non-Newtonian. The increase of the slip 
parameter δ  decreases skin friction coefficient and the wall heat transfer 
rate. 

• λ  leads to increase the fluid velocity, decrease the dimensionless 
temperature both for Newtonian and non-Newtonian fluids. 

• n  leads to decrease of the dimensionless temperature and velocity.  
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Tables and Graphs 
 

 
Table 1. Comparison of skin friction coefficient ( )0f ′′−  for various values of 

slip parameter δ  when 1n =  
 
 

δ Hayat et al. [22] Hamad et al. [21] Present results 
0.0 1.000000 1.00000000 1.00000000 
0.1 0.872082 0.87208247 0.87208247 
0.2 0.776377 0.77637707 0.77637707 
0.5 0.591195 0.59119548 0.59119548 
1.0 0.430162 0.43015970 0.43015970 
2.0 0.283981 0.28397959 0.28397959 
5.0 0.144841 0.14484019 0.14484019 

10.0 0.081249 0.08124198 0.08124198 
20.0 0.043782 0.04378834 0.04378834 
50.0 0.018634 0.01859623 0.01859623 

100.0 0.009581 0.00954997 0.00954997 
 
 
 
 
Table 2. Comparison of ( )'' 0f−  for various values of n with Xu and Liao (2009) 
and Andersson and Bech (1992) for the boundary conditions without slip ( )0=a ,    

radiation ( )0=R  and mixed convective parameter ( )0 .λ =
  

 
n Andersson and Bech  [3] Xu and Lia  [43] Current results 

0.4 1.273  1.27387 
0.6 1.096  1.09582 
0.8 1.029 1.02853 1.02844 
1.0 1.000 1.00000 1.00000 
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Table 3. Values of ( )0f ′′−  and ( )0θ ′−  for Pr 0.72 , 0, 0.4m Rλ= = = and 
various values of n  and δ  

 
 
 

( )0θ ′−  ( )0f ′′−   
n  

0.2δ = 0.1δ = 0.2δ = 0.1δ = 
0.550200  0.569228  0.805565  0.961323  0.5  
0.581256  0.601634  0.777700  0.872570  1 

 
 
 
 

Table 4. Values of ( )0f ′′−  and ( )0θ ′−  for Pr 0.72 , 1, 0.4m λ δ= = = and 
various values of n  and R  

 
 
 

( )0θ ′−  ( )0f ′′−   
n  

0.5R =  0.1R =  0.5R =  0.1R =  
0.633806 0.768472 0.143965 0.168252 0.5 
0.668703 0.814779 0.269028 0.301614 1 

 
 
 

 
Fig. 1. Flow configuration and coordinate system 
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    (a)                               

(b)   
Fig. 2. Effects of thermal radiation parameter on the profile of dimensionless 
velocity for (a) Newtonian fluid ( )1n = , (b) non–Newtonian fluid ( )0.3n =  

 
 
 
 

 
  (a)                              (b) 

 
 
 
 
Fig. 3. Effects of thermal radiation parameter on the profile of dimensionless 
temperature for (a) Newtonian fluid ( )1n = , (b) non – Newtonian fluid ( )0.3n = . 
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    (a)                                (b) 

 
 
 

Fig. 4. Effects of mixed convection parameter on the profile of dimensionless 
velocity for (a) Newtonian fluid ( )1n = , (b) non–Newtonian fluid ( )0.4n = . 

 
 
 
 

 
     (a)                             (b) 

 
 

Fig. 5. Effects of mixed convection parameter on the profile of dimensionless 
temperature for (a) Newtonian fluid ( )1n = , (b) non–Newtonian fluid ( )0.4n =   
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         (a)                         (b) 

 
 
 

Fig. 6. Effects of slip parameter on the profile of dimensionless velocity for (a) 
Newtonian fluid ( )1n = , (b) non – Newtonian fluid ( )0.2n = . 

 
 
 
 

 
         (a)                        (b) 

 
 
 

Fig. 7. Effects of slip parameter on the profile of dimensionless temperature for (a) 
Newtonian fluid ( )1n = , (b) non – Newtonian fluid ( )0.2n = . 
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Fig. 8. Effects of power low index parameter on the profile of dimensionless velocity. 
 
 
 
 

 
 
 

Fig. 9. Effects of power low index parameter on the profile of dimensionless 
temperature. 
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