
J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

ISSN: 1991-8941

A NEW BLOCK CIPHER (NAHRAINFISH)
BASED ON SOME AES FINALISTS

SUFYAN T. FARAJ

College of Computers- University of Anbar

ABSTRACT: In this work, we present some deeper insights in the state-of-the-art in
block cipher design. This is mainly achieved by assessment of the evaluation process of
the AES (Advanced Encryption Standard). We conclude (with may be a little bit
surprising result) that the required security level, for a block cipher to be used for the
present and foreseeable future, may be underestimated during AES evaluation. In
accordance, we propose a new block cipher that we call Nahrainfish, which we believe
that it offers the required security level without a big sacrifice in efficiency and other
related criteria. Instead of building Nahrainfish totally from scratch, we have made a
benefit mainly from some AES finalists to develop the new cipher by an over-
engineering approach leading to the required higher security level. Nahrainfish is a
classical Feistel network based on a novel combination of both key-dependent S-boxes
and data-dependent rotations. It operates on 128-bit blocks and accepts a variable key
length up to 1024 bits. The paper also includes some important notes on the security and
performance of the cipher.

 Keywords: AES, Block ciphers, DES, Feistel networks, Nahrainfish.

INTRODUCTION
 In general, there are two types of
cryptosystems; secret-key (one-key) and
public-key (two-key) ciphers. In
conventional secret-key ciphers, the same
(secret) key can be used in both encryption
and decryption. While in public-key
systems, two totally different keys (private
key and public key) are used one for
encryption and the other for decryption.
Secret-key ciphers can further be
subdivided into two categories; stream
ciphers and block ciphers. In a typical
stream cipher, a short string of key bits is
used to generate a long sequence of bits
that is added bitwise modulo 2 to the
plaintext to produce the ciphertext. On the
other hand, in block ciphers, the plaintext

is divided into blocks of a fixed length,
which are encrypted into blocks of
ciphertext using the secret key.

Block ciphers are the most important
elements in many cryptographic systems.
Basically, they are used to ensure data
confidentiality. Indeed, they can be used as
fundamental building blocks to construct
stream ciphers, MACs, hash functions, and
pseudorandom number generators. A
block cipher may be defined as a pair of
two functions; the encryption function (E)
and decryption function (D). E turns n-bit
plaintext into n-bit ciphertext under
control of k-bit key (K). In contrast, D
turns n-bit ciphertext into n-bit plaintext
under control of K. Thus, n is the block

Received: 15/3/2007 Accepted :20/82007

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

size and k is the key size. Defining Ek and
Dk as the respective encryption and
decryption functions for each key K, Ek

must be invertible for all k, with kk DE =−1
 .

Most block ciphers nowadays are
"iterated" block ciphers, which consist of
the repetition of the same (round) function
F for certain number of times R.
Nevertheless, each application of F is
parameterized by a different "round key".
A key scheduling algorithm is used to
derive round keys from the master key K.
The round function F is usually
constructed on the basis of the two
important principles of Shannon;
confusion and diffusion [1]. Informally,
confusion aims to make the relation
between the statistics of ciphertext and the
value of the key as complex as possible.
While, diffusion aims to make the
statistical relationship, between the bits of
plaintext and ciphertext, as complex as
possible.

There are two main structures for
iterated block ciphers, which are the
substitution-permutation network (SPN)
and Feistel network. SPNs are block
ciphers with a very simple structure. The
round of a SPN consists of three layers [2]:

The key mixing (addition) layer []kδ ,
which is usually done using bitwise XOR
(⊕).

The diffusion layer θ , which is linear
with respect to the group operation used in
the key addition layer.

The confusion (non-linear) layerγ ,
which is usually performed by the parallel
application of S-boxes.

Hence, the round of a SPN can be

described as:
[] [] γθδρ οοkk =

(1)
where ο denotes function

compositions.
Usually a key addition layer is added

before the first round. Indeed, the last
diffusion layer is not cryptographically
useful. Hence, the whole R-round SPN can
be described as [2]:

[] [] []kkk or

R

rR
δγθδγδ οοοοο 






 Ο

−

=

1

1
(2)

where k0, k1,…, kR are round keys.
In a (pure) Feistel network, the data

X entering a round is divided into two
halves (left and right); X=<L,R>. Thus, the
round is described as:

()() >⊕=<><)(,, RfLRRLfφ
(3)

where f is the round function, which
consists of confusion, diffusion, and key
mixing layers.

The main advantage of SPNs is their
simple structure, which makes them easy
to analyze. On the other hand, the main
advantage of Feistel networks is that
decryption differs from encryption by the
order of using round keys and by initial
and final swaps only. Also, the function f
needs not to be objective, which allows
more freedom in its design [2].

Besides the classical (pure) Feistel
structure, it is also possible to address a
much wider design space of Unbalanced
Feistel Networks (UFNs) or even
Generalized Feistel Networks (GFNs).
Like conventional Feistel networks, UFNs
consist of a series of rounds in which one
part of the block (called the "source
block") operates on the rest of the block
(called the "target block"). The difference
is that, in a UFN, the two parts need not be
of equal size. A detailed taxonomy of UFNs
and GFNs can be found in [3] and [4].

After this introduction, the rest of
this paper is organized as follows. Section
2 presents some considerations related to
security of block ciphers in general. The
AES evaluation process is discussed in
Section 3, where our remarks on that
process are presented. The remaining
sections are dedicated for proposing the
new block cipher: Nahrainfish. The design
criteria are emphasized in Section 4. Then,
various components of the cipher are
described in Section 5. While, design
motivations are explained in Section 6.
Finally, some security and performance
issues of Nahrainfish are considered in
Section 7, before the paper is concluded in
Section 8.

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

2. SECURITY OF BLOCK CIPHERS
To evaluate block cipher security, it is
traditional to always assume that [5], [6]:
1- The attacker has access to all

(ciphertext) messages transmitted over
the insecure charnel.

2- All keys are equally likely and K is
always chosen uniformly random.

3- The attacker knows all details of
the encryption and decryption process
except the secret key (which security
consequently rests entirely upon). This is
the so-called kerckoff's assumption.

Under these assumptions, attacks are

classified based on what information a
cryptanalyst has access to in addition to
the intercepted ciphertext. These attack
classes are [7]: ciphertext-only attack,
known-plaintext attack, chosen-plaintext
attack, adaptively chosen-plaintext attack,
and chosen-ciphertext attacks. In fact, it is
possible to consider any combination of the
above attacks. Obviously, the chosen-text
attacks are the most powerful ones.
However, in many applications, they are
unrealistic attacks.

The progress in cryptanalysis is an
important factor in the development of
new block ciphers. As new cryptanalytic
techniques appear, new insights are
brought in the security of block ciphers
and their basic building blocks such as S-
boxes and diffusion layers.

In most modern cryptanalytic
attacks on (iterated) block ciphers, the
attack procedure is repeated for all
possible values of (a subset of) the bits in
the last-round key. Thus upon success in
guessing the correct values of the key bits,
the attacker can compute the ciphertext
bits after the second-last round (i.e. before
the last round). While a wrong guess
means that these bits correspond to
ciphertext bits encrypted with a wrong
key. Whenever there is a probabilistic
correlation between the plaintext bits, and
the bits of the ciphertext before the last
round, the attacker may be able to
distinguish the correct guesses from wrong
ones of the last-round key. Thus, the

attacker can exclude the last round of the
cipher and repeat the attack on the
reduced cipher (i.e. a cipher one round
shorter) to find the second-last round key,
and so on. It is also possible in some cases
to consider the first-round key instead of
the last-round key or both of them
simultaneously. In iterated block ciphers
the correlation is usually found by first
identifying a correlation between inputs
and outputs of individual rounds, and then
combining to a correlation over several
rounds [7].

There is a variety of cryptanalytic
attacks in the literature [7], [8]. Some of
the most important attacks are:
differential cryptanalysis, linear
cryptanalysis, differential-linear attacks,
interpolation attacks, non-surjective
attack, related-key attacks, slide attacks,
multiset attacks, algebraic attacks, and
implementation attacks.

3. FROM DES TO AES
For more than two decades, the DES (Data
Encrypted Standard) was the dominant
and most widely applied block cipher.
During this period DES received a lot of
scrutiny. However, as technology
advances, it was became obvious that a
new standard is required for a block
cipher that is optimized to today's
technology.

Hence, NIST in 1997 published a
request for candidates to become a new
Advanced Encryption Standard (AES),
which has to be at least as secure as 3DES
and significantly more efficient. Indeed,
the candidates should support 128-bits
block size and key sizes of 128, 192, and
256 bits. In a first round of evaluation, 15
submissions were originally accepted.
Then, in 1999, NIST selected five of them
as finalists: MARS, RC6, Rijndael,
Serpent, and Twofish. After three years of
a public review process, NIST decided in
October 2000 to choose Rijndael
(developed by J. Daemen and V. Rijmen
from Belgium) as the new AES (FIPS 197).

In the following subsections, each of
the five AES finalists is briefly described at
first. Then, a summary of the criteria used

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

in the AES evaluation process is given.
Finally, some important comments on the
AES evaluation are presented.

3.1 AES FINALISTS
There are some common technical features
of the five finalist candidates. Four of them
(MARS, Rijndael, Serpent, and Twofish)
use S-boxes in their design. Three of the
finalists (MARS, RC6, and Twofish)
specify variations on the classical Feistel
structure. While the other two finalists
(Rijndael and Serpent) are examples of
SPNs. Below is a summary of each of the
finalists [9]:
1- MARS:
MARS, which was submitted by IBM, uses
a 32-round unbalanced Feistel network: in
each round one fourth of the data block is
used to alter the other three fourths of the
data block. The algorithm has several
layers: key addition (pre-whitening), 8
rounds of unkeyed forward mixing, 8
rounds of keyed forward transformation, 8
rounds of keyed backwards
transformation, 8 rounds of unkeyed
backward mixing, and key subtraction
(post-whitening). The 16 middle (keyed)
transformations are called the
cryptographic core. The designer's
intuition is that using top and bottom
rounds employing functions different from
the middle ones is better resistant to
differential and linear cryptanalysis. The
unkeyed rounds constitute 8×32 bit S-
boxes, 32-bit addition, and XOR operation.
While the keyed rounds additionally
constitute 32-bit key multiplication, data-
dependent rotations, and key addition [10].
2- RC6:
RC6 (developed by RSA Laboratories) is
an evolutionary extension of an earlier
developed cipher RC5 to meet the AES
requirements. It is a parameterized family
Feistel-structured cipher (20 rounds for
the AES submissions). RC6's strength
mainly lies in the resistance to differential
and linear cryptanalysis provided data-
dependent rotations used in the round
function. Indeed, each round includes 32-
bit modular multiplication, addition, XOR,
and key addition. Also, pre- and post-

whitening are accomplished using key
addition [11].
3- Rijndael:
Rijndael, developed by J. Daemen and V.
Rijmen, relies more directly on algebraic
constructs than other candidates. It is
somewhat similar to an earlier cipher
(SQUARE) with significant enhancements.
Rijndael is a SPN that partition a data
block into an array of bytes and uses byte
oriented operations. The number of
rounds is 10, 12, or 14, depending on the
key size. Its round function consists of four
layers: a byte substitution layer based on
8×8 S-boxes, a linear mixing layer based
on shifting rows of the array, another
linear mixing layer using columns mixing
(this layer is skipped in the last round),
and finally subkey bytes are XORed with
each byte of the array in the last layer.
This design of the round function facilities
many possibilities for parallelism in
Rijndael [12].
4- Serpent:
Serpent, created by R. Anderson, E.
Biham, and L. Knudsen, is a conservative
design. It is a 32-round SPN. The round
function includes three layers: the key
XOR operation, 32 parallel applications of
one of the eight specified 4×4 S-boxes, and
a linear transformation (the last round
replaces the linear transformation with a
second layer of key XOR). Its design
facilitates bit slice mode implementations.
The security of serpent is achieved by a
high number of rounds, which makes the
cipher to be highly resistant to differential
and linear cryptanalysis [13].
5- Twofish:
Twofish, proposed by Counterpane
Systems, is a 16-round modified Feistel
network. Its round function works on 32-
bit words with four key-dependent 8×8 S-
boxes. This is followed by a fixed 4×4
MDS (Maximum Distance Separable)
matrix, a pseudo-Hadmard
transformation, and key addition. The
designers of Twofish believe dynamically
varying key-dependent S-boxes
significantly enhance security [14].

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

3.2 THE AES EVALUATION
PROCESS
The AES evaluation criteria originally
were divided into three major categories,
which are [9]:
1.Security: This is the most important

factor in the evaluation and refers to the
effort required to cryptanalyze the
cipher, with emphasis on practicality of
the attack.

2.Cost: This is the second important factor
that encompasses algorithm speed on
various platforms, memory
requirements, and licensing
requirements.

3.Algorithm and Implementation
characteristics: This category includes
other considerations such as flexibility,
hardware and software suitability, and
simplicity.

With the progress of evaluation

process, it was noted that the various
issues often crossed into more than one of
the three main criteria categories. Thus,
the cost and algorithm characteristics were
considered together as secondary criteria,
after security. Hence, the following criteria
were used in the final evaluation:

• General security
• Software implementations
• Restricted-space environments
• Hardware implementations
• Attacks on implementations
• Encryption vs. decryption issues
• Key agility
• Other versatility and flexibility
• Potential for instruction-level

parallelism

For the general security criteria,
NIST relied on the public security analysis
conducted by the cryptographic
community. The issues related to this
concern that had been considered by NIST
in evaluating the AES finalists were:

• Attacks on reduced-round variants.
• Algorithm security margin.
• Design paradigms and ancestry.
• Algorithm simplicity.
• Statistical Testing.

• Other security observations.

Based on the performed security
analysis, NIST assessment of the finalists
was [9]: "There are no known security
attacks on any of the five finalists, and all
five algorithms appear to have adequate
security for the AES. In terms of security
margin, MARS, Serpent, and Twofish
appear to have high security margins,
while the margins for RC6 and Rijndael
appear adequate. Some comments
criticized Rijndael for its mathematical
structure and Twofish for its key
separation; however, those observations
have not led to attacks".

At the end of the second stage of the
evaluation process, a poll of audience was
taken and it showed that Rijndael was
public favorite (Rijndael: 89 votes,
Serpent: 59, Twofish: 31, RC6: 23, MARS:
13) [8]. On October 2000, NIST selected
Rijndael as the proposed AES algorithm.
NIST has concluded that [9]: "when
considered together, Rijndael's
combination of security, performance,
efficiency, implementability, and flexibility
makes it an appropriate selection for the
AES for use in the technology of today and
in the future" (Note that based on a
similar criteria, Rijndael also was selected
as a portfolio of NESSIE project among
some other ciphers in 2003 [15]).

3.3 REMARKS ON THE AES
EVALUATION
Our main interest in this work is the
security criteria for proposing a specific
block cipher as a standard for present and
foreseeable future applications. No one can
under evaluate the work done during the
AES evaluation process. However, in such
complex projects, there are always trade-
offs and design decisions that have to be
made based on adopting certain points of
view. As there is more than one school of
thought in cryptosystem design, we believe
that there were some security concerns
that have been underestimated during the
AES evaluation and selection. In this
subsection, these security concerns and
issues are discussed.

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

The first of these issues, which have
been reported previously in the literature,
is related to the relatively short frame time
of the AES evaluation process. Compared
to the analysis of DES, the AES evaluation
process is quite limited. Even more, one
may expect that cryptanalysis effort could
be biased towards algorithms that attract
greater scrutiny in a limited evaluation
timeframe. This is greatly could be
affected by the familiarity with certain
structures and components that appear to
be simpler to be attacked using already
known cryptanalysis techniques.

The second issue is concerned with
the "qualitative" approach followed by
NIST to AES selection. In spite of that the
issue of following a rather "quantitative"
approach had been raised by the public
more than once during the AES evaluation
process, NIST felt that such an approach
would not be workable. The main reason
for that was the degree of subjectivity of
many of the criteria [9]. However, we
believe that due to NIST selection
approach, some important criteria have
been underestimated. In contrast, in a
quantitative approach, each AES selection
factor would be given an explicit
weighting, and thus each algorithm would
receive a score based on the evaluation
criteria. Of course, an agreement on such a
quantitative scoring system might require
a significant public discussion. Our
opinion is that developing a hybrid of both
quantitative and qualitative approaches
would be even better for such projects.

The third issue is related to the
evaluation criteria. NIST stated that
security is the foremost concern in
evaluating the finalists. And all other
concerns were supposed to be secondary
criteria. However, as NIST had assessed
that "all finalists appear to have adequate
security", the choice of a single algorithm
(Rijndael) to be the proposed AES was
solely made based on the (secondary)
criteria of cost and algorithm
characteristics. On one hand, this might be
the only way to have the work done. On
the other hand, this appears as working
things up-side-down. Note that while

security was one out of three main
categories in the original evaluation
criteria, it turned to become one out of
eight or nine factors in the final criteria (a
related security issue was addressed by the
category of "Attacks on Implementation").
The crucial question here is that: Do all
finalists really have adequate security for
the AES? We hope that the answer would
be clearer in the remaining of this
subsection.

The fourth (and most important)
issue is concerned with the category of
"General Security" in the final criteria. In
spite of that there were several factors
considered for security evaluation, it seems
that NIST team had no objective criteria
except for a resistance to all known
cryptanalysis attacks. This was partially
due to the "qualitative" approach for
selection followed by the team. Since all
finalist candidates were built to withstand
any known attacks, the role and
consequences of other security factors
(such as algorithm security margin, design
paradigm, and ancestry) were not obvious
in the result of security evaluation. Thus,
all finalists had been considered to be
secure and the evaluation concentrated on
performance and flexibility issues as the
selection criteria. The criticism on this
strategy is that it (implicitly) had assumed
that resistance against known attacks is
"sufficient" for an algorithm to be secure.
While, in fact this is only a "necessary"
condition. As far as we are concerned, we
believe in an opposite point of view, which
can be expressed like this: all the finalists
were adequate with respect to speed and
flexibility concerns. And the criteria for
selection had to be security and
"robustness against future (or already
known but unpublished) advances in
cryptanalysis". It is really difficult to
understand why this issue of robustness
was not considered in a more sophisticated
and serious manner during a process of
AES evaluation and selection?

The fifth issue considered here is
related to the AES (Rijndael) algorithm
itself. This algorithm can be criticized for
its (may be insufficient) security margin,

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

its design style (SPN) which did not receive
scrutiny like the well-known Feistel
networks, and its mathematical structure.
In [16], for example, several security
concerns about the mathematical structure
of Rijndael have been discussed. In 2002,
after about two years from selecting
Rijndael as the AES, a new cryptanalysis
technique appeared: algebraic attacks
[17]. If this attack can work as described,
then this might represent a non-trivial
concern of AES security and robustness.
In all cases; when all these issues
considered together, one cannot be so
optimistic about the actual security of the
AES for the proposed life span.

All the issues that are discussed
above and many others have been taken
into consideration in the design of the new
block cipher Nahrainfish, which is
described in the rest of this paper.

4. NAHRAINFISH DESIGN
CRITERIA
In the second part of this paper, we
propose a new block cipher which we call
Nahrainfish (Nahrain- refers to the two
great rivers of Mesopotamia: Tigris and
Euphrates). Nahrainfish works on 128-bits
blocks and accept a variable key size (up to
1024 bits). The development of
Nahrainfish was done based on the
argument on AES evaluation and selection,
presented at the first part of this paper.
Thus, instead of developing Nahrainfish
totally from scratch, its design was mainly
inspired by techniques and components
used in some AES finalists (especially
MARS, Twofish, and RC6) and some other
earlier ciphers (e.g., Blowfish [18]).

We adopt the point of view that
considers "no block cipher is ideally suited
for all applications, even one offering a
high level of security" [5]. This point of
view is based on the fact that there are
various tradeoffs required in practical
applications (e.g., due to constraints
imposed by implementation platforms,
memory limitations, speed requirements,
etc). For example, we strongly disagree
that the same block cipher used for
securing international e-commerce should

also be the choice for smart cards. Note
that all AES candidates have serious
problems related to differential-power
analysis in smart cards applications, as
reported in [19]. Hence, to avoid system
vulnerabilities inherent in symmetric key
designs, there is a rapid interest in
developing (special-purpose) public-key
algorithms for smart cards [20]. Thus,
smart card suitability is simply not an
issue for Nahrainfish design.

The design criteria for Nahrainfish
are as follows:
1. A 128-bit symmetric block cipher.
2. A variable key length (32 bits up to 1024

bits). However, we recommend using
keys no less than 256 bits.

3. Resistance against all known attacks.
4. Robustness against future advances in

cryptanalysis.
5. Simple, modular, and flexible design in

order to facilitate ease of analysis and
ease of implementation.

6. Efficiency on 32-bit microprocessor and
other important software and hardware
platforms.

7. Performance, which is comparable to
that of AES finalist in most relevant
applications.

8. Trusted cipher, by minimizing the
possibility of existence of trapdoors in
the cipher.

5. DESCRIPTION OF
NAHRAINFISH
Nahrainfish uses a conservative design of
20-round pure Feistel structure with pre-
and post-whitening steps, as shown in
Figure(1). The plaintext block is divided
into four 32-bit words, which are XORed
with four key words in the pre-whitening
step. Then twenty normal rounds follow.
In each of these rounds, the two words on
the left are used as input to the round
function F. This function also receives two
key words. The output of F is two words
that used to modify the other two words on
the right, using the XOR operation. Then,
a swapping of the left and right halves is
performed for the next round. After the
normal 20 rounds, a reverse swap is done.
Finally, post-whitening is accomplished by

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

XORing the resultant four words with
additional four key words to produce the
ciphertext block.

The following notations are used to
describe Nahrainfish:
- a + b integer addition modulo 232.
- a ⊕ b bitwise XOR of 32-bit words.
- a×b integer multiplication modulo
232.
- a <<< b cyclic rotate the 32-bit word a

to the left by the amount given
by the least significant five (log2
32) bits of b.

5.1 KEY SCHEDULE
The key schedule of Nahrainfish provides
48 32-bit subkey words SK0, …, SK47. It
is also used to generate four 8×32 key-
dependent S-boxes containing a total of
1024 32-bit entries. The total is 1072 32-bit
values (4288 bytes). Nahrainfish accepts a
key that ranges from 32 bits to 1024 bits
and stores these bits in a K-array, which
contains a maximum of 32 32-bit
elements:

310,...,,
10

≤≤ jkkk j
While the subkey 32-bit words are stored
in the SK-array:

4710 ,...,, SKSKSK
There are also four key-dependent S-
boxes, each with 256 32-bit entries:

SSS 255,11,10,1
,...,,
SSS 255,21,20,2

,...,,
SSS 255,31,30,3

,...,,
SSS 255,41,40,4 ,...,,

The process of generating the SK-

array and S-boxes proceeds as follows:
1.Initialize first the SK-array and then the

four S-boxes in order using the bits of
the fractional part of the constantπ .

2.Perform a bitwise XOR of the SK-array
and K-array, reusing words from the K-
array as required.

3.Encrypt the 128-bit block of all zeros
using the current SK-array and S-boxes.
Then replace SK0, SK1, SK2 and SK3
with the output of encryption.

4.Encrypt the output of step 3 using the
current SK-array and S-boxes, and

replace SK4, SK5, SK6, and SK7 with
the resulting ciphertext.

5.Continue this process to update all
elements of the SK-array, and then (in
order) all elements of the S-boxes. This
to be done using at each step the output
of the continuously changing
Nahrainfish.

The above steps for subkey and S-

boxes generation require a total of 268
Nahrainfish executions. For rapid
execution, applications can store the
subkeys and S-boxes.

5.2 THE ROUND FUNCTION F
The arguments of the round function F are
two input 32-bit words (L0 and L1) and
the round number r (190 ≤≤ r) used to
select the two appropriate subkey words. F
includes two other functions (g and h). In
the beginning of F, the two subkey words
(SK2r+8 and SK2r+9) are added (modulo
232) to L0 and L1 respectively. Then,
L0+SK2r+8 is passed through the g
function to yield T0. While, L1+SK2r+9 is
passed through the h function to obtain
T1. The outputs of the g and h functions
(T0 and T1) are combined using a Pseudo-
Hadmard Transformation (PHT). A
schematic of the round function F is shown
in Figure (2).

The PHT is a simple matrix
operation that can be defined as follows:
let a and b be two 32-bit input words,
then the 32-bit PHT is:
a' = a + b (4)
b' = a + 2b (5)
Thus, denoting (F0, F1) to be the output of
the function F, F can be more formally
described as follows:

)(8200 SKLT rg
+

+= (6)
)(

9211 SKLT r
h

+
+= (7)
TTF 100 += (8)
TTF 2 101 += (9)

5.3 THE FUNCTION g
The 32-bit input (L0+SK2r+8) to the
function g is divided into 4 bytes. Each of
these bytes is used as and input to invoke

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

one of the four S-boxes, as shown in Figure
(2). The output of the first S-box is
combined with output of the second S-box
using the XOR operation. Then the result
of this step is combined with the output of
the third S-box using addition modulo 232.
Finally, this result is combined with the
output of the fourth S-box using another
XOR operation to produce the output T0.
If the 4 bytes input to the S-boxes are
labeled as a, b, c, and d, then the g function
can be defined as follows:

),,,(0 dcbagT =
 SSSS dcba ,4,3,2,1))((⊕+⊕= (10)

5.4 THE FUNCTION h
The function h is a data-dependent
rotation function that makes use of the
quadratic function:

)12()(0 +×= xxxh (11)
This quadratic function (h0) is applied to
the 32-bit input word to the function h,
and then a fixed rotation of 5 positions to
the left is performed. Finally, the value of
the least significant five bits of the result is
used to decide the amount of left rotation
on the input word, as illustrated in Figure
(2). Thus, the function h can be defined as
follows:

)5)((
)()(

9210

921921

<<<+
<<<+=+

+

++

r

rr

SKLh
SKLSKLh

 (12)

5.5 ENCRYPTION AND
DECRYPTION
In order to use Nahrainfish to encrypt a
128-bit (16 bytes) plaintext block, these
bytes p0, p1, …, p15 are first split into
four 32-bit words P0, …, P3. The little-
endian notation is used for this purpose;

28
3

0
)4(. j

j
jii pP ∑

=
+=

 i = 0, …, 3 (13)
Then, Nahrainfish encryption proceeds
according to the pseudo code shown in
Figure (3). The result of this procedure is
four 32-bit words of ciphertext C0, …, C3.
These words are then written as 16 bytes
using the little-endian convention;

 i = 0, …, 15 (14)

Since Nahrainfish is a Feistel network,
decryption is similar to encryption but
using the subkeys in a reverse order.

6. MOTIVATIONS FOR DESIGN
CHOICES
In the design of Nahrainfish, we tried to
set the highest security and robustness
goals, while maintaining a flexible and fast
cipher for most relevant applications.
Nahrainfish is intended to be used in
applications requiring higher security
demands for the present and foreseeable
future. The principles behind our design
were as follows:
1.Security: Design a cipher that is both

resistant to all known attacks and robust
a gains future advances in cryptanalysis.
To obtain a cipher with sufficiently high
security margin, it is not enough to rely
on a single parameter such as number of
rounds (though it is an important
parameter). In fact, to achieve this goal,
it is necessary to adopt the notion of
"minimizing the trust in any single
component".

2.Simplicity: It is important to design a
cipher that can be analyzed. Ad hoc
design elements should not be included
without clear reasoning. One should also
avoid using "design tricks" whose
security consequences are not clear.
Indeed, another important concern of
the simplicity (of both of the design style
and components used) is to produce a
cipher that can be trusted to contain no
trapdoors (for discussion of trapdoor
block ciphers see, for example, [21]).

3.Performance: Within the design
principles outlined above, Nahrainfish
was designed to achieve high
performance and flexibility in most
relevant software and hardware
implementations.

In accordance to these principles,

Nahrainfish was designed as a classical
Feistel network, which is based on a novel
mixing of key-dependent S-boxes and
data-dependent rotations. Note that
MARS also uses a mixing of S-boxes and
data-dependent rotations. However,

  22
8

)4mod(8
4/ mod












= i

i
i

C
c

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

MARS is of a different design style, and
(more important) MARS S-boxes are
generated by a "pseudorandom" process
and are not key-dependent.

6.1 THE ROUND STRUCTURE
Nahrainfish was designed as a pure Feistel
network, because it is the most well-
studied block-cipher structure. We did not
choose something newer and/or less-
studied structures like UFNs, GFNs, AES
(Rijndael)-like, or AES-like structures
based on involution components. One
important additional advantage of using
this structure is that the same algorithm
can be used for both encryption and
decryption (with reversing the order of
subkeys).

6.2 S-BOXES
Nahrainfish uses four 8×32 key-dependent
S-boxes that are generated using repeated
iterations of the cipher itself. It is expected
that such large S-boxes generated this way
are of a high non-linearity. We decided not
to use other forms of algebraic or tabular
S-boxes. This was mainly to give an
evidence of minimizing the probability of
trapdoor existence, since there cannot be
any pre-defined mathematical structure of
an S-box. However, the cost of this design
decision is a performance penalty in key-
setup time. It is also important to note that
it was already observed (in [22]) that the
efficiency and small computational
complexity of some other types of key-
dependent S-boxes (such as those used in
Twofish) cannot be easily obtained
together with the highest level of security.

6.3 The Key Schedule
The style of the key schedule of
Nahrainfish is similar to that of Blowfish.
Such key schedules are designed so that
knowledge of one round subkey does not
directly lead to specify bits of other round
subkeys. This is done by repeated
application of the block cipher algorithm
itself to act as a one-way function for
generating subkeys (and key-dependent S-
boxes). Such key scheduling, besides its
high security (given the high security of

the algorithm itself) can also be trusted to
have no implicit trapdoors (again given
that the underlying block cipher algorithm
has no trapdoors). In addition, this style
facilitates analysis and implementation of
the cipher. A disadvantage of Nahrainfish
key schedule is that it takes relatively long
time for setup, which puts a limit on cipher
application. However, this issue can also be
viewed as an advantage because it
increases the difficulty of key-search
brute-force attack.

6.4 THE ROUND FUNCTION
The round function F was designed to
include two sources of nonlinearity: the
key-dependent S-boxes in function g and
the data-dependent rotation in function h.
The major mechanism for providing
diffusion in F is using PHT, which
combines the outputs of functions g and h
so that both of them will affect both 32-bit
target words. PHT had been used
previously in other ciphers such as
Twofish. It facilitates very fast operation
on Pentium processors.

The function g is similar to the round
function in Blowfish. However, this
function has been re-tailored for
Nahrainfish by interchanging the locations
of XOR and addition (modulo 232)
operations. Since these two operations do
not commute, we expect this interchange
to enhance the security of Nahrainfish.

The function h was designed to
exploit operations (such as rotations and
32-bit integer multiplication), which are
efficiently implemented on modern
processors. Integer multiplication was
used to compute data-dependent rotation
amounts so that the rotation amounts are
dependent on all of the bits of the operand.

To achieve this goal, the function
h0(x)=x×(2x+1) (mod 232) was used. Note
that the same function was also used in
RC6 for the same purpose. The most
significant bits of h0(x) are the "stronger
bits" since they are affected by almost all
the input bits. Thus, it is traditional to use
a fixed rotation (by 5 positions) after h0(x)
so that the five highest bits of the product
become the five lowest bits. Then, these

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

bits are used to determine the rotation
amount used. Indeed, this technique
enhances the diffusion of the cipher.
Nahrainfish is novel in that the amount of
data-dependent rotation is derived heavily
from all the bits of the same word to be
rotated.

7. NAHRAINFISH SECURITY AND

PERFORMANCE
 The block size and key length of
Nahrainfish were chosen to be compatible
with AES requirements. About ten years
ago, it was estimated (in [23]) that with
respect to an exhaustive key search, a key
size of at least 90 bits would be sufficient
for the next 20 years. NIST specified key
lengths of 128, 192, and 256 bits for the
AES. However, to maintain higher security
margins for Nahrainfish, we recommend
using keys of at least 256 bits length.
Concerning the 128-bit block size, it is
widely accepted now that such block size is
a good choice with respect to both security
and efficiency requirements.

With a block size of 128 bits, a
dictionary attack on Nahrainfish (or any
other block cipher with the same block
size) will require 2128 different plaintexts
so that an attacker encrypt or decrypt
arbitrary messages under an unknown
key. Another limit imposed on Nahrainfish
by using a block size of 128 bits, is that it is
expected to find differentials with
probability 2-120. In theory, such
differentials can be found by exhaustive
search. This also applies to all block cipher
(with similar block size) as their
probabilities are only affected by the block
size [13]. When using 128-bit, 192-bit, and
256-bit keys, the complexity of key search
attack will be 2128, 2192, and 2256,
respectively. However, in order to avoid
collision attacks (such as those in [24] and
[25]), it is prudent to change keys well
before 264 (2n/2) blocks have been
encrypted.

In recent years, there has been a
research trend to construct ciphers which
were proven to be secure against known
attacks, such as differential, linear, and
related key cryptanalysis. However, it is

important to remember that provable
security against one or more important
attacks does not imply that the cipher is
secure. This is simply because other attack
scenarios might exist. In accordance, we
did not try to optimize Nahrainfish against
known attacks. Instead, a conservative
design approach and over-engineering
techniques have been followed in order to
make Nahrainfish strong against both
known and unknown attacks.
An important security feature of
Nahrainfish is that no two consecutive
operations use the same structure. In other
words, the ordering of operations in
Nahrainfish alternates among different
(non-commutating) groups. This would
make it very difficult for an attacker to
exploit a single algebraic structure for
launching an attack.

Nahrainfish uses a key schedule that
is similar to that used in Blowfish (i.e., the
repeated iteration of the cipher itself). It
was reported earlier in [26] that Blowfish
has weak keys that generate bad S-boxes
(the odds of getting them randomly are 1
in 214). This can enable an attack against
reduced-round variants of Blowfish. It is;
however, completely ineffective against 16-
round Blowfish. Accordingly, Nahrainfish
has been designed with additional
important source of nonlinearity: the data-
dependent rotations (the only source of
nonlinearity in Blowfish is the key-
dependent S-boxes). Thus, we believe that
such an attack would not be applicable to
Nahrainfish, because it cannot exploit the
existence of weak keys (if they exist) in the
key schedule.

It is also worth to mention that there
are some previously reported (theoretical)
attacks on some implementations of data-
dependent rotations (e.g., in the RC5
cipher). These attacks are based on the
fact that the "rotation amounts" do not
depend on all the bits of the operand. In all
cases, these attacks cannot be applied to
Nahrainfish because the amounts of the
used data-dependent rotations are
calculated based on all the bits of the
operand (this is also true for RC6 and
MARS).

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

Due to the high nonlinearity and
complexity resultant from the novel
combination of key-dependent S-boxes and
data-dependent rotations in Nahrainfish,
we expect that the interpolation attack
cannot be applied on full 20-rounds
Nahrainfish. Moreover, attacks of
differential and linear cryptanalysis can
only be feasible on small-round versions of
Nahrainfish. We believe that 16 rounds of
Nahrainfish are adequate for security.
However, we choose Nahrainfish to be of
20 rounds to achieve a sufficiently high
security margin for long life span. We
conjecture that to attack Nahrainfish the
best approach available to the cryptanalyst
is that of exhaustive key search.

Despite the conservative design and
high security margin of Nahrainfish, the
algorithm still achieves a comparable
performance to AES finalists in software
(see Table. 1). Our current (not fully-
optimized) C implementation of
Nahrainfish achieves encryption speed of
about 66.8 Mbit/sec on 866 MHz Intel
Pentium III processor with 128 MB RAM.
The code was developed using Microsoft
Visual C/C++ V.6 environment with
computer running Windows 2000
Professional. Using key length of 256 bits
for encryption, many tests have been done,
and the results in Table. 1 are the average
of these runs. It is expected that an
optimized revision of the programming
code will result in a significant
improvement of Nahrainfish performance.
This expectance is to be verified in the
near future.

8. CONCLUSION
It is important to reach to a better
understanding of the requirements and
considerations for a block cipher to be
used in the present and foreseeable future
applications. We have tried to do so by
careful study and analysis of the AES
evaluation process. Accordingly, we have
proposed a new 128-bit block cipher
Nahrainfish based on the well-studied
Feistel structure. Nahrainfish has been
over-engineered to be resistant to known
attacks and robust to future advance in

cryptanalysis. Indeed, our design strategy
gives a high level of confidence that no
trapdoors have been inserted. We could
not find significant weakness. However, it
is highly interested to see detailed
cryptanalysis results obtained by others.
Moreover, Discussion of various aspects of
implementing Nahrainfish on different
hardware and software platforms are also
welcomed.

Table. 1: Comparison of encryption speed
of different algorithms (with key length of

256 bits).
Algorithm Encryption

Speed
(Mbit/sec)

RC6
MARS
Twofish
Rijndael

Nahrainfish
Serpent

198.3
105.5
92.4
80.8
66.8
54.2

Acknowledgments:
The author would like to thank the
students of his M.Sc. "Internet Security"
course for their big help in C code
development, for running many of the
tests, and for useful discussions.

REFERENCES:
[1] Shannon, C.E. (1949). Communication

theory of secrecy systems. Bell System
Technical Journal, 28: 4, pp. 656-715.

[2] Piret, G-F (2005). Block Ciphers:
Security Proofs, Cryptanalysis, Design,
and Fault Attacks, Ph.D. Thesis,
Universite' Catholique de Louvain
(UCL).

[3] Schneier, B. and Kelsey, J. (1996).
Unbalanced Feistel networks and block
cipher design. FSE'96, LNCS 1039,
Springer-Verlag, pp. 121-144.

[4] Nyberg, K. (1996). Generalized Feistel
networks. Advances in Cryptology-
ASIACRYPT'96, LNCS 1163,
Springer-Verlag, pp. 91-104.

[5] Menezes, A. et al (1997). Handbook of
Applied Cryptography. CRC Press,
Inc.

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

[6] Schneier, B. (1996). Applied

Cryptography. John Wiley & Sons,
Inc.

[7] Knudsen, L. (1999). Contemporary
block ciphers. LNCS 1561, Springer-
Verlag, pp. 105-126.

[8] Biryukov, A. (2004). Block ciphers and
stream ciphers: The state of the art.
Katholieke Universiteit Leuven (KUL),
Belgium, (crypto-eprint).

[9] Nechvatal, J. et al (2000). Report on the
Development of the Advanced
Encryption Standard (AES). NIST,
USA.

[10] Burwick, C. et al (1999). MARS - A
Candidate Cipher for AES. AES
algorithm submission, USA.
Available at http://www.nist.gov/aes

[11] Rivest, R. et al (1998). The RC6TM
Block Cipher. AES algorithm
submission, USA.
Available at http://www.nist.gov/aes

[12] Daemen, J. and Rijmen, V. (1999).
AES Proposal: Rijndael. AES
algorithm submission, USA.
Available at http://www.nist.gov/aes

[13] Anderson, R. et al (1998). Serpent: A
proposal for the Advanced Encryption
Standard. AES algorithm submission,
USA.
Available at http://www.nist.gov/aes

[14] Schneier, B. et al (1998). Twofish: A
128-Bit Block Cipher. AES algorithm
submission, USA.
Available at http://www.nist.gov/aes

[15] NESSIE Project (2003). New
European Schemes for Signatures,
Integrity and Encryption, EU.

 Available at http://cryptonessie.org
[16] Schroeppl, R. (2000). E-mail

comment, AES Round2 public
comments, May 15.
Available at http://www.nist.gov/aes

[17] Courtois, N. and Pieprzyk, J. (2002).
Cryptanalysis of block ciphers with

overdefined systems of equations.
Advances in Cryptology-ASIACRYPT
2002, LNCS 2501, Springer-Verlag, pp.
267-287.

[18] Schneier, B. (1994). Description of a
new variable-length key, 64-bit block
cipher (Blowfish). FSE'93, LNCS 809,
Springer-Verlag, pp. 191-204.

[19] Chari, S. et al (1999). A cautionary
note regarding evaluation of AES
candidates on smart cards. 2nd AES
Conference, Italy.

[20] IBM MARS Team (2000). MARS and
the AES selection criteria. AES public
comment, May 15.
Available at http://www.nist.gov/aes

[21] Rijmen, V. and Preneel, B. (1997). A
family of trapdoor ciphers. FSE'97,
LNCS 1267, Springer-Verlag, pp. 139-
148.

[22] Macchetti, M. (2002). Characteristics
of key-dependent S-boxes: The case of
Twofish. Politecnico di Milano, Milan,
Italy, (crypto-eprint).

[23] Blaze, M. (1996). Minimal key lengths
for symmetric ciphers to provide
adequate commercial security. A
report by an ad hoc group of
cryptographers and computer
scientists, USA.

[24] Biham, E. (1996). How to forge DES-
encrypted messages in 228 steps.
Technical Report CS884, Technion.

[25] Oorschot, P. and Wiener, M. (1994).
Parallel collision search with
application to hash functions and
discrete logarithms. Proceedings of the
2nd ACM Conference on Computer
and Communications Security, pp. 210-
218.

[26] Vaudenay, S. (1996). On the weak
keys in Blowfish. FSE'96, LNCS 1039,
Spinger-Verlag, pp. 27-32.

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

SK2r+8

SK2r+9

Lr,2 Lr,3 Lr,1 Lr,0

SK0 SK1 SK2
SK3

F

Plaintext
(128 bits)

One
round

Pre-
whitening

19 more
rounds

SK4 SK5 SK6
SK7

Undo last
swap

Post-
whitening

Ciphetext
(128 bits

S-box 1

S-box 2

S-box 3

S-box 4

<<<

<<<h0

L0

L1

SK2r+8

SK2r+9

F
g 8

8

8

8

T0

T1

h

F0

F1

PHT

5

// Input:
// Four 32-bit plaintext words P0, …, P3
// 48 32-bit subkey words SK0, …, SK47
// Four 8× 32 key-dependent S-boxes

// Pre-whitening:
For i = 0 to 3 do

{
 L0, i =Pi ⊕ SKi
}

// Normal rounds:
For r = 0 to 19 do

{
Tr, 0 = ((S1, a ⊕ S2, b)+S3, c) ⊕ S4, d // Function g
 //a, b, c, and d are four bytes resulting
 //from splitting (Lr, 0 + SK2r+8)
Mr = Lr, 1 + SK2r+9
Tr, 1 = (Mr)<<<(((Mr)×(2(Mr)+1))<<<5) //Function h
Fr, 0 = Tr, 0 + Tr, 1 // PHT
Fr, 1 = Tr, 0 + 2Tr, 1 // PHT
Lr+1, 0 = Lr, 2 ⊕ Fr, 0 // Modify and swap
Lr+1, 1 = Lr, 3 ⊕ Fr, 1 // Modify and swap
Lr+1, 2 = Lr, 0 // Swap
Lr+1, 3 = Lr, 1 // Swap
}

// Undo last round swap and post-whitening:
For i = 0 to 3 do

{
Ci = L20, (i + 2) mod 4 ⊕ SKi+4
}

// Output:
// Four 32-bit ciphertext words C0,….,C3

Figure (2): The round function F.
(h0(x)=x×(2x+1))

Figure (1): Nahrainfish

Overview

J. of al-anbar university for pure science : Vol.1 : No.2 : 2007

Figure (3): Nahrainfish encryption
pseudocode

 المعتمدة على"سمكة النهرین"الجدیدة المقطعية ةالشفر
 القياسي المتقدمالتشفير نظام ض الخيارات النهائية لبع

 سفيان تایه فرج.د

 آلية الحاسوب –جامعة الانبار

E.mail: sufyantaih@ieee.org

 :الخلاصـة
يـتم فـي هـذا الـبحث تقـديم بعض الملامح العميقة للمستلزمات الحالية لتصميم الشفرات المقطعية؛ وذلك

وسيكون الاستنتاج). AES(وبـصورة رئيسية من خلال محاولة تقييم عملية اختيار النظام القياسي للتشفير المتقدم
لحقيقي لبعض الضوابط والمتطلبات الأمنية للاستخدامات الحالية والمستقبلية للشفر هنا انه ربما لم يتم اعطاء الحجم ا

، "سمكة النهرين"وبناء على ذلك نقوم باقتراح شفرة مقطعية جديدة نسميها .. المقطعـية خـلال عملـية الاختيار تلك
 . الأخرىوالتي نعتقد انها توفر المستوى الأمني المفترض بدون التضحية بالكفاءة والمعايير

لم يتم بناؤها من الصفر تماما، إنما تم الاستفادة من بعض التقنيات المستخدمة في بناء " سمكة النهرين " إن شـفرة
بعـض الـشفر النهائية التي تنافست في عملية اختيار النظام القياسي للتشفير المتقدم، وذلك من خلال منهج تصميم

نمطية تقوم على " فيستل"تمثل شبكة " سمكة النهرين "وشفرة . للأمنيةهندسـي يقـود إلى المستوى الأعلى المطلوب
. تـركيبة مبتكرة من صناديق التعويض التي تعتمد على مفاتيح التشفير، ومن التدويرات المعتمدة على قيمة البيانات

كما يتم . . بت 1024 بت، وتقبل مفتاح تشفير ذا طول متغير وحتى حجم 128وتعمل هذه الشفرة على مقاطع بحجم
 . في هذه الورقة طرح بعض الملاحظات المهمة حول أمنية وأداء الشفرة المقترحة

