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ABSTRACT: In this work, we present some deeper insights in the state-of-the-art in 
block cipher design. This is mainly achieved by assessment of the evaluation process of 
the AES (Advanced Encryption Standard). We conclude (with may be a little bit 
surprising result) that the required security level, for a block cipher to be used for the 
present and foreseeable future, may be underestimated during AES evaluation. In 
accordance, we propose a new block cipher that we call Nahrainfish, which we believe 
that it offers the required security level without a big sacrifice in efficiency and other 
related criteria. Instead of building Nahrainfish totally from scratch, we have made a 
benefit mainly from some AES finalists to develop the new cipher by an over-
engineering approach leading to the required higher security level. Nahrainfish is a 
classical Feistel network based on a novel combination of both key-dependent S-boxes 
and data-dependent rotations. It operates on 128-bit blocks and accepts a variable key 
length up to 1024 bits. The paper also includes some important notes on the security and 
performance of the cipher. 
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INTRODUCTION 
         In general, there are two types of 
cryptosystems; secret-key (one-key) and 
public-key (two-key) ciphers. In 
conventional secret-key ciphers, the same 
(secret) key can be used in both encryption 
and decryption. While in public-key 
systems, two totally different keys (private 
key and public key) are used one for 
encryption and the other for decryption. 
Secret-key ciphers can further be 
subdivided into two categories; stream 
ciphers and block ciphers. In a typical 
stream cipher, a short string of key bits is 
used to generate a long sequence of bits 
that is added bitwise modulo 2 to the 
plaintext to produce the ciphertext. On the 
other hand, in block ciphers, the plaintext  

 
is divided into blocks of a fixed length, 
which are encrypted into blocks of 
ciphertext using the secret key. 

Block ciphers are the most important 
elements in many cryptographic systems. 
Basically, they are used to ensure data 
confidentiality. Indeed, they can be used as 
fundamental building blocks to construct 
stream ciphers, MACs, hash functions, and 
pseudorandom number generators. A 
block cipher may be defined as a pair of 
two functions; the encryption function (E) 
and decryption function (D). E turns n-bit 
plaintext into n-bit ciphertext under 
control of k-bit key (K). In contrast, D 
turns n-bit ciphertext into n-bit plaintext 
under control of K. Thus, n is the block 
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size and k is the key size. Defining Ek and 
Dk as the respective encryption and 
decryption functions for each key K, Ek 

must be invertible for all k, with kk DE =−1
 . 

Most block ciphers nowadays are 
"iterated" block ciphers, which consist of 
the repetition of the same (round) function 
F for certain number of times R. 
Nevertheless, each application of F is 
parameterized by a different "round key". 
A key scheduling algorithm is used to 
derive round keys from the master key K. 
The round function F is usually 
constructed on the basis of the two 
important principles of Shannon; 
confusion and diffusion [1]. Informally, 
confusion aims to make the relation 
between the statistics of ciphertext and the 
value of the key as complex as possible. 
While, diffusion aims to make the 
statistical relationship, between the bits of 
plaintext and ciphertext, as complex as 
possible. 

There are two main structures for 
iterated block ciphers, which are the 
substitution-permutation network (SPN) 
and Feistel network. SPNs are block 
ciphers with a very simple structure. The 
round of a SPN consists of three layers [2]: 

The key mixing (addition) layer [ ]kδ , 
which is usually done using bitwise XOR 
( ⊕ ). 

The diffusion layer θ , which is linear 
with respect to the group operation used in 
the key addition layer. 

The confusion (non-linear) layerγ  , 
which is usually performed by the parallel 
application of S-boxes. 

 
Hence, the round of a SPN can be 

described as: 
[ ] [ ] γθδρ οοkk =                                      

(1) 
where ο denotes function 

compositions. 
Usually a key addition layer is added 

before the first round. Indeed, the last 
diffusion layer is not cryptographically 
useful. Hence, the whole R-round SPN can 
be described as [2]: 

[ ] [ ] [ ]kkk or

R

rR
δγθδγδ οοοοο 






 Ο

−

=

1

1                          
(2) 

where k0, k1,…, kR are round keys.  
In a (pure) Feistel network, the data 

X entering a round is divided into two 
halves (left and right); X=<L,R>. Thus, the 
round is described as: 

( )( ) >⊕=<>< )(,, RfLRRLfφ                 
(3) 

where f is the round function, which 
consists of confusion, diffusion, and key 
mixing layers.  

The main advantage of SPNs is their 
simple structure, which makes them easy 
to analyze. On the other hand, the main 
advantage of Feistel networks is that 
decryption differs from encryption by the 
order of using round keys and by initial 
and final swaps only. Also, the function f 
needs not to be objective, which allows 
more freedom in its design [2]. 

Besides the classical (pure) Feistel 
structure, it is also possible to address a 
much wider design space of Unbalanced 
Feistel Networks (UFNs) or even 
Generalized Feistel Networks (GFNs). 
Like conventional Feistel networks, UFNs 
consist of a series of rounds in which one 
part of the block (called the "source 
block") operates on the rest of the block 
(called the "target block"). The difference 
is that, in a UFN, the two parts need not be 
of equal size. A detailed taxonomy of UFNs 
and GFNs can be found in [3] and [4]. 

After this introduction, the rest of 
this paper is organized as follows. Section 
2 presents some considerations related to 
security of block ciphers in general. The 
AES evaluation process is discussed in 
Section 3, where our remarks on that 
process are presented. The remaining 
sections are dedicated for proposing the 
new block cipher: Nahrainfish. The design 
criteria are emphasized in Section 4. Then, 
various components of the cipher are 
described in Section 5. While, design 
motivations are explained in Section 6. 
Finally, some security and performance 
issues of Nahrainfish are considered in 
Section 7, before the paper is concluded in 
Section 8.  
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2. SECURITY OF BLOCK CIPHERS 
To evaluate block cipher security, it is 
traditional to always assume that [5], [6]: 
1- The attacker has access to all 

(ciphertext) messages transmitted over 
the insecure charnel. 

2- All keys are equally likely and K is 
always chosen uniformly random. 

3- The attacker knows all details of 
the encryption and decryption process 
except the secret key (which security 
consequently rests entirely upon). This is 
the so-called kerckoff's assumption. 

 
Under these assumptions, attacks are 

classified based on what information a 
cryptanalyst has access to in addition to 
the intercepted ciphertext. These attack 
classes are [7]: ciphertext-only attack, 
known-plaintext attack, chosen-plaintext 
attack, adaptively chosen-plaintext attack, 
and chosen-ciphertext attacks. In fact, it is 
possible to consider any combination of the 
above attacks. Obviously, the chosen-text 
attacks are the most powerful ones. 
However, in many applications, they are 
unrealistic attacks. 

The progress in cryptanalysis is an 
important factor in the development of 
new block ciphers. As new cryptanalytic 
techniques appear, new insights are 
brought in the security of block ciphers 
and their basic building blocks such as S-
boxes and diffusion layers. 

In most modern cryptanalytic 
attacks on (iterated) block ciphers, the 
attack procedure is repeated for all 
possible values of (a subset of) the bits in 
the last-round key. Thus upon success in 
guessing the correct values of the key bits, 
the attacker can compute the ciphertext 
bits after the second-last round (i.e. before 
the last round). While a wrong guess 
means that these bits correspond to 
ciphertext bits encrypted with a wrong 
key. Whenever there is a probabilistic 
correlation between the plaintext bits, and 
the bits of the ciphertext before the last 
round, the attacker may be able to 
distinguish the correct guesses from wrong 
ones of the last-round key. Thus, the 

attacker can exclude the last round of the 
cipher and repeat the attack on the 
reduced cipher (i.e. a cipher one round 
shorter) to find the second-last round key, 
and so on. It is also possible in some cases 
to consider the first-round key instead of 
the last-round key or both of them 
simultaneously. In iterated block ciphers 
the correlation is usually found by first 
identifying a correlation between inputs 
and outputs of individual rounds, and then 
combining to a correlation over several 
rounds [7]. 

There is a variety of cryptanalytic 
attacks in the literature [7], [8]. Some of 
the most important attacks are: 
differential cryptanalysis, linear 
cryptanalysis, differential-linear attacks, 
interpolation attacks, non-surjective 
attack, related-key attacks, slide attacks, 
multiset attacks, algebraic attacks, and 
implementation attacks. 
 
3. FROM DES TO AES 
For more than two decades, the DES (Data 
Encrypted Standard) was the dominant 
and most widely applied block cipher. 
During this period DES received a lot of 
scrutiny. However, as technology 
advances, it was became obvious that a 
new standard is required for a block 
cipher that is optimized to today's 
technology.  

Hence, NIST in 1997 published a 
request for candidates to become a new 
Advanced Encryption Standard (AES), 
which has to be at least as secure as 3DES 
and significantly more efficient. Indeed, 
the candidates should support 128-bits 
block size and key sizes of 128, 192, and 
256 bits. In a first round of evaluation, 15 
submissions were originally accepted. 
Then, in 1999, NIST selected five of them 
as finalists: MARS, RC6, Rijndael, 
Serpent, and Twofish. After three years of 
a public review process, NIST decided in 
October 2000 to choose Rijndael 
(developed by J. Daemen and V. Rijmen 
from Belgium) as the new AES (FIPS 197).  

In the following subsections, each of 
the five AES finalists is briefly described at 
first. Then, a summary of the criteria used 
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in the AES evaluation process is given. 
Finally, some important comments on the 
AES evaluation are presented.  
 
3.1 AES FINALISTS 
There are some common technical features 
of the five finalist candidates. Four of them 
(MARS, Rijndael, Serpent, and Twofish) 
use S-boxes in their design. Three of the 
finalists (MARS, RC6, and Twofish) 
specify variations on the classical Feistel 
structure. While the other two finalists 
(Rijndael and Serpent) are examples of 
SPNs. Below is a summary of each of the 
finalists [9]: 
1- MARS: 
MARS, which was submitted by IBM, uses 
a 32-round unbalanced Feistel network: in 
each round one fourth of the data block is 
used to alter the other three fourths of the 
data block. The algorithm has several 
layers: key addition (pre-whitening), 8 
rounds of unkeyed forward mixing, 8 
rounds of keyed forward transformation, 8 
rounds of keyed backwards 
transformation, 8 rounds of unkeyed 
backward mixing, and key subtraction 
(post-whitening). The 16 middle (keyed) 
transformations are called the 
cryptographic core. The designer's 
intuition is that using top and bottom 
rounds employing functions different from 
the middle ones is better resistant to 
differential and linear cryptanalysis. The 
unkeyed rounds constitute 8×32 bit S-
boxes, 32-bit addition, and XOR operation. 
While the keyed rounds additionally 
constitute 32-bit key multiplication, data-
dependent rotations, and key addition [10]. 
2- RC6: 
RC6 (developed by RSA Laboratories) is 
an evolutionary extension of an earlier 
developed cipher RC5 to meet the AES 
requirements. It is a parameterized family 
Feistel-structured cipher (20 rounds for 
the AES submissions). RC6's strength 
mainly lies in the resistance to differential 
and linear cryptanalysis provided data-
dependent rotations used in the round 
function. Indeed, each round includes 32-
bit modular multiplication, addition, XOR, 
and key addition. Also, pre- and post-

whitening are accomplished using key 
addition [11]. 
3- Rijndael: 
Rijndael, developed by J. Daemen and V. 
Rijmen, relies more directly on algebraic 
constructs than other candidates. It is 
somewhat similar to an earlier cipher 
(SQUARE) with significant enhancements. 
Rijndael is a SPN that partition a data 
block into an array of bytes and uses byte 
oriented operations. The number of 
rounds is 10, 12, or 14, depending on the 
key size. Its round function consists of four 
layers: a byte substitution layer based on 
8×8 S-boxes, a linear mixing layer based 
on shifting rows of the array, another 
linear mixing layer using columns mixing 
(this layer is skipped in the last round), 
and finally subkey bytes are XORed with 
each byte of the array in the last layer. 
This design of the round function facilities 
many possibilities for parallelism in 
Rijndael [12].   
4- Serpent: 
Serpent, created by R. Anderson, E. 
Biham, and L. Knudsen, is a conservative 
design. It is a 32-round SPN. The round 
function includes three layers: the key 
XOR operation, 32 parallel applications of 
one of the eight specified 4×4 S-boxes, and 
a linear transformation (the last round 
replaces the linear transformation with a 
second layer of key XOR). Its design 
facilitates bit slice mode implementations. 
The security of serpent is achieved by a 
high number of rounds, which makes the 
cipher to be highly resistant to differential 
and linear cryptanalysis [13]. 
5- Twofish: 
Twofish, proposed by Counterpane 
Systems, is a 16-round modified Feistel 
network. Its round function works on 32-
bit words with four key-dependent 8×8 S-
boxes. This is followed by a fixed 4×4 
MDS (Maximum Distance Separable) 
matrix, a pseudo-Hadmard 
transformation, and key addition. The 
designers of Twofish believe dynamically 
varying key-dependent S-boxes 
significantly enhance security [14]. 
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3.2 THE AES EVALUATION 
PROCESS 
The AES evaluation criteria originally 
were divided into three major categories, 
which are [9]: 
1.Security: This is the most important 

factor in the evaluation and refers to the 
effort required to cryptanalyze the 
cipher, with emphasis on practicality of 
the attack. 

2.Cost: This is the second important factor 
that encompasses algorithm speed on 
various platforms, memory 
requirements, and licensing 
requirements. 

3.Algorithm and Implementation 
characteristics: This category includes 
other considerations such as flexibility, 
hardware and software suitability, and 
simplicity. 

 
With the progress of evaluation 

process, it was noted that the various 
issues often crossed into more than one of 
the three main criteria categories. Thus, 
the cost and algorithm characteristics were 
considered together as secondary criteria, 
after security. Hence, the following criteria 
were used in the final evaluation: 

• General security 
• Software implementations 
• Restricted-space environments 
• Hardware implementations 
• Attacks on implementations 
• Encryption vs. decryption issues 
• Key agility 
• Other versatility and flexibility 
• Potential for instruction-level 

parallelism 
 

For the general security criteria, 
NIST relied on the public security analysis 
conducted by the cryptographic 
community. The issues related to this 
concern that had been considered by NIST 
in evaluating the AES finalists were: 

• Attacks on reduced-round variants. 
• Algorithm security margin. 
• Design paradigms and ancestry. 
• Algorithm simplicity. 
• Statistical Testing. 

• Other security observations. 
 

Based on the performed security 
analysis, NIST assessment of the finalists 
was [9]: "There are no known security 
attacks on any of the five finalists, and all 
five algorithms appear to have adequate 
security for the AES. In terms of security 
margin, MARS, Serpent, and Twofish 
appear to have high security margins, 
while the margins for RC6 and Rijndael 
appear adequate. Some comments 
criticized Rijndael for its mathematical 
structure and Twofish for its key 
separation; however, those observations 
have not led to attacks". 

At the end of the second stage of the 
evaluation process, a poll of audience was 
taken and it showed that Rijndael was 
public favorite (Rijndael: 89 votes, 
Serpent: 59, Twofish: 31, RC6: 23, MARS: 
13) [8]. On October 2000, NIST selected 
Rijndael as the proposed AES algorithm. 
NIST has concluded that [9]: "when 
considered together, Rijndael's 
combination of security, performance, 
efficiency, implementability, and flexibility 
makes it an appropriate selection for the 
AES for use in the technology of today and 
in the future" (Note that based on a 
similar criteria, Rijndael also was selected 
as a portfolio of NESSIE project among 
some other ciphers in 2003 [15]). 
 
3.3 REMARKS ON THE AES 
EVALUATION 
Our main interest in this work is the 
security criteria for proposing a specific 
block cipher as a standard for present and 
foreseeable future applications. No one can 
under evaluate the work done during the 
AES evaluation process. However, in such 
complex projects, there are always trade-
offs and design decisions that have to be 
made based on adopting certain points of 
view. As there is more than one school of 
thought in cryptosystem design, we believe 
that there were some security concerns 
that have been underestimated during the 
AES evaluation and selection. In this 
subsection, these security concerns and 
issues are discussed. 
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The first of these issues, which have 
been reported previously in the literature, 
is related to the relatively short frame time 
of the AES evaluation process. Compared 
to the analysis of DES, the AES evaluation 
process is quite limited. Even more, one 
may expect that cryptanalysis effort could 
be biased towards algorithms that attract 
greater scrutiny in a limited evaluation 
timeframe. This is greatly could be 
affected by the familiarity with certain 
structures and components that appear to 
be simpler to be attacked using already 
known cryptanalysis techniques.  

The second issue is concerned with 
the "qualitative" approach followed by 
NIST to AES selection. In spite of that the 
issue of following a rather "quantitative" 
approach had been raised by the public 
more than once during the AES evaluation 
process, NIST felt that such an approach 
would not be workable. The main reason 
for that was the degree of subjectivity of 
many of the criteria [9]. However, we 
believe that due to NIST selection 
approach, some important criteria have 
been underestimated. In contrast, in a 
quantitative approach, each AES selection 
factor would be given an explicit 
weighting, and thus each algorithm would 
receive a score based on the evaluation 
criteria. Of course, an agreement on such a 
quantitative scoring system might require 
a significant public discussion. Our 
opinion is that developing a hybrid of both 
quantitative and qualitative approaches 
would be even better for such projects. 

The third issue is related to the 
evaluation criteria. NIST stated that 
security is the foremost concern in 
evaluating the finalists. And all other 
concerns were supposed to be secondary 
criteria. However, as NIST had assessed 
that "all finalists appear to have adequate 
security", the choice of a single algorithm 
(Rijndael) to be the proposed AES was 
solely made based on the (secondary) 
criteria of cost and algorithm 
characteristics. On one hand, this might be 
the only way to have the work done. On 
the other hand, this appears as working 
things up-side-down. Note that while 

security was one out of three main 
categories in the original evaluation 
criteria, it turned to become one out of 
eight or nine factors in the final criteria (a 
related security issue was addressed by the 
category of "Attacks on Implementation"). 
The crucial question here is that: Do all 
finalists really have adequate security for 
the AES? We hope that the answer would 
be clearer in the remaining of this 
subsection. 

The fourth (and most important) 
issue is concerned with the category of 
"General Security" in the final criteria. In 
spite of that there were several factors 
considered for security evaluation, it seems 
that NIST team had no objective criteria 
except for a resistance to all known 
cryptanalysis attacks. This was partially 
due to the "qualitative" approach for 
selection followed by the team. Since all 
finalist candidates were built to withstand 
any known attacks, the role and 
consequences of other security factors 
(such as algorithm security margin, design 
paradigm, and ancestry) were not obvious 
in the result of security evaluation. Thus, 
all finalists had been considered to be 
secure and the evaluation concentrated on 
performance and flexibility issues as the 
selection criteria. The criticism on this 
strategy is that it (implicitly) had assumed 
that resistance against known attacks is 
"sufficient" for an algorithm to be secure. 
While, in fact this is only a "necessary" 
condition. As far as we are concerned, we 
believe in an opposite point of view, which 
can be expressed like this: all the finalists 
were adequate with respect to speed and 
flexibility concerns. And the criteria for 
selection had to be security and 
"robustness against future (or already 
known but unpublished) advances in 
cryptanalysis". It is really difficult to 
understand why this issue of robustness 
was not considered in a more sophisticated 
and serious manner during a process of 
AES evaluation and selection? 

The fifth issue considered here is 
related to the AES (Rijndael) algorithm 
itself. This algorithm can be criticized for 
its (may be insufficient) security margin, 



J. of al-anbar university for pure science  : Vol.1 : No.2 : 2007 
 
its design style (SPN) which did not receive 
scrutiny like the well-known Feistel 
networks, and its mathematical structure. 
In [16], for example, several security 
concerns about the mathematical structure 
of Rijndael have been discussed. In 2002, 
after about two years from selecting 
Rijndael as the AES, a new cryptanalysis 
technique appeared: algebraic attacks 
[17]. If this attack can work as described, 
then this might represent a non-trivial 
concern of AES security and robustness. 
In all cases; when all these issues 
considered together, one cannot be so 
optimistic about the actual security of the 
AES for the proposed life span. 

All the issues that are discussed 
above and many others have been taken 
into consideration in the design of the new 
block cipher Nahrainfish, which is 
described in the rest of this paper. 
 
4. NAHRAINFISH DESIGN 
CRITERIA 
In the second part of this paper, we 
propose a new block cipher which we call 
Nahrainfish (Nahrain- refers to the two 
great rivers of Mesopotamia: Tigris and 
Euphrates). Nahrainfish works on 128-bits 
blocks and accept a variable key size (up to 
1024 bits). The development of 
Nahrainfish was done based on the 
argument on AES evaluation and selection, 
presented at the first part of this paper. 
Thus, instead of developing Nahrainfish 
totally from scratch, its design was mainly 
inspired by techniques and components 
used in some AES finalists (especially 
MARS, Twofish, and RC6) and some other 
earlier ciphers (e.g., Blowfish [18]).  

We adopt the point of view that 
considers "no block cipher is ideally suited 
for all applications, even one offering a 
high level of security" [5]. This point of 
view is based on the fact that there are 
various tradeoffs required in practical 
applications (e.g., due to constraints 
imposed by implementation platforms, 
memory limitations, speed requirements, 
etc). For example, we strongly disagree 
that the same block cipher used for 
securing international e-commerce should 

also be the choice for smart cards. Note 
that all AES candidates have serious 
problems related to differential-power 
analysis in smart cards applications, as 
reported in [19]. Hence, to avoid system 
vulnerabilities inherent in symmetric key 
designs, there is a rapid interest in 
developing (special-purpose) public-key 
algorithms for smart cards [20]. Thus, 
smart card suitability is simply not an 
issue for Nahrainfish design.  

The design criteria for Nahrainfish 
are as follows: 
1. A 128-bit symmetric block cipher. 
2. A variable key length (32 bits up to 1024 

bits). However, we recommend using 
keys no less than 256 bits. 

3. Resistance against all known attacks. 
4. Robustness against future advances in 

cryptanalysis. 
5. Simple, modular, and flexible design in 

order to facilitate ease of analysis and 
ease of implementation. 

6. Efficiency on 32-bit microprocessor and 
other important software and hardware 
platforms. 

7. Performance, which is comparable to 
that of AES finalist in most relevant 
applications. 

8. Trusted cipher, by minimizing the 
possibility of existence of trapdoors in 
the cipher. 

 
5. DESCRIPTION OF 
NAHRAINFISH 
Nahrainfish uses a conservative design of 
20-round pure Feistel structure with pre-
and post-whitening steps, as shown in 
Figure(1). The plaintext block is divided 
into four 32-bit words, which are XORed 
with four key words in the pre-whitening 
step. Then twenty normal rounds follow. 
In each of these rounds, the two words on 
the left are used as input to the round 
function F. This function also receives two 
key words. The output of F is two words 
that used to modify the other two words on 
the right, using the XOR operation. Then, 
a swapping of the left and right halves is 
performed for the next round. After the 
normal 20 rounds, a reverse swap is done. 
Finally, post-whitening is accomplished by 
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XORing the resultant four words with 
additional four key words to produce the 
ciphertext block. 

The following notations are used to 
describe Nahrainfish: 
- a + b    integer addition modulo 232. 
- a ⊕ b    bitwise XOR of 32-bit words. 
- a×b     integer multiplication modulo 
232. 
- a <<< b   cyclic rotate the 32-bit word  a  

to the left by the amount given 
by the least significant five (log2 
32) bits of   b. 

 
5.1 KEY SCHEDULE 
The key schedule of Nahrainfish provides 
48  32-bit subkey words SK0, …, SK47. It 
is also used to generate four 8×32 key-
dependent S-boxes containing a total of 
1024 32-bit entries. The total is 1072 32-bit 
values (4288 bytes). Nahrainfish accepts a 
key that ranges from 32 bits to 1024 bits 
and stores these bits in a K-array, which 
contains a maximum of 32  32-bit 
elements: 

310,...,,
10

≤≤ jkkk j  
While the subkey 32-bit words are stored 
in the SK-array: 

4710 ,...,, SKSKSK  
There are also four key-dependent S-
boxes, each with 256  32-bit entries: 

SSS 255,11,10,1
,...,,  
SSS 255,21,20,2

,...,,  
SSS 255,31,30,3

,...,,  
SSS 255,41,40,4 ,...,,  

 
The process of generating the SK-

array and S-boxes proceeds as follows: 
1.Initialize first the SK-array and then the 

four S-boxes in order using the bits of 
the fractional part of the constantπ . 

2.Perform a bitwise XOR of the SK-array 
and K-array, reusing words from the K-
array as required. 

3.Encrypt the 128-bit block of all zeros 
using the current SK-array and S-boxes. 
Then replace SK0, SK1, SK2 and SK3 
with the output of encryption. 

4.Encrypt the output of step 3 using the 
current SK-array and S-boxes, and 

replace SK4, SK5, SK6, and SK7 with 
the resulting ciphertext. 

5.Continue this process to update all 
elements of the SK-array, and then (in 
order) all elements of the S-boxes. This 
to be done using at each step the output 
of the continuously changing 
Nahrainfish. 

 
The above steps for subkey and S-

boxes generation require a total of 268 
Nahrainfish executions. For rapid 
execution, applications can store the 
subkeys and S-boxes. 

 
 

5.2 THE ROUND FUNCTION F 
The arguments of the round function F are 
two input 32-bit words (L0 and L1) and 
the round number r ( 190 ≤≤ r ) used to 
select the two appropriate subkey words. F 
includes two other functions (g and h). In 
the beginning of F, the two subkey words 
(SK2r+8 and SK2r+9) are added (modulo 
232) to L0 and L1 respectively. Then, 
L0+SK2r+8 is passed through the g 
function to yield T0. While, L1+SK2r+9 is 
passed through the h function to obtain 
T1. The outputs of the g and h functions 
(T0 and T1) are combined using a Pseudo-
Hadmard Transformation (PHT). A 
schematic of the round function F is shown 
in Figure (2). 

The PHT is a simple matrix 
operation that can be defined as follows: 
let  a  and  b  be two 32-bit input words, 
then the 32-bit PHT is:  
a' = a + b                                                  (4) 
b' = a + 2b                                                (5) 
Thus, denoting (F0, F1) to be the output of 
the function F, F can be more formally 
described as follows: 

)( 8200 SKLT rg
+

+=                                   (6) 
)(

9211 SKLT r
h

+
+=                                       (7) 
TTF 100 +=                                                (8) 
TTF 2 101 +=                                                (9) 

 
5.3 THE FUNCTION g 
The 32-bit input (L0+SK2r+8) to the 
function g is divided into 4 bytes. Each of 
these bytes is used as and input to invoke 
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one of the four S-boxes, as shown in Figure 
(2). The output of the first S-box is 
combined with output of the second S-box 
using the XOR operation. Then the result 
of this step is combined with the output of 
the third S-box using addition modulo 232. 
Finally, this result is combined with the 
output of the fourth S-box using another 
XOR operation to produce the output T0. 
If the 4 bytes input to the S-boxes are 
labeled as a, b, c, and d, then the g function 
can be defined as follows:  

),,,(0 dcbagT =   
      SSSS dcba ,4,3,2,1 ))(( ⊕+⊕=                      (10) 
 
5.4 THE FUNCTION h 
The function h is a data-dependent 
rotation function that makes use of the 
quadratic function: 

)12()(0 +×= xxxh                         (11) 
This quadratic function (h0) is applied to 
the 32-bit input word to the function h, 
and then a fixed rotation of 5 positions to 
the left is performed. Finally, the value of 
the least significant five bits of the result is 
used to decide the amount of left rotation 
on the input word, as illustrated in Figure 
(2). Thus, the function h can be defined as 
follows: 

)5)((
)()(

9210

921921

<<<+
<<<+=+

+

++

r

rr

SKLh
SKLSKLh

      (12) 
 
5.5 ENCRYPTION AND 
DECRYPTION 
In order to use Nahrainfish to encrypt a 
128-bit (16 bytes) plaintext block, these 
bytes  p0, p1, …, p15  are first split into 
four 32-bit words P0, …, P3. The little-
endian notation is used for this purpose; 

28
3

0
)4( . j

j
jii pP ∑

=
+=

        i = 0, …, 3                (13) 
Then, Nahrainfish encryption proceeds 
according to the pseudo code shown in 
Figure (3). The result of this procedure is 
four 32-bit words of ciphertext C0,  …, C3. 
These words are then written as 16 bytes 
using the little-endian convention; 

  
  i = 0, …, 15     (14) 
 

Since Nahrainfish is a Feistel network, 
decryption is similar to encryption but 
using the subkeys in a reverse order. 
 
6. MOTIVATIONS FOR DESIGN 
CHOICES 
In the design of Nahrainfish, we tried to 
set the highest security and robustness 
goals, while maintaining a flexible and fast 
cipher for most relevant applications. 
Nahrainfish is intended to be used in 
applications requiring higher security 
demands for the present and foreseeable 
future. The principles behind our design 
were as follows: 
1.Security: Design a cipher that is both 

resistant to all known attacks and robust 
a gains future advances in cryptanalysis. 
To obtain a cipher with sufficiently high 
security margin, it is not enough to rely 
on a single parameter such as number of 
rounds (though it is an important 
parameter). In fact, to achieve this goal, 
it is necessary to adopt the notion of 
"minimizing the trust in any single 
component".  

2.Simplicity: It is important to design a 
cipher that can be analyzed. Ad hoc 
design elements should not be included 
without clear reasoning. One should also 
avoid using "design tricks" whose 
security consequences are not clear. 
Indeed, another important concern of 
the simplicity (of both of the design style 
and components used) is to produce a 
cipher that can be trusted to contain no 
trapdoors (for discussion of trapdoor 
block ciphers see, for example, [21]). 

3.Performance: Within the design 
principles outlined above, Nahrainfish 
was designed to achieve high 
performance and flexibility in most 
relevant software and hardware 
implementations. 

 
In accordance to these principles, 

Nahrainfish was designed as a classical 
Feistel network, which is based on a novel 
mixing of key-dependent S-boxes and 
data-dependent rotations. Note that 
MARS also uses a mixing of S-boxes and 
data-dependent rotations. However, 

  22
8

)4mod(8
4/ mod












= i

i
i

C
c



J. of al-anbar university for pure science  : Vol.1 : No.2 : 2007 
 
MARS is of a different design style, and 
(more important) MARS S-boxes are 
generated by a "pseudorandom" process 
and are not key-dependent. 
 
6.1 THE ROUND STRUCTURE 
Nahrainfish was designed as a pure Feistel 
network, because it is the most well-
studied block-cipher structure. We did not 
choose something newer and/or less-
studied structures like UFNs, GFNs, AES 
(Rijndael)-like, or AES-like structures 
based on involution components. One 
important additional advantage of using 
this structure is that the same algorithm 
can be used for both encryption and 
decryption (with reversing the order of 
subkeys).  
 
6.2 S-BOXES 
Nahrainfish uses four 8×32 key-dependent 
S-boxes that are generated using repeated 
iterations of the cipher itself. It is expected 
that such large S-boxes generated this way 
are of a high non-linearity. We decided not 
to use other forms of algebraic or tabular 
S-boxes. This was mainly to give an 
evidence of minimizing the probability of 
trapdoor existence, since there cannot be 
any pre-defined mathematical structure of 
an S-box. However, the cost of this design 
decision is a performance penalty in key-
setup time. It is also important to note that 
it was already observed (in [22]) that the 
efficiency and small computational 
complexity of some other types of key-
dependent S-boxes (such as those used in 
Twofish) cannot be easily obtained 
together with the highest level of security. 
 
6.3 The Key Schedule 
The style of the key schedule of 
Nahrainfish is similar to that of Blowfish. 
Such key schedules are designed so that 
knowledge of one round subkey does not 
directly lead to specify bits of other round 
subkeys. This is done by repeated 
application of the block cipher algorithm 
itself to act as a one-way function for 
generating subkeys (and key-dependent S-
boxes). Such key scheduling, besides its 
high security (given the high security of 

the algorithm itself) can also be trusted to 
have no implicit trapdoors (again given 
that the underlying block cipher algorithm 
has no trapdoors). In addition, this style 
facilitates analysis and implementation of 
the cipher. A disadvantage of Nahrainfish 
key schedule is that it takes relatively long 
time for setup, which puts a limit on cipher 
application. However, this issue can also be 
viewed as an advantage because it 
increases the difficulty of key-search 
brute-force attack. 
 
6.4 THE ROUND FUNCTION 
The round function F was designed to 
include two sources of nonlinearity: the 
key-dependent S-boxes in function g and 
the data-dependent rotation in function h. 
The major mechanism for providing 
diffusion in F is using PHT, which 
combines the outputs of functions g and h 
so that both of them will affect both 32-bit 
target words. PHT had been used 
previously in other ciphers such as 
Twofish. It facilitates very fast operation 
on Pentium processors.  

The function g is similar to the round 
function in Blowfish. However, this 
function has been re-tailored for 
Nahrainfish by interchanging the locations 
of XOR and addition (modulo 232) 
operations. Since these two operations do 
not commute, we expect this interchange 
to enhance the security of Nahrainfish.  

The function h was designed to 
exploit operations (such as rotations and 
32-bit integer multiplication), which are 
efficiently implemented on modern 
processors. Integer multiplication was 
used to compute data-dependent rotation 
amounts so that the rotation amounts are 
dependent on all of the bits of the operand. 

To achieve this goal, the function 
h0(x)=x×(2x+1) (mod 232) was used. Note 
that the same function was also used in 
RC6 for the same purpose. The most 
significant bits of h0(x) are the "stronger 
bits" since they are affected by almost all 
the input bits. Thus, it is traditional to use 
a fixed rotation (by 5 positions) after h0(x) 
so that the five highest bits of the product 
become the five lowest bits. Then, these 
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bits are used to determine the rotation 
amount used. Indeed, this technique 
enhances the diffusion of the cipher. 
Nahrainfish is novel in that the amount of 
data-dependent rotation is derived heavily 
from all the bits of the same word to be 
rotated. 
 
7. NAHRAINFISH SECURITY AND 

PERFORMANCE 
        The block size and key length of 
Nahrainfish were chosen to be compatible 
with AES requirements. About ten years 
ago, it was estimated (in [23]) that with 
respect to an exhaustive key search, a key 
size of at least 90 bits would be sufficient 
for the next 20 years. NIST specified key 
lengths of 128, 192, and 256 bits for the 
AES. However, to maintain higher security 
margins for Nahrainfish, we recommend 
using keys of at least 256 bits length. 
Concerning the 128-bit block size, it is 
widely accepted now that such block size is 
a good choice with respect to both security 
and efficiency requirements.  

With a block size of 128 bits, a 
dictionary attack on Nahrainfish (or any 
other block cipher with the same block 
size) will require 2128 different plaintexts 
so that an attacker encrypt or decrypt 
arbitrary messages under an unknown 
key. Another limit imposed on Nahrainfish 
by using a block size of 128 bits, is that it is 
expected to find differentials with 
probability 2-120. In theory, such 
differentials can be found by exhaustive 
search. This also applies to all block cipher 
(with similar block size) as their 
probabilities are only affected by the block 
size [13]. When using 128-bit, 192-bit, and 
256-bit keys, the complexity of key search 
attack will be 2128, 2192, and 2256, 
respectively. However, in order to avoid 
collision attacks (such as those in [24] and 
[25]), it is prudent to change keys well 
before 264 (2n/2) blocks have been 
encrypted.  

In recent years, there has been a 
research trend to construct ciphers which 
were proven to be secure against known 
attacks, such as differential, linear, and 
related key cryptanalysis. However, it is 

important to remember that provable 
security against one or more important 
attacks does not imply that the cipher is 
secure. This is simply because other attack 
scenarios might exist. In accordance, we 
did not try to optimize Nahrainfish against 
known attacks. Instead, a conservative 
design approach and over-engineering 
techniques have been followed in order to 
make Nahrainfish strong against both 
known and unknown attacks. 
An important security feature of 
Nahrainfish is that no two consecutive 
operations use the same structure. In other 
words, the ordering of operations in 
Nahrainfish alternates among different 
(non-commutating) groups. This would 
make it very difficult for an attacker to 
exploit a single algebraic structure for 
launching an attack.  

Nahrainfish uses a key schedule that 
is similar to that used in Blowfish (i.e., the 
repeated iteration of the cipher itself). It 
was reported earlier in [26] that Blowfish 
has weak keys that generate bad S-boxes 
(the odds of getting them randomly are 1 
in 214). This can enable an attack against 
reduced-round variants of Blowfish. It is; 
however, completely ineffective against 16-
round Blowfish. Accordingly, Nahrainfish 
has been designed with additional 
important source of nonlinearity: the data-
dependent rotations (the only source of 
nonlinearity in Blowfish is the key-
dependent S-boxes). Thus, we believe that 
such an attack would not be applicable to 
Nahrainfish, because it cannot exploit the 
existence of weak keys (if they exist) in the 
key schedule. 

It is also worth to mention that there 
are some previously reported (theoretical) 
attacks on some implementations of data-
dependent rotations (e.g., in the RC5 
cipher). These attacks are based on the 
fact that the "rotation amounts" do not 
depend on all the bits of the operand. In all 
cases, these attacks cannot be applied to 
Nahrainfish because the amounts of the 
used data-dependent rotations are 
calculated based on all the bits of the 
operand (this is also true for RC6 and 
MARS). 
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Due to the high nonlinearity and 
complexity resultant from the novel 
combination of key-dependent S-boxes and 
data-dependent rotations in Nahrainfish, 
we expect that the interpolation attack 
cannot be applied on full 20-rounds 
Nahrainfish. Moreover, attacks of 
differential and linear cryptanalysis can 
only be feasible on small-round versions of 
Nahrainfish. We believe that 16 rounds of 
Nahrainfish are adequate for security. 
However, we choose Nahrainfish to be of 
20 rounds to achieve a sufficiently high 
security margin for long life span. We 
conjecture that to attack Nahrainfish the 
best approach available to the cryptanalyst 
is that of exhaustive key search. 

Despite the conservative design and 
high security margin of Nahrainfish, the 
algorithm still achieves a comparable 
performance to AES finalists in software 
(see Table. 1). Our current (not fully-
optimized) C implementation of 
Nahrainfish achieves encryption speed of 
about 66.8 Mbit/sec on 866 MHz Intel 
Pentium III processor with 128 MB RAM. 
The code was developed using Microsoft 
Visual C/C++ V.6 environment with 
computer running Windows 2000 
Professional. Using key length of 256 bits 
for encryption, many tests have been done, 
and the results in Table. 1 are the average 
of these runs. It is expected that an 
optimized revision of the programming 
code will result in a significant 
improvement of Nahrainfish performance. 
This expectance is to be verified in the 
near future. 

 
8. CONCLUSION 
It is important to reach to a better 
understanding of the requirements and 
considerations for a block cipher to be 
used in the present and foreseeable future 
applications. We have tried to do so by 
careful study and analysis of the AES 
evaluation process. Accordingly, we have 
proposed a new 128-bit block cipher 
Nahrainfish based on the well-studied 
Feistel structure. Nahrainfish has been 
over-engineered to be resistant to known 
attacks and robust to future advance in 

cryptanalysis. Indeed, our design strategy 
gives a high level of confidence that no 
trapdoors have been inserted. We could 
not find significant weakness. However, it 
is highly interested to see detailed 
cryptanalysis results obtained by others. 
Moreover, Discussion of various aspects of 
implementing Nahrainfish on different 
hardware and software platforms are also 
welcomed. 

 
Table. 1: Comparison of encryption speed 
of different algorithms (with key length of 

256 bits). 
Algorithm Encryption 

Speed 
(Mbit/sec) 

RC6 
MARS 
Twofish 
Rijndael 

Nahrainfish 
Serpent 

198.3 
105.5 
92.4 
80.8 
66.8 
54.2 
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5

// Input: 
// Four 32-bit plaintext words P0, …, P3 
// 48  32-bit subkey words SK0, …, SK47 
// Four 8× 32 key-dependent S-boxes 
 
// Pre-whitening: 
For i = 0 to 3 do  

{ 
  L0, i =Pi ⊕ SKi  
}  
  

// Normal rounds: 
For r = 0 to 19 do  

{ 
Tr, 0 = ((S1, a ⊕ S2, b)+S3, c) ⊕ S4, d                 // Function  g
 //a, b, c, and d are four bytes resulting 
 //from splitting (Lr, 0 + SK2r+8) 
Mr = Lr, 1 + SK2r+9 
Tr, 1 = (Mr)<<<(((Mr)×(2(Mr)+1))<<<5)     //Function  h 
Fr, 0 = Tr, 0 + Tr, 1                                             // PHT 
Fr, 1 = Tr, 0 + 2Tr, 1                                           // PHT 
Lr+1, 0 = Lr, 2 ⊕ Fr, 0         // Modify and swap 
Lr+1, 1 = Lr, 3 ⊕ Fr, 1         // Modify and swap 
Lr+1, 2 = Lr, 0                     // Swap 
Lr+1, 3 = Lr, 1                     // Swap 
} 

 
// Undo last round swap and post-whitening: 
For i = 0 to 3 do  

{ 
Ci = L20, (i + 2) mod 4  ⊕   SKi+4 
} 

 
// Output: 
// Four 32-bit ciphertext words C0,….,C3  

Figure (2): The  round function F. 
(h0(x)=x×(2x+1)) 

 
Figure (1): Nahrainfish 

Overview 



J. of al-anbar university for pure science  : Vol.1 : No.2 : 2007 
 

Figure (3): Nahrainfish encryption 
pseudocode 
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 :الخلاصـة
يـتم فـي هـذا الـبحث تقـديم بعض الملامح العميقة للمستلزمات الحالية لتصميم الشفرات المقطعية؛ وذلك                   

وسيكون الاستنتاج  ). AES(وبـصورة رئيسية من خلال محاولة تقييم عملية اختيار النظام القياسي للتشفير المتقدم              
لحقيقي لبعض الضوابط والمتطلبات الأمنية للاستخدامات الحالية والمستقبلية للشفر         هنا انه ربما لم يتم اعطاء الحجم ا       

، "سمكة النهرين"وبناء على ذلك نقوم باقتراح شفرة مقطعية جديدة نسميها .. المقطعـية خـلال عملـية الاختيار تلك       
 . الأخرىوالتي نعتقد انها توفر المستوى الأمني المفترض بدون التضحية بالكفاءة والمعايير

لم يتم بناؤها من الصفر تماما، إنما تم الاستفادة من بعض التقنيات المستخدمة في بناء               " سمكة النهرين " إن شـفرة    
بعـض الـشفر النهائية التي تنافست في عملية اختيار النظام القياسي للتشفير المتقدم، وذلك من خلال منهج تصميم                   

نمطية تقوم على   " فيستل"تمثل شبكة   " سمكة النهرين "وشفرة  . للأمنيةهندسـي يقـود إلى المستوى الأعلى المطلوب         
. تـركيبة مبتكرة من صناديق التعويض التي تعتمد على مفاتيح التشفير، ومن التدويرات المعتمدة على قيمة البيانات                

كما يتم  . . بت 1024 بت، وتقبل مفتاح تشفير ذا طول متغير وحتى حجم           128وتعمل هذه الشفرة على مقاطع بحجم       
 . في هذه الورقة طرح بعض الملاحظات المهمة حول أمنية وأداء الشفرة المقترحة

 
 
 
 
 


