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 The Identification of brain tumors is a critical step that relies on the expertise 

and abilities of the physician. In order to enable radiologists to spot brain 

tumors, an automated tumor arrangement is extremely important. This paper 

presents a technique for MR brain image segmentation and classification to 

identify images as normal and abnormal. The proposed technique is a hybrid 

feature extraction submitted to enhance the classification results and basically 

consists of three stages. The first stage is used a 3-level of discrete wavelet 

transform (DWT) to extract image characteristics. In the second stage, the 

principle component analysis (PCA) is applied to reduce the size of 

characteristics. Finally, a random forest classifier (RF) was used with a feature 

selection for identification. 181 MR brain images are collected (81 normal and 

100 abnormal), in distinguishing normal and abnormal tissues, the 

experimental results obtained an accuracy of 98%, the sensitivity achieved is 

99.2%, specificity achieved is 97.8%, and showed the effectiveness of the 

proposed technique compared with many kinds of literature. The results show 

that the 3L-DWT+PCA+RF still achieved the best classification results. The 

proposed model could apply to the brain MRI sphere classification, which will 

help doctors to diagnose a tumor if it is normal or abnormal in certain degrees. 
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1. INTRODUCTION 

Magnetic resonance imaging (MRI) is a technique that generates great quality images of the 

physical body's anatomical structures, especially within the brain, and it provides useful knowledge on 

biomedical research and clinical diagnosis [1]-[3]. MRI is described as a more appropriate and useful 

imaging technique for brain tumors other than methodologies. Contain knowledge in detail on tumor type, 

position, and size in a non-invasive manner provided by the MRI [4]. In MRI scanners, T2-w images are 

widely utilized to provide an initial evaluation, classify types of tumors, and differentiate tumors from non-

tumor tissues [5]-[7].  

As scanner resolutions were enhanced, and the thickness of slices decreased, a large number of 

slices were constructed, and clinicians needed more time for each patient to diagnose from their image. 

https://creativecommons.org/licenses/by-sa/4.0/
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Consequently, in the past 20 years, automated detection and segmentation for tumors have attracted great 

attention [8]. 

The proposed method predicated on the utilizing of T2-w images in axial viewing to identify brain 

anomalies. Wavelet transform is an effective method for extracting features from MR brain images because, 

its multi-resolution analytic property, it enables image analysis at different resolution levels [9]. The principal 

component analysis (PCA) was used to scale back the feature vector dimensions and to increase the 

discriminative power [10]. PCA is attractive because it effectually decreases the dimensions of the data, thus 

reducing the cost of computing of new data analysis [11]. 

In the previous works, features were extracted from the segmented image. Since discrete wavelet 

transform (DWT) can efficiently extract the information from original MR images with little loss and PCA 

reduce the dimensions of features to a higher degree. In this paper, in order to obtain features that ensure 

optimal classification results, in addition to the features that extracted from the segmented image, additional 

textural features extracted from the PCA component of LL sub bands 3-level wavelet decomposition. Then, a 

random forest classifier is suggested in this work to identify the brain image as normal and abnormal.  

In literature, Bahadure et al. [12] proposed an image analysis of Berkeley wavelet transform (BWT) 

and support vector machine (SVM) methods for MRI-based identification and classification of brain tumors. 

The accuracy of 95 percent is already accomplished in this process utilizing skull stripping, which for the 

purpose of detection removed all non-brain tissues. MR brain image segmentation utilizing a K-means 

clustering algorithm with morphological filtering for tumor image detection was suggested by Joseph et al. 

[13]. Alfonse and Salem [14] suggested an automated system for the classification of MR images of brain 

tumors using the support vector machine. Utilizing fast Fourier transform for the features extraction, the 

accuracy of a classifier was improved and the maximum relevance technique of minimal redundancy was 

used for the reduction of features. 98 percent was the precision obtained from this proposed work. 

Also, Yao et al. [15] proposed a technique that included 83 percent accuracy in the extraction of 

texture characteristics with wavelet transform and SVM. Kumar et al. [16] suggested a methodology utilizing 

PCA and SVM, using this technique achieved an accuracy of 94 percent. Mohsen et al. [17] classified 66 

images of brain tumors into four categories: tumor-free, glioblastoma, sarcoma, and metastasis. They reached 

a 96.97% accuracy using a deep neural network (DNN). 

In addition, Chaddad [18] suggested automated feature extraction and enhanced tumor detection 

using the Gaussian mixture model applied to wavelet MRI and main component analysis with an accuracy of 

95 percent for both T1-weighted and T2-weighted and 92 percent for FLAIR MR. Sachdeva et al. [19] 

utilized artificial neural network (ANN) and PCA-ANN for the classification of multiclass MR brain tumor 

images, 428 MR image segmentation, and 75-90 percent accuracy. 

The above-mentioned survey gives a detailed vision of the techniques invented specifically to 

acquire a region of interest, and characteristics of extraction techniques. When the extracted features are few 

resulted in low tumor identification and accuracy of detection. This research is arranged in the following 

sections. Section 2 provides the comprehensive procedures of the proposed model, including k-means 

clustering, segmentation, discrete wavelet transform, principal component analysis, and presents the concepts 

of random forest classifier. The experiments in section 3 use a full dataset of 181 images, showing the effects 

of extracting and reducing features results compared with related various techniques. Conclusions and 

discussions are devoted in section 4.  

 

 

2. PROPOSED METHOD  

In order to extract image characteristics, the suggested approach basically used preprocessing to 

enhance and dedicate the region of interest (ROI) image. Then the 3 levels of DWT are applied. After that, 

the PCA is used to decrease the size of characteristics. Finally, a random forest classifier (RF) with a 

selection of identification features was used. The approach consists of five stages: 

a. Preprocessing including: 

- Resizing MR images 

- Apply k-means clustering 

- Segmentation 

b. Transformation and reduction (including applying 3L DWT and PCA). 

c. Feature extraction. 

d. Random forest training, apply new MRI brains to the trained random forest and perform the prediction.  

In Figure 1, the detailed processes of the proposed model are clarified. 
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Figure 1. The methodology of the proposed algorithm 

 

 

2.1.  Preprocessing 

2.1.1. Resizing the dimensions of MR images 

The provided MRI brain slices were collected from different scanners with different spatial 

resolutions. To enable the utilization of the complete set disinterestedly, the dimensions of the magnetic 

resonance imaging were changed using a nearest neighbor interpolation approach so that the width or height 

doesn't exceed 256 pixels while preserving the ratio of the image when changing its size. 

 

2.1.2. K means clustering 

Clustering is a process of grouping or partitioning a given pattern into several clusters such that 

similar patterns are assigned to a group which is called a cluster. Many forms of analysis use clustering to 

blot out the field of image segmentation. Different techniques exist and the k-means clustering algorithm is 

one of the most common methods. The clustering algorithm K-means is an unsupervised algorithm and the 

interest area from the background is a customary segment [20]. 

 

2.2.  Distinct region of interest (ROI) 
Segmentation is a mechanism in which the MRI is broken into distinct regions. Let the entire area of 

the image be stated by A. The method of segmentation can be seen as a partition of A into n sub-regions such 

as A1, A2, A3... An. As the segmentation must be intact, some requirements must be fulfilled; that is, every 

pixel should be within the region, every point should be linked in some way within the regions, regions 

should be disjointed [21], [22]. 
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Dilation and erosion are the essential operations used here. Dilation attaches the pixels to the 

boundary region, while erosion deletes the pixels from the object boundary region. Based on the structuring 

components, these operations were conducted by comparing all the values of pixels in the neighborhood of 

the input image defined by the structuring element, dilation selects the highest value, during erosion, the rock 

bottom value is chosen by comparing all the pixel values in the input image region [23]. 

A ROI is a portion of an image on which you want to filter or do some other activity. By making a 

binary mask, you define a ROI, which is a binary image of the same size as the image you want to process, 

with pixels representing the ROI set to 1 and all other pixels set to 0. The segmentation of the affected brain 

MRI regions accomplished by two steps:  

- Transformed the preprocessed brain MR image into a binary image with a cut-off threshold of 128 chosen 

in the initiative. Pixel values greater than 128 mapped as white, the others are marked as black.  

- In the second phase, an erosion method of morphology used to remove sporadic white pixels. Dilation 

anchors the segmented region as a result, the tumor area remains without any abnormalities. 

 

2.3.  Transformation 

The DWT was added separately to every dimension in the case of two-dimension images. As a 

result, each scale has four sub-bands (LL, LH, HH, and HL). For the next two-dimension DWT, the sub-band 

LL is hired. The LL sub-band is often considered the image's approximation component, while the detailed 

components of the image can be considered the LH, HL, and HH sub-bands. Therefore, to interpret the image 

detail, wavelets provide an easy hierarchical structure. Three-level decomposition of Harr wavelet was used 

in our proposed model. 

 

2.4.  Principal component analysis 

PCA is an important method to scale down the dimension of a data set composed of an over-sized 

number of interrelated variables while preserving much of the variants. It is done by converting the data set 

into a completely new set of ordered variables aligned with their variances or significance [24]. This 

approach has two effects: It orthogonalizes the input vector components so that they do not correlate with 

each other, and uncorrelated with each other in preparation for those with the most substantial variance come 

first and remove those components that add the smallest amount to the variance in the data collection. 

 

2.5.  Features extraction 

The analysis of texture effectively distinguishes natural and irregular tissues for human beholding 

and machine learning. Offers difference between normal and malignant tissues that cannot be observed by the 

human eye. It increases efficacy for early diagnosis, by picking effective quantitative features. In the 

initiative, statistical textural analysis-features (cross-correlation coefficient, pearson correlation, and tumor 

area) information from the segmented image intensities extracted. In the next step, textural features were 

obtained from the PCA components acquired from the LL sub-bands of the first three-level wavelet 

decomposition. 

 

2.5.1. Feature extraction from the segmented image 
In this method, four features (cross-correlation coefficient, pearson correlation, mean square error 

(MSE), and tumor area) were obtained from the segmented image. The textural features extracted listed: 

a. Cross-correlation coefficient  

It is a measure of similarity of two series as a function of the displacement of one relative to the other. The 

cross-correlation coefficients are more robust to changes of illumination than the MSE [25]. 

 

Cross − Correlation Coefficient =
∑ (𝑥𝑘− �̅�)(𝑦𝑘− �̅�)𝑘

√∑ (𝑥𝑘− �̅�)2
𝑘

  (1) 

 

b. Pearson correlation coefficient 

Pearson correlation evaluates if there is statistical support for a linear relationship, represented by a 

population correlation coefficient, between the same pairs of variables in the population. A parametric 

calculation is the Pearson Correlation [26]. 

 

Pearson Correlation Coefficient =
∑(x−x̅)(y−y̅)

√∑(x−x̅)2 ∑(y−y̅)
2
 (2) 

 

c. Mean square error 

It used by providing quantitative or similarity scores to compare two images and defined as [27]: 
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MSE =
1

m∗n
 ∑ ∑(f(x, y)  − f(̅x, y))2 (3) 

 

2.5.2. Feature extraction using hybrid DWT-PCA-GLCM method 

One of the most commonly used image-processing implementations of the gray level co-occurrence 

matrix (GLCM) and texture function has been developed by Haralick et al. [28]. The hybrid DWT-PCA-

GLCM is a DWT-PCA-based GLCM feature extraction method that combines the DWT and PCA method 

with GLCM. In this method, the three-wavelet decomposition levels significantly reduce the size of the input 

image, as shown in Figure 2. 

 

 

 
(a) (b) 

 

Figure 2. The procedures of 3-level 2D DWT; (a) abnormal brain MRI, (b) level-3 wavelet coefficients 

 

 

The wavelet coefficients image's top left corner denotes the level-3 approximation coefficients, the 

value of which is just 32×32=1024. The quantity of extracted features was reduced to 1024, as mentioned 

above. Nonetheless, it is also too big for estimation. PCA is utilized to further minimize the size of features to 

an optimum degree. Then the features are extracted using the GLCM algorithm from the PCA components. 

The statistics formulas for the features are listed: 

a. Mean (M) 

The image mean is determined by summing all the image pixel values divided by the total count of image 

pixels [27]. 

 

M=
1

m∗n
∑ ∑ f(x, y)n−1

y=0
m−1
x=0  (4) 

 

b. Standard deviation (SD) 

The second central moment is the standard deviation that defines the distribution of the probability of an 

observed population and can function as an inhomogeneity metric. A higher value implies a higher level of 

intensity and high contrast between an image's edges [27]. 

 

SD=√
1

m∗n
∑ ∑ (f(x, y) − M)2n−1

y=0
m−1
x=0  (5) 

 

c. Kurtosis (Kurt) 

The shape of the probability distribution of a random variable is defined as Kurtosis. It denoted as Kurt(X) 

for the random variable X and it defined as [27]: 

 

𝐾urt(𝑋)=(
1

m∗n
)

∑(f(x,y)−M)4|

SD4  (6) 

 

d. Energy (En)  

The quantifiable quantity of the degree of pixel pair repetitions is described as energy. It is defined as [28]. 

 

En=√∑ ∑ f(x, y)n−1
y=0

m−1
x=0

2
 (7) 

 

e. Coarseness (Cness) 

Coarseness is the textural analysis of an image as an indicator of roughness [27]. 
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Coarseness=
1

2m+n
∑ ∑ f(x, y)n−1

y=0
m−1
x=0  (8) 

 

f. Homogeneity: it is defined as [29]: 

∑ ∑
1

1+(𝑖−𝑦)2 . 𝑓(𝑥, 𝑦)𝑛−1
𝑦=0

𝑚−1
𝑥=0  (9) 

 

g. Variance: it is defined as [30]: 

 
 ∑ ∑ (f(x,y)−M)2n−1

y=0
m−1
x=0

m∗n
 (10) 

 

h. Auto correlation predictor: it is defined as [29]: 

 

∑ ∑  (x ∗ y). f(x, y)n−1
y=0

m−1
x=0  (11) 

 

i. Dissimilarity: it is defined as [29]: 

 

∑ ∑  |x − y|. f(x, y)n−1
y=0

m−1
x=0  (12) 

 

2.6.  Random forest classifier 

Classification is the method of arranging objects into different groups in an image that constitutes 

the final stage in the processing of images. Random forest classifiers are introduced and the outcomes are 

contrasted as well. Training samples were randomly selected and five cross-validations were employed to 

validate the robustness of the proposed system. 

Random forest is a supervised learning algorithm. It's just used for classification issues, though. As 

we all know, a forest is made up of trees and a more robust forest means more trees. Likewise, the random 

forest method generates decision trees from data samples and then retrieves the estimate from every one of 

them, and finally selects the most efficient voting solution. It is an ensemble approach that is stronger than a 

single decision tree and by integrating the effect, it eliminates the over-fitting [31]. The working of the 

random forest algorithm is summarized in the following steps [32]: 

- Start with collecting random samples from a given dataset first. 

- Next, for each sample, this algorithm can create a decision tree. Then, from any decision tree, it will get 

the prediction output. 

- Performed voting for each predicted result. 

- Select the foremost voted prediction as to the final prediction 

K folds are mostly partitioned purely at random, but certain folds may have a somewhat different 

distribution than other folds. Stratified K-fold cross-validation has also been used, where each fold has 

almost an equal class distribution [33], [34]. We would assume the 5-fold cross-validation in this study. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Data set 
The datasets consist of axial plane T2-weighted MR brain images of resolution 256×256 in-plane, 

retrieved from the Harvard Medical School website (URL: http:/med.harvard.edu/AANLIB/) and the OASIS 

dataset (URL: https:/www.oasis-brains.org/). Since T2 images, compared to T1 and PET modalities, are of 

greater contrast and better vision, we selected the T2 model. Consisting of 81 normal and 100 abnormal brain 

images, 181 images were chosen. 

 

3.2.  K-fold stratified cross-validation 

To eliminate this overfitting in the proposed system the cross-validation is applied. The overall 

classification precision will not improve by cross-validation, but it will make the classifier accurate and can 

be extended to other separate datasets. Three types are used in cross-validation methods: K-fold cross-

validation, random subsampling, and leave-one-out validation. Due to its properties, the K-fold cross-

validation is implemented and uses all data for training and validation. The method is used to make the whole 

dataset a K-fold partition; Repeat K times for training using K-1 folds and a left fold for validation, and 

eventually averages the error rates of the K experiment as shown in Figure 3. Table 1, demonstrates the 

setting of the training images and the validation images, as 5-fold cross-validation was used. 
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Figure 3. 5-fold cross-validation 

 

 

Table 1. The configuration (cross-validation) of training and validation images 
Total No.of 

images 

Training (145) Validation (36) 

Normal Abnormal Normal Abnormal 

181 65 80 16 20 

 

 

3.3.  Classification accuracy 

The results of the proposed system are obtained by using actual MR brain images. The proposed 

system is implemented by using C# development with Visual Studio. Net framework, which runs on the 

Windows 10 OS, Intel Core i7 processor, and 8 GB RAM, the proposed algorithm is carried out. Since MRI 

scan visual diagnosis is subjective and based on the radiologist's experience, texture analysis has been 

thoroughly researched to enhance the diagnosis of brain MRI scans. First, during this study, k means 

clustering algorithm and thresholding accompanied by morphological operations have been combined, and 

then apply DWT and PCA with the extraction of GLCM features, assessed as a classifier tool with random 

forest. The study deal with the extraction of segmented area features to detect and distinguish medical brain 

MR images of normal and abnormal tumor cells. Performance of the classification is measured in terms of 

accuracy, sensitivity, specificity, and ROC curve as shown in Figure 4. The classification measures can be 

determined as: 

 

Sensitivity =
TP

TP+FN
 (13) 

 

Specificity =
TN

TN+FP
 (14) 

 

Accuracy =
TP+TN

TP+TN+FP+FN
 (15) 

 

As seen in Table 2, the experimental results of the proposed algorithm are contrasted with prior research. The 

proposed system result leads to the conclusion that it makes as possible for clinical experts to decide and 

diagnose. 

 

 

Table 2. Comparison with previously proposed methods 
Reference Features methods Classifier Accuracy 

Nabizadeh et al. [35] First-order statistical, GLCM, GLRL, HOG, LBP SVM 97.4% 

Dvořák et al. [36] Searching about the pathological area by symmetry checking SVM 91.15% 

Hasan et al. [29] MGLCM MLP 97.8% 

Proposed System Hybrid DWT-PCA-GLCM RF 

98% Accuracy 

99.2% Sensitivity 

97.8% Specificity 

 

 

The proposed system is designed to classify and identify the brain MR image into normal and 

abnormal tumors. The accuracy of the system is achieved 98% for the tested dataset. Due to the statistical 

textural features were extracted from the PCA component of LL sub bands 3-level wavelet decomposition. 

By the results that have been achieved, concluded that the proposed method outperformed and 

Clearly distinguishes between normal and abnormal tumors, enabling clinical experts in making accurate 

diagnosis decisions. 
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Figure 4. ROC curve of the classification results 

 

 

4. CONCLUSION  

In this paper, a hybrid DWT+PCA+GLCM identifier system has been developed to classify the 

normal and abnormal MRIs of the brain based on hybrid techniques such as discrete wavelet transforms and 

PCA with random forest. The foremost important contribution of this paper is a proposal of a technique that 

combines them with GLCM as a robust tool for identifying normal MR brain from abnormal MR brain. This 

algorithm helps clinicians to enhance the accuracy of the diagnosis. Because most brain tumors look hyper-

intense in these images relative to normal brain tissue, it has been discovered that the statistical texture 

characteristics derived by GLCM are adequate to distinguish pathological patients from non-pathological 

patients when utilizing T2 weighted MR images. The experiments demonstrate that the proposed feature 

extraction tools with the RF classifier obtained 98% classification accuracy on the 181 MR images, over 

other popular methods in recent literature. 
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