
DOI: 10.4018/IJISP.2019040105

International Journal of Information Security and Privacy
Volume 13 • Issue 2 • April-June 2019

﻿
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

67

Design of Public-Key Algorithms Based 
on Partial Homomorphic Encryptions
Marwan Majeed Nayyef, Anbar University, Baghdad, Iraq

Ali Makki Sagheer, University of Anbar, Baghdad, Iraq

ABSTRACT

With the rapid development of cloud computing, which has become a key aspect to maintain the 
security of user information that may be highly confidential and maintained during transport and 
storage process. The reliance on traditional algorithms that are used to encrypt data are not secure 
enough because we cannot process the data only after decrypt. In this article is proposed the use of 
homomorphic encryption to solve this problem because it can deal with encrypted data without the 
decryption, which can lead to ensuring confidentiality of the data. A number of public-key algorithms 
are explained, which is based on the concept of homomorphic encryption. In this article an algorithm 
is proposed based on HE and it is similar to Menesez-EC but with one digit as a secret key according to 
its advantage, whereby reducing the cost of communication, and storage and provides high processing 
speed when compared with other algorithms. This algorithm provides enough security for a bank’s 
customer information and then compared with ECC, each of RSA and Piallier algorithms as evaluated.

Keywords
Elliptic Curve Cryptography, Homomorphic Encryption, Partial Homomorphic Encryption, Public Key 
Cryptography

1. INTRODUCTION

Early on, many researcher studies began on homomorphic encryption more in-depth. Homomorphic 
encryption was simplified and through advances in research, most of the research appeared to focus 
their efforts toward homomorphic encryption due to its importance in more aspects spatially in the field 
of the cloud computing in order to provide information security and maintaining that information from 
penetrating by the hackers (Chen, Ben, & Huang, 2014). Homomorphic Encryption is an important 
kind of encryption in computational science, it provides many techniques such as partially, somewhat 
and fully homomorphic encryption with the purpose of the securely store, transfer and dealing with 
ciphertext in a way that maintains the confidentiality and integrity of the data (Ogburn, Turner, & 
Dahal, 2013). Homomorphic encryption can be classified into partially and fully homomorphic 
encryption, with partial Homomorphic Encryption (PHE) use one operation in ciphertext whereas 
Fully Homomorphic Encryption (FHE) can use all operations in the ciphertext, and it is one of the 
most common new topics which make more of the researcher to deal with those concepts because 
of providing more security for data especially in the cloud environment (Suveetha & Manju, 2016).

There are two main general cryptosystems they are symmetric and asymmetric cryptosystem. 
AES, DES are symmetric-key algorithm and Elgamal, paillier and RSA are asymmetric cryptosystem, 
in this paper, we work in the public key encryption algorithms.
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In section 1, we would explain the concepts, functions and properties of homomorphic encryption. 
In section 2, Elliptic curve Cryptography is described, in section 3, describe encryption algorithms 
such as (RSA, Paillier, Elgamal, Goldwasser-Micali and Boneh-Goh-Nissim (BGN)) are based on 
homomorphic encryption properties. In section 4, we would explain the limitation of PHE. In section 
5, we would describe comparison between different algorithms of homomorphic encryption that give 
a general idea of all the algorithms. In section 6, the proposed algorithm is described, in section 7, we 
explain the experimental result of the proposed algorithm and compare ECC with other algorithms.

2. BACKGROUND

In 2012 Li Li, Ahmed A.Abd, XiamuNiu proposed new scheme with additive homomorphism property 
based on ElGamal-Elliptic Curve (ElGamal-EC) for transferring secret images over a channel which is 
unsecured instead of using ElGamal and RSA scheme. In this paper, the proposed scheme uses a shorter 
key to better performance than schemes based on ElGamal or RSA. Therefore, decryption of images 
requires lower processing compared with the method that uses the other additively homomorphic 
property in ElGamal-EC. Experimental results and analysis show that the proposed method is faster 
and has superior performance for RSA and ElGamal (Li, Abd El-Latif, & Xiamu, 2012).

In 2015, Kamal Kumar Chauhan; Amit K.S. Sanger, A. Verma, a secure method was developed 
for keeping data, Data security is an important aspect, especially when data transfer and storage over 
the internet (cloud computing), therefore various methods of standard encryption algorithm provide 
security for data in storage and transmission. In the traditional state data to be processed must be 
decrypted first, but this state makes data understandable to a cloud provider. Standard encryption 
algorithms are not sufficient to make data more secure. In this paper various schemes are proposed 
such as (Pillar, RSA, and Boneh-Goh-Nissim (BGN)) based on homomorphic encryption in cloud 
computing in order to secure data through processing state because of Homomorphic encryption allows 
the service provider to operate on ciphertext without decryption. The implementation of these schemes 
helps to provide security for data stored in cloud computing (Chauhan, Sanger, & Verma, 2015).

In 2016, Tannishk Sharma creates a voting system in order to solve the problem of the time 
consuming, obstruction and disruption which may happen. The development of Information 
Technology led us to propose an E - voting system to solve all these problems, E-voting system helps 
us to vote from any place. In this paper, an E-voting system proposed based on Paillier Homomorphic 
Encryption scheme in order to provide security for those systems through processing and transferring 
data in ciphertext form. The E – Voting System was executed successfully and contributed to data 
security which transfers over the internet and also ensures efficiency, privacy, universal verifiability 
and no vote duplication (Sharma, 2016).

In 2016, Quan Hong, Zhao, Wang, secure environment schemes are proposed to solve the problem 
of Secure Multiparty Computation (SMC), through the storage and processing of data more secure 
against attacks and any penetrating, especially in public environments. To protect the privacy of the 
data, data must be stored and processed in encrypted form in the cloud computing without recovering 
the original text, which is done through the implementation of one of homomorphic encryption 
schemes, and this paper, they have proposed the use of ُElliptic curved Cryptography based on the 
scheme of homomorphic encryption to solve SMC problem. This scheme has been implemented 
successfully, and get many benefits, including protection of privacy, the consumption of energy and 
communication consumption are compared with an algorithm of RSA encryption (Hong, 2016).

In 2017, Wenxiu Ding et al, exhibited another way for processing encrypted data using 
Homomorphic Encryption that is dealing with the ciphertext. HE limitation only allows person owns 
a homomorphic secret key to decrypt processed ciphertexts which do not allow for multiple users. In 
this paper, they propose a Homomorphic Re-Encryption Scheme (HRES) extended to multi-user to 
access processed ciphertexts. The proposed schemes are implemented to evaluate their performance 
and security (Wenxiu, Yan, et al., 2017).
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3. HISTORY OF HOMOMORPHIC ENCRYPTION

Initially, partial homomorphic encryption uses only one mathematical operation in the ciphertext, 
in 1978 R. Rivest, L. Adleman and M. Dertouzos is the first researchers who proposed the concept 
of homomorphic applied to the RSA algorithm that was homomorphic on multiplicative operation. 
In progress in 1982 Goldwasser and Silvio suggested another algorithm called Goldwasser that is 
homomorphic on XOR which is applying a homomorphic encryption with safety remarkable level, in 
1999, Paillier also suggested a security encryption system that was homomorphically with addition 
operation, as well as another algorithm such as Elgamal and Elgamal-Elliptic curve algorithms that are 
homomorphic on multiplication operation (Rivest, Adleman, & Michael, 1987; Benzekki, Fergougui, 
& El Alaoui, 2016; Yi, Paulet, & Bertino, 2014; Chauhan, Sanger, & Verma, 2015).

The important aspect is proposing a homomorphic encryption scheme depending on the addition 
and multiplication operation (Two operations). Dan Boneh, EU-Jin Goh and Kobbi Nissim in 2005 
built first homomorphic encryption with two operations, which have unlimited number of additions 
and one multiplication. This way is depending on elliptic curves, the encryption method is adding 
two messages homomorphically by multiplying the two ciphertexts (Yang & Zhang, 2014; Coron, 
Naccache, & Tibouchi, 2012).

The first fully homomorphic encryption scheme was created in 2009 and produced by Gentry 
(2009), Gentry first generates a somewhat homomorphic scheme using ideal lattices which only 
support a certain number of operations performed on a ciphertext and according to the fact that the 
ciphertext has a limited number of “noise” that increases when multiplication operation increased 
which finally effected on the decryption results (Dasgupta & Pal, 2016), then it is bootstrapped to 
make it fully homomorphic. There are many issues used for reducing the problem of noise that is 
happening through encryption and decryption of data, so the noise increased with every multiplying 
and add to the encrypted result (Ogburn, Turner, & Dahal, 2013).

Because of complex computationally, Gentry and Halevi have implemented Gentry’s scheme 
over ideal lattices. In (2010) the authors Van Dijk et al offer fully homomorphic encryption scheme 
(DGHV) over integer instead of ideal lattices, but it has a key with large size (Dasgupta & Pal, 2016).

Craig Gentry and Shai Halevi at (2011) develop an approach that contained a mixture of (somewhat 
HE) SWHE and other encryption types called multiplicatively homomorphic encryption (MHE) 
(Ogburn, Turner, & Dahal, 2013).

In 2013 Gupta and Sharma create a scheme which, depending on symmetric keys with smaller 
size that based on operations, including matrix computation such as matrix inversion this can lead 
to making computationally less expensive, in 2014 Sharma also proposed a new scheme that works 
with one bit; this scheme is generalized by Aggarwal et al. (2016).

3.1. Concept of Homomorphic Encryption
It allows persons to use a specific mathematical operation applied to the ciphertext to getting results to 
be the same results if the same operation has been applied to the original text. This concept is shown 
in the following Figure 1. When the user needs to add two numbers such as 5 and 10, the result is 
15, the two numbers are encrypted through multiplied with 5, then the sum of the encrypted number 
is 75 as a result that is stored on the cloud server, the user download data from cloud and recovered 
the original text (Chauhan, Sanger, & Verma, 2015).

3.2. Homomorphic Encryption Functions
In our proposal, we are dealing with asymmetric encryption which consists of two keys, one for 
encryption and another for decryption, so it is necessary to find a procedure used to create these keys 
according to the nature of algorithm’s work, so there are four algorithms or (primitives) of a public 
key encryption schemes are KeyGen, Enc, and Dec, and an additional Eval:
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1. 	 Key Generation Function: It is an algorithm in a client which gets security parameter(k) to 
generate each of the secret key (sk) and public key(pk), (pk, sk)← KeyGen (k);

2. 	 Encrypt Function: Is a random algorithm that produces a ciphertext (c) which came from using 
plaintext and sk, c← Enc (sk,m);

3. 	 Evaluation Functions: The server uses function f for evaluating the ciphertext, and it’s done 
by using f and pk, Eval (f, pk,c), where c= (c1, . ., ct) and t refer to the number of inputs of the 
circuit (Chen, Ben, & Huang, 2014; Gentry, 2009). Therefore Dec (sk, Eval (f, pk, c)) = C (m1, 
m2 ……mt), Where C is a computation which performs in the client;

4. 	 Decryption Function: Is a random algorithm that produces a plaintext (m) which came from 
ciphertext and sk m← Dec (c, sk), and after evaluation, we get the original text as follows Dec 
(sk, Eval (f, pk, c)).

4. HOMOMORPHIC ENCRYPTION PROPERTIES

Suppose that:

m1, m2 ∈ M and c1 and c2 ∈ C then m1 = Dec (c1) and m2 = Dec (c2)	

1. 	 Additive Homomorphic Encryption:

m1 + m2 mod n = Dec (c1 + c2 mod n)	

2. 	 Multiplicative Homomorphic Encryption:

m1 ⁎ m2 mod n = Dec (c1 ⁎ c2 mod n) (Filho, Silva, & Miceli, 2016)	

Figure 1. Homomorphic encryption
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4.1. Elliptic Curve Cryptosystem (ECC)
Elliptic curve cryptography is an approach of public-key cryptography, which is based on the structure 
of algebraic and discrete logarithms of elliptic curve over finite fields Fp. Let us say that q is a prime 
number, and an elliptic curve EC over a prime field Fp is shown in the following equation EC:

y 2 (mod p) = x3 + ax2 + b (mod p)	

where (a and b) ∈ Fp and satisfies the equation:

4a3 + 27b2 ≠ 0 (mod p)	

ECC security depends on the Discrete Logarithm Problem (ECDLP) and provides the same 
security level compared with RSA but with small key size, therefore the use of ECC with Homomorphic 
encryption is faster and more efficient than the use of RSA, Elgamal etc, (2015).

4.2. Algorithms of Partial Homomorphic Encryption

RSA cryptosystem: R. LRivest, and A. Shamir and L. Adelman (RSA) is the first algorithm that 
works with the property of HE, which is considered high security in the field of homomorphic 
encryption (Yi, Paulet, & Bertino, 2014). It is a partial Homomorphic Encryption scheme that 
operates only with the multiplication operation (Gerasimov, Epishkina, & Kogos, 2017; Sharma, 
2016).

5. KEY GENERATION

1. 	 Select a random two prime number which is p and q;
2. 	 Compute N = p * q and φ (N) = (p - 1) * (q - 1);
3. 	 An integer number e is selected which 1 < e < φ(N) if it satisfies the property gcd (e, φ(N)) =1;

Figure 2. Homomorphic encryption functions
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4. 	 Compute integer d, which (1 < d < φ (N)) that is a multiplicative inverse of e if it satisfies e*d 
≡ 1 (mod φ (N));

5. 	 Finally, public key and private key are generated corresponding to pk= (N, e) and sk = (p, q, d).
Encryption: The message (M) is converted to ASCII which is an integer number (M ∈ Zn). M 

is encrypted to get a ciphertext C based on pk(N, e):

C = Me mod N	

Decryption: Recover the message M= (m1…mn) from ciphertext C= (c1……cn) by using sk 
(p, q, d):

m = cd mod N	
m = (me)d mod N	
m = me-d=1 mod N	

5.1. Multiplicative Homomorphic Encryption Property of RSA
We said that RSA cryptosystem is homomorphically with multiplicative property:

If Enc (m1 * m2) = Enc(m1) *Enc(m2)	

So assume that c1 and c2 two ciphertext:

c1 = m1
e mod N	

c2 = m2
e mod N	

then:

c1 * c2 = (m1* m2) 
e mod N [6,18]	

5.2. ElGamal Cryptosystem
Elgamal and Taher (Elgamal) are another well-known homomorphic encryption scheme whose key 
exchanges depending on Diffie-Hellman. The effective security of the algorithm based on computing 
discrete logarithms (Coron, Naccache, & Tibouchi, 2012). According to the Diffie-Hellman algorithm, 
we can generate two large prime numbers (p, g) which g (generator) is primitive of the root. We 
suppose that Alice and Bob need to exchange our key for encryption and decryption the message 
(Dawahdeh, Yaakob, & Sagheer, 2015).

5.3. Key Generation

1. 	 Generate an integer number which represents the secret (private) key of Alice and 1< a < p – 1;
2. 	 Compute Alic’s public-key (pka) = ga mod p;
3. 	 Public key (pk) = {p, g, pka}.

Any user wants to send his message to another user, his message must encrypt with the receiver’s 
public key which shows in the following:
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1. 	 The massage M represents as an integer number where 0 < = M <= p – 1;
2. 	 Generate an integer number b which represents the secret (private) key of Bob and 1< b < p – 1;
3. 	 Compute Shared Secret-key (SSK) = pka

b mod p, pka = ga → SSK= (ga) b mod p;
4. 	 Compute pkb = gb mod p, pkb is a Bob’s public-key which sent with cipher text to the Alice for 

decryption.
Encryption: Message M is encrypted as follows:

c2= SSK * M mod p	

Pair (pkb, c2) are sent to the receiver as an encrypted message.

Decryption: When Alice wants to decrypt the encrypted message (pkb, c2) with her secret key a, 
Alice must compute the following:

1. 	 Compute the SSK= pkb 
a mod p, pkb = gb → SSK= (gb) a mod p which SSK must be equal 

to Bob’s SSK (Shared Key);
2. 	 We compute the inverse number of SSK (SSK-1);
Finally recovered plaintext from ciphertext as:

M=c2* SSK-1 (Stallings, 2011; Brakerski & Vaikuntanathan, 2011)	

5.4. Multiplicative Homomorphic Encryption Property of ElGamal
When two messages m1 and m2 are encrypted to two ciphertext (pkb, c2), so the homomorphic property 
of Elgamal is shown as:

Enc (m1*m2 mod p) =Enc(m1) *Enc(m2) mod p	
Enc (m1, pk) = (gb1, m1 * pka

b1) which pka = ga1 mod p	
Enc (m2, pk) = (gb2, m2 * pka

b2) and pka = ga2 mod p	
Enc (m1, pk) * Enc (m2, pk) = ((gb1* gb2), (m1* hb1*m2* hb2))	
Enc (m1, pk) * Enc (m2, pk) = (gb1+b2), (m1* m2) * hb1+b2) (Gerasimov, Epishkina, & Kogos, 2017)	

Paillier cryptosystem: It is a public key cryptosystem that is represented as partial Homomorphic 
Encryption which operates only with an addition operation (Chauhan, Sanger, & Verma, 2015). 
It is suitable for some applications such as a bank, especially in the field of cloud computing.

Key Generation:
1. 	 Generate a two random of prime numbers (p, q) which gcd(p*q, (p-1)*(q-1)) = 1;
2. 	 Compute n = p * q;
3. 	 k (n) =LCM (p – 1, q - 1), which LCM means (the least common multiplier) and k (n) means 

Carmichael function;
4. 	 Choose a random generator g which g ∈ Zn2 and gcd (gk mod n2, n) =1 (Chauhan, Sanger, 

& Verma, 2015);
5. 	 Compute a multiplicative inverse (u) which respect to module n, u = (L (gk mod n2)) -1 mod 

n where L(s) = (s-1) /n (Kocaba, 2016), So two of the keys are generated.

The Public key is pk (n, g).
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The Secret key is sk (k, u) (Sharma, 2016).

Encryption:
1. 	 We need to encrypt the message (m) which m ∈ Zn2;
2. 	 Select number r randomly;
3. 	 Calculate ciphertext c by using the public key (n, g), so c = gm * rn mod n2.

Decryption:
1. 	 The message m is recovered from the ciphertext c by using secret key (k, u);
2. 	 m= L (ck mod n2) * k (n) mod n.

Addition Homomorphic Encryption property of Paillier:

Enc (m1+m2) =Enc (m1) *Enc (m2)	
Enc (m1, pk) = gm1 * r1

n mod n2	
Enc (m2, pk) = gm2 * r2n mod n2	
Enc (m1, pk) *Enc (m2, pk) = (gm1* r1

n mod n2) *(gm2* r2n mod n2)	
Enc (m1, pk) * Enc (m2, pk) = gm1+m2(r1* r2) 

n (mod n2)	
Enc (m1, pk) * Enc (m2, pk) = Enc (m1 + m2, pk) (Sharma, 2016; Gerasimov, Epishkina, & Kogos, 
2017)	

6. GOLDWASSER-MICALI CRYPTOSYSTEM

Goldwasser and Micali (GM) are public key encryption and famous homomorphic encryption 
scheme which was developed by Goldwasser and Micali in 1982.This algorithm is characterized 
by being defined as the first scheme of public key encryption that is provably secure. However, its 
cryptosystem is not efficient, and ciphertext takes several hundred times greater than the Plaintext. 
GM is represented as partial Homomorphic Encryption which operate on XOR. The scheme relies 
on determining whether the value of a specific h is quadratic residue or not, quadratic residue shows 
as the follows (Goldwasser & Micali, 1982):

1. 	 xp = h mod p, xq = h mod q;
2. 	 If {\displaystyle x_{p}^{(p-1)/2}\equiv 1{\pmod {p}}} xp 

(p-1)/2 ≡ 1 mod p and xq
(q-1)/2 ≡ 1 mod 

q, then h is a quadratic residue mod N;
3. 	 Quadratic non-residue x.

Key Generation:
1. 	 Alice randomly and independently generate two large prime integer p and q;
2. 	 Compute N = p* q;
3. 	 Public key pk= (h, N). The secret key sk = (p, q).

Encryption: Assume Bob decided to send a message M to Alice:
1. 	 Bob first converts the m as a string of bits M= (m1, ..., mn);
2. 	 For each bit of M, Bob randomly generates a value ri which satisfies the following gcd(ri, 

N) = 1;
3. 	 Compute ciphertext C:

ci= ri
2 * h mi mod N	

ciphertext outputs c = (c1, ..., cn)	
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Decryption: For each value i, by using factorization (p, q), Alice computes if the value ci is a 
quadratic residue or not; if true, mi = 0, otherwise mi =1 message outputs m = (m1... mn).

XOR Homomorphic Encryption property of GM	

Goldwasser scheme has the homomorphic property on XOR:

Enc(m1⊕m2) = Enc(m1). E(m2)	

where:

Enc (m1) = c1= r1
2 h m1 mod N, Enc(m2) =c2= r2

2 *h m2 mod N	
c1*c2 = (r1

2 * h m1) (r2
2 * h m2) mod N	

c1*c2 = (r1 *r2)
2 (h m1 + m2) mod N = Enc(m1⊕m2) (Suveetha & Manju, 2016; Stallings, 2011)	

7. BONEH-GOH-NISSIM CRYPTOSYSTEM (BGN)

Dan Boneh, EU-Jin Goh and Kobbi Nissim in 2005 build a public-key cryptosystem with two 
operations and performs unlimited addition operation with one multiplication operation, this type 
of PHE is near to FHE, and the encryption method is adding two messages homomorpically by 
multiplying the two ciphertext (Yi, Paulet, & Bertino, 2014).

Key Generation:

1. 	 Generate a random of two prime p1, p2 ∈ Z;
2. 	 Compute n = p1 * p2;
3. 	 Generate a two generator g, u ∈ Z, h = u p2;
4. 	 Public key pk= (n, g, h, e, G, G1), and secret key sk= (p1).

(G, G1) refers to multiplicative group with order n and e, so G * G1 → G1 is bilinear map.

Encryption: The message m is encrypted with a public key pk:

C=gm * hr mod n	

Decryption: The ciphertext C and secret key are used to re-get the message m, C p1= (g p1) m, which 
m is getting depending on discrete algorithm of C p1 to (g p1) as a base.

Addition Homomorphic Encryption property of BGN:

c1=gm1 * hr1 mod n	
c2=gm2 * hr2 mod n	
c1*c2= g(m1+m2) * h(r1+r2) mod n (Chauhan, Sanger, & Verma, 2015)	
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8. ELGAMAL-ELLIPTIC CURVE CRYPTOSYSTEM (DAWAHDEH, 
YAAKOB, & SAGHEER, 2015; HONG, WANG, & ZHAO, 2016)

Key generation:
1. 	 Choose publicly prime field Fp and an elliptic curve EC over Fp;
2. 	 Randomly select a base point G ∈ EC, which G represents as a large subgroup of EC, and 

n is the order of EC points;
3. 	 Bob randomly chooses secrete key d in range [2, n];
4. 	 Computes QB = d*G;
5. 	 Make QB as public-key and d as secret-key.

Encryption: When Alice wants to send the message M to Bob, she follows the following steps:
1. 	 Mapping the message M as a point on EC;
2. 	 She randomly chooses secrete key e in range [2, n];
3. 	 Compute QA=e*G, where QA is a public-key of Alice;
4. 	 Compute SSK= e*QB, (i.e. SSK=e (d*G)), where SSK (Shared Secret key);
Ciphertext is obtained by the following equation:

C = Pm + SSK	

6. 	 Then Transfer ciphertex and Alice public key (C, QA).
Decryption: On the other side, Bob receives the encrypted text for the purpose of turning it into the 

original text as follows:
1. 	 Compute SSK = d(QA) = d(e*G);
Subtract SSK from the ciphertext point C:

Pm = ci – SSK	

9. ADDITIVE HOMOMORPHIC ENCRYPTION OF ELGAMAL-ELLIPTIC CURVE

Let massage M= {m1, m2, m3…….mn}, and Pm is an elliptic curve point derived from m. If we say that 
Elgamal-elliptic curve cryptosystem is homomorphically with additive property, it must satisfy the 
following (Hong, Wang, & Zhao, 2016):

Enc (Pm1 + Pm2……Pmn) mod p= Enc(Pm1) + Enc(Pm2) …. Enc (Pmn) mod p	

From Equation (10):

Enc (Pm1 + Pm2……Pmn) = (Pm1+ SSK) + (Pm2 + SSK) …… (Pmn + SSK)	

Enc Pmi
i

n

( )
=
∑
1

= Pmi
i

n

i

n

= =
∑ ∑+
1 1

SSK 	

Enc Pmi
i

n

( )
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∑
1
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10. MENEZES ELLIPTIC CURVE (M-EC) CRYPTOSYSTEM

In this type of encryption, we do not need to convert the message to the points on the elliptic curved, 
where the encryption process immediately after the message conversion to ASCII code.

Key generation:
1. 	 Choose publicly prime field Fq and an elliptic curve EC over Fq;
2. 	 Randomly select a base point G ∈ EC, which G represents as a large subgroup of EC, and 

n is the order of EC points;
3. 	 Bob randomly chooses secret key d in range [2, n];
4. 	 Computes QB= d*G;
5. 	 Make QB public-key and d secret-key.

Encryption: When Alice wants to send the message M to Bob, she follows the following steps:
1. 	 The message M is represented as a point of two numbers which M = (m1, m2);
2. 	 She randomly chooses secret key e in range [2, n];
3. 	 Compute QA=e*G, where QA is a public-key of Alice;
4. 	 Compute SSK= e*Qb, (i.e. SSK= e(d*G)), where (Shared secret key) SSK= (k1, k2);
Ciphertext C= (c1, c2) is obtained by the following equation:

c1 = m1* k1 mod p	
c2= m2 * k2 mod p	

Decryption: On the other side, Bob receives the encrypted text for the purpose of turning it into the 
original text as follows:
1. 	 Compute SSK = d(QA) = d(e*G);
Subtract SSK from the ciphertext point C:

m1 = c1 * k1
-1 mod p	

m2= c2 * k2
-1 mod p	

Multiplicative Homomorphic Encryption of modifying Menezes-Elliptic Curve:

Enc (m1*m2) = Enc(m1) *Enc (m2)	

where:

Enc ((m1, sk), pk) = m1* k1 mod p and Enc ((m2, sk), pk) = m2. k2 mod p	
Enc(m1*m2) = (m1*k1 mod p) (m2*k2 mod p)	
Enc(m1*m2) = m1*m2 (k1*k2) mod p	

11. COMPARISON OF SEVERAL SCHEMES OF HOMOMORPHIC ENCRYPTION

Table 1 presents schemes of partial homomorphic encryption with his homomorphic properties 
which can operate with either addition or multiplication operations (RSA cryptosystem, Goldwasser 
cryptosystem, Elgamal cryptosystem, Paillier cryptosystem) except BGN which operates with 
homomorphic addition and one homomorphic multiplication (Gerasimov, Epishkina, & Kogos, 2017).
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12. THE PROPOSED SYSTEM

The author, proposed a secure system to preserves Bank information, so in this paper, we propose 
an algorithm work on the base of decimal big integer. The secret key of the proposed algorithm is 
generated based on elliptic curve cryptography, and used to encrypt all personal information in the 
bank because the sensitivity of the information, since no one is allowed to know its contents or even 
access to it. Therefore, an algorithm has been proposed to encrypt this information and be dealt with 
by using Homomorphic Encryption to reach the intended person for the purpose of dealing with 
private data in it as in Figure 3.

Steps of implement:

1. 	 Setup: We depend NIST security parameter (SP) of Elliptic Curve with 160-bit to be used in 
key generation, so that SP = (B, a, b, p) where B is the Base point of ECC;

2. 	 Key generation:
a. 	 Select random number d;
b. 	 Compute K, K=d*B = (k1, k2);
c. 	 Make secret key sk=k1;

Table 1. (PHE) Partially Homomorphic Encryption

Encryption Scheme Addition Multiplication Application

RSA (Gerasimov, Epishkina, & 
Kogos, 2017) No yes Banking and secure internet, and credit 

card transaction

ElGamal (Kocaba, 2016) No yes Hybrid systems

Paillier (Sharma, 2016) yes no Threshold scheme, e-voting system

Goldwasser-Micali XOR no Cloud computing

BGN (Chauhan, Sanger, & 
Verma, 2015) yes 1 Security of integer polynomials.

Elgamal-Elliptic Curve 
(Goldwasser & Micali, 1982) yes no Cloud Computing, E-voting

Menezes Elliptic curve 
(Sunuwar & Samal, 2015) No yes Cloud Computing, E-voting

Figure 3. System model
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3. 	 Encryption:
a. 	 Convert plaintext PT= (m1…mn) to the corresponding decimal number;
b. 	 ci = mi * k1 mod p;

4. 	 Decryption:
a. 	 Recover the Plaintext from Ciphertext (C);
b. 	 mi = ci * k1

-1 mod p;
Evaluation of Homomorphic Encryption:

c1*c2 = Enc(m1) * Enc(m2)	

where:

c1= m1 * k1 mod p	
c2 = m2 * k1 mod p	

then:

c1*c2 = (m1 * k1) * (m2 * k1) mod p	
c1*c2 = (m1* m2) * k1

n mod p	

There are two sides, client and server, the client uses the security parameter (SP) to generate 
secret and public key with 160-bit, the secret key known only by the client to be used for decrypt the 
plaint text. The server receives the encrypted data to be stored at the server storage. When there is a 
specific request from the client, the server retrieves the encrypted data from the server storage then 
performs computation on the cihpertext until we reach to result(y), the encrypted results are sent to 
the client for decryption and perform certain processes as in Figure 3.

13. EXPERIMENTAL RESULTS

13.1. The Implementation of Proposed Algorithm
Table 2 shows the encryption/decryption time of the proposed algorithm, ElGamal and RSA algorithm 
processes in millisecond using 160-bit as a key size. Figures 4 and 5 shows the encryption/decryption 
results plot of the Table 2.

The evaluation of Homomorphic Encryption represents the correct relationship between the 
original text and its encryption so that we obtain identical results in the case of evaluation of the 
original text and encryption text at the same time, Therefore, this implementation represents the time 
required to reach matching.

13.2. Comparison of Implementing Algorithms
In this paper, several methods are used with a different security level, therefore the security is passed 
on the mechanism of ECC public-key in terms of storage, space and speed. Computation cost is 
obtained by the time it takes from encryption process. Communication cost is obtained from the 
exchange number of bytes on the communication channel.

An experiment is performed among RSA, Paillier and ECC homomorphic encryption algorithms 
using different message size (32, 64, 128, 256, 512, 1024) bytes for the purpose of computation 
cost, and the size of the key in that experience is 512-bit, where we notice that the ECC gives the 
best performance and results when compared with RSA and Paillier in terms of computation and 
communication cost are shown in Figures 7 and 8.
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14. CONCLUSION

This paper explains the basic partial homomorphic encryption (PHE) concept and different asymmetric 
encryption algorithms depending on the properties of homomorphic encryption, and it is considered as 
an important key for people who wish to conduct their research in a specific cryptographic algorithm 
based on homomorphic encryption. This paper helps us to propose an algorithm that can be applied 
to the homomorphic encryption for the purpose of privacy preservation of the bank’s customers, 
Therefore the proposed algorithm may be similar to Menezes-Elliptic Curve scheme, but with on 
key digit and also is evaluated with another scheme and get a better performance because it works 
as ECC, where it gives us the best efficiency compared with RSA and Paillier in terms of key size, 
less storage and speed. This paper also presents an overview of Partial Homomorphic Encryption.

Table 2. Execution time of encryption and decryption text

Message Byte

Time in ms and 160-bit Key Length

Proposed Algorithm ElGamal RSA

Enc Dec Enc Dec Enc Dec

5 0 1 1 3 6 10

10 1 1 1 4 9 21

30 2 4 3 13 32 53

50 3 9 4 29 72 119

100 7 16 8 55 219 388

Figure 4. Encryption time for the text using 160-bit key length
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Figure 5. Decryption time for the text using 160-bit key length

Table 3. Evaluation of proposed algorithm, ElGamal and RSA algorithm with key size 160-bit

No. # Byte Proposed Algorithm ElGamal RSA

1. 5 0 0 1

2. 10 0 1 2

3. 30 1 2 3

4. 50 1 2 4

5. 100 2 3 8
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Figure 6. Evaluation time of homomorphic encryption using 160-bit key size

Figure 7. Comparison of ECC, RSA and Paillier in terms of computational cost
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Figure 8. Comparison of communication cost between ECC and (RSA, Paillier)
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