
A Dynamic Scatter Search Algorithm
for Solving Traveling Salesman Problem

Aymen Jalil Abdulelah, Khalid Shaker, Ali Makki Sagheer
and Hamid A. Jalab

Abstract Scatter Search (SS) is a population-based evolutionary metaheuristic
algorithm that selects solutions from a specific memory called a reference set
(RefSet) to produce other diverse solutions. In this work, a dynamic SS algorithm is
proposed to solve the symmetric traveling salesman problem (TSP). To improve the
performance of SS, a dynamic RefSet update and a dynamic population update are
proposed. To test the performance of the proposed algorithm, computational
experiments are carried out on the basis of the benchmark instances of the problem.
The computational results show that the performance of the proposed algorithm is
effective in solving the TSP.

Keywords Dynamic scatter search ⋅ Traveling salesman problem ⋅ Combinatorial
optimization ⋅ Metaheuristic algorithm

1 Introduction

Scatter search (SS) is a population-based metaheuristic (P-metaheuristic) algorithm.
SS was first introduced in 1977 by Glover [1] as a heuristic for integer program-
ming. Originally, solutions are intentionally generated to assess characteristics in

A.J. Abdulelah ⋅ K. Shaker ⋅ A.M. Sagheer
College of Computer Science and Information Technology,
University of Anbar, Ramadi, Iraq
e-mail: ayman.ja90@gmail.com

K. Shaker
e-mail: khalidalhity@gmail.com

A.M. Sagheer
e-mail: ali_makki@computer-college.org

H.A. Jalab (✉)
Multimedia Unit, Faculty of Computer Science and Information Technology,
Universiti Malaya, 50603 Kuala Lumpur, Malaysia
e-mail: hamidjalab@um.edu.my; dr_hamidjalab@yahoo.com

© Springer Science+Business Media Singapore 2017
H. Ibrahim et al. (eds.), 9th International Conference on Robotic, Vision, Signal
Processing and Power Applications, Lecture Notes in Electrical Engineering 398,
DOI 10.1007/978-981-10-1721-6_13

117

various areas of the solution space. SS orients its explorations systematically rel-
ative to a set of reference points that typically consist of good solutions previously
obtained by problem-solving efforts. The criteria for “good” in this case are not
restricted to objective function values, and may apply to sub collections of solutions
rather than to a single solution, as in the case of solutions that differ from each other
according to certain specifications. SS tries to avoid using many random stages;
therefore, it does not use characteristic evolutionary algorithm operators, such as
mutation and crossover. It is uses a small population, known as a reference set
(RefSet), whose solutions are combined to construct new solutions through a sys-
tematic technique [2].

SS explicitly uses different approaches for both search intensification and search
diversification. It incorporates search components from P-metaheuristics and single
solution-based metaheuristics (S-metaheuristics) [3].

The traveling salesman problem (TSP) is a routing problem and it is classified as
NP-hard combinatorial problem (NP-hard is a class of problems that are exponential
time to be solved in optimality, “at least as hard as the hardest problems in NP”) [3].
The TSP searches for the shortest route to visit a collection of cities and return to
the starting point. Although the statement of the problem is very simple, it is a
well-known NP-hard combinatorial optimization problem solved in polynomial
time. Currently, the TSP has been comprehensively studied and solved using var-
ious meta-heuristic approaches, such as tabu search, neural networks, evolutionary
algorithms, bees algorithm, and ant colony system.

Several previous studies have adopted SS algorithms in solving the TSP. Liu [4]
introduced a hybrid SS for the probabilistic TSP (PTSP). In the hybrid SS, the
nearest neighbor rule, edge recombination crossover operator, and threshold
accepting are incorporated into the SS framework. The algorithm provides
high-quality solutions for efficiently solving the PTSP. Pantrigo et al. [5] proposed
the SS particle filter algorithm to solve the dynamic TSP. This work focused on
reducing execution time without sacrificing the quality of the estimated solution.
The authors effectively applied SS to a challenging dynamic TSP. Sagheer et al. [6]
proposed an improvement of SS using a bees algorithm and achieved solution
diversity. The results of the study suggested that the use of SS algorithms may
provide solutions that are inferior to those of some other metaheuristic algorithms.

SS has also been used to solve other routing problems. Russell and Chiang [7]
utilized an SS framework to solve a vehicle routing problem with time windows.
They proved that an SS framework can be used to generate quality solutions and
that SS is competitive compared with the best existing context-dependent meta-
heuristics. Tang et al. [8] developed an efficient SS procedure to solve a vehicle
routing problem. Improved versions of the nearest neighbor heuristic and arc
combination were respectively utilized in the improvement stage and in the com-
bination stage.

118 A.J. Abdulelah et al.

2 Basic Scatter Search Design

SS methodology is very flexible because its elements can be implemented in various
ways and degrees of refinement. In this section, a basic SS design is presented, and an
improveddesign is explained.The implementation of SS is composedoffive stages. So,
the improvements of the algorithm depend on how these five stages are implemented.

The mechanisms of SS are not limited to a single uniform design; thus, different
strategic possibilities may be explored to prove the effectiveness of SS in a specific
implementation. These principles are the bases of our improvement of SS.

Diversification Generation Stage. In this stage, a population (Pop) of the
diverse trial solutions is generated. The size of the population is related to the size
of RefSet.

Improvement Stage. In this stage, a trial solution from the population is
transformed into one or more improved solutions. If the input trial solution occurs is
not improved, the “improved” solution is considered to be the same as the input
solution. SS uses a local search algorithm for solution enhancement.

RefSet Update Stage. In this stage, a RefSet is built and updated. The said
RefSet consists of the best solutions found. These are so organized to ensure that
other parts of the stage can efficiently access the solution. Solutions gain mem-
bership to RefSet according to their quality or their diversity. Thus, the objective of
building the RefSet is to ensure both the diversity the high-quality of solutions and
to overcome the local optimum.

Subset Generation Stage. In this stage, RefSet is controlled, and subset groups
of solutions are produced. These solutions are used as bases for generating com-
bined solutions.

A Solution Combination Stage. In this stage, the given subset of solutions gen-
erated by the previous stage is transformed into one ormore combined solution routes.

The size of Pop (PopSize) is typically at least 10 times the size of the RefSet (b),
that is,

PopSize=b× 10. ð1Þ

The initial RefSet is built in the RefSet update stage. RefSet is a collection of both
high-quality and diverse solutions that are used to generate new solutions via the
combination stage. In a basic design, a simple mechanism is used to build the initial
RefSet, which is then updated during the search. The size of the RefSet (b) is given by

b= b1 + b2. ð2Þ

Hence,

RefSetj j= RefSet1j j+ RefSet2j j. ð3Þ

A Dynamic Scatter Search Algorithm for … 119

The construction of the initial quality RefSet (RefSet1) starts with the selection of
the best b1 solutions from the Pop. These solutions are added to the RefSet and
removed from the Pop.

For each solution in the Pop, the minimum of the distances to the solutions in
RefSet1 is computed. Then, the solution with the maximum of these minimum
distances is selected. This solution is added to the initial diverse RefSet (RefSet2)
and removed from Pop and the minimum distances are updated. The process is
repeated b2 times. The resulting RefSet1 has b1 high quality solutions and RefSet2
has b2 diverse solutions [2].

In current work, we use b1 = 10, and b2 = 5 [2]. After generating the new
solutions in the solution combination stage, these solutions are enhanced by
improvement stage, and a solution becomes a member of the RefSet if one of the
following requirements is satisfied: ‘The objective function value of the new
solution is better than that of the solution with the worst objective value in RefSet1’
and ‘The diversity value of the new solution is better than that of the solution with
the worst diversity value in RefSet2’ [5].

The algorithm continues to operate while the RefSet is being changed. If no
change occurs in the RefSet, then the algorithm will check if the iterations reached
the maximum number of iterations (MaxIter) detected by the user, and subsequently
displays the good solution(s) reached; else, a new population is generated, and
RefSet is added to the start of this population [6].

3 Dynamic Scatter Search

RefSet is the core of any SS framework. If all the reference solutions are alike at any
given time during the search, as measured by an appropriate metric, then the SS
procedure is most likely incapable of improving the best solution found even if a
sophisticated procedure is employed to produce combinations solutions. The pro-
posed algorithm starts by generating the initial diverse population (Pop). Each
solution in the population is then evaluated to find its quality. After this, an iteration
of SS will be performed on the candidate pool to generate a new RefSet.

The pseudo-code for Dynamic Scatter Search algorithm implemented in this
paper is given in Fig. 1.

The first stage performed of SS iteration is RefSet creation as seen in above
pseudo code. After that, the process will enter to the local scatter search
loop. Before everything, inside this loop to choose the candidate solutions, which
will be used in generating RefSet, is done be using subset generation stage. The
second stage inside local loop is combination stage which used to combine the
candidate solutions produced by subset generation stage. Each solution produced
from combination stage will be improved to better one with improvement stage.
The final step is to replace the some worst solutions with the best solutions from the
RefSet, in order to make the search are more close more possible from the optimal

120 A.J. Abdulelah et al.

solution. This technique is called RefSet update and it will make sure that the best
solutions always carried over RefSet.

In the basic design, the new solutions that become members of the RefSet are not
combined until all qualified pairs are subjected to the combination stage. The new
RefSet is constructed with the best solutions in the union of a pool and the solutions
currently in the RefSet. This process is called static RefSet update. The alternative to
this static update is the RefSet dynamic update technique, which applies the com-
bination stage to new solutions. Instead of waiting until all the combinations have
been generated to update RefSet, a new trial solution warrants admission in RefSet.
Therefore, the set is immediately updated before the next combination is performed.

Diversification aims to produce solutions that differ from each other, such that
they represent a different solution space for the problem. By contrast, the ran-
domization is used to construct solutions that are simply different from each other.
Moreover, measuring the diversity value between solutions allows the algorithm to
keep these solutions uniformly distributed among different regions [9]. As seen
previously, RefSet2 has the most diverse solutions. The diversity value among the
solutions in Pop and RefSet1 are measured; therefor, the solutions with the highest
value of diversity are included in RefSet2.

In the basic SS design, a new trial solution is assessed for entry into RefSet. If the
new trail solution (resulting from the combination stage) is better than the RefSet
solution with the worst quality, then it will immediately be transferred to the RefSet,
whereas the worst will be removed from the RefSet. If the new trial solution is not
better than the worst RefSet solution in terms of quality, then it will be discarded.

Furthermore, in the basic SS design, when the solution that generated from the
combination process is compared with those in the RefSet and has no permitted to
be in the RefSet, the solution will immediately be rejected and eliminated. In the
improved design, we use Pop dynamic update, which allows rejected solutions to
be allocated to the general Pop. In other words, the solutions produced in the
combination stage are given a new chance to be re-improved in the improvement
stage.

Pop = Diversification Generation function ()
Preprocessing function ()
RefSet=
While (stopping criteria not satisfied //General Loop
Dynamic Pop Update function ()
RefSet Update function () //Creation RefSet
While (RefSet not been updated) //Inner Loop
Subset Generation function ()
Combination and Dynamic RefSet Update Function ()
Improvement function ()
RefSet Update function () //Updating RefSet

EndWhile
EndWhile

Fig. 1 Dynamic scatter search pseudo code

A Dynamic Scatter Search Algorithm for … 121

4 Computational Experience

The improved SS has been programmed and realized to solve the TSP. In this work,
the proposed algorithm is examined on 20 different instances. The improved SS is
coded using Microsoft Visual C# 2010 Ultimate versions and performed on a
personal computer with Intel

®

Core™ i3 2.53 GHz CPU and 3 GB RAM running
on 32-bit Windows 8 operating system.

The results obtained for the usual TSPLIB problems with less than 532 cities,
used for example in [10, 11], are presented in Table 1. In this table, the first column
presents the name of the instance to which the size of the instance is joined.
Instances are arranged in descending order by size. The second column indicates
the optimum tour length. The other columns present the results for the different
approaches considered. All the results are obtained after 32 runs of the algorithm.
The percentage deviation from the optimum of the mean solution value after 32
runs is described in the column “%PDM”. The percentage deviation from the
optimum of the best solution value found is presented in column “%PDB”.

Table 1 Comparison of the improved SS with the Memetic and Co-Adaptive algorithms among
20 TSPLIB instances with less than 600 cities

Problem Optimal Scatter search Memetic SOM Co-AdaptiveNet
%
PDM

%
PDB

Sec %
PDM

%
PDB

Sec %
PDM

%
PDB

Sec

eil51 426 0.88 0.00 1.10 2.14 1.64 0.25 2.89 0.94 0.04
berlin52 7542 0.54 0.00 1.22 2.01 0.00 0.30 7.01 0.00 0.05
st70 675 2.32 0.00 1.24 0.99 0.59 0.36 1.72 0.89 0.09
eil76 538 1.38 0.00 1.73 2.88 2.04 0.39 4.35 2.04 0.08
kroA100 21282 2.91 0.63 8.03 1.14 0.24 0.53 1.31 0.57 0.18
kroB100 22141 3.28 0.96 6.69 1.75 0.92 0.52 2.20 1.53 0.18
eil101 629 2.07 0.48 7.22 3.15 2.07 0.51 3.78 1.11 0.19
lin105 14379 3.64 0.88 5.98 0.34 0.00 0.55 1.08 0.00 0.20
pr107 44303 1.25 0.15 4.01 0.67 0.14 0.62 4.41 0.18 0.19
pr124 59030 3.78 1.75 2.22 1.52 0.26 0.63 2.93 2.36 0.29
bier127 118282 5.94 1.43 4.12 2.78 1.25 0.80 3.00 0.69 0.29
ch130 6110 3.93 1.87 5.50 2.83 0.80 0.66 2.82 1.13 0.30
ch150 6528 5.75 2.33 6.40 2.95 1.67 0.78 3.23 1.78 0.40
kroA150 26524 5.05 0.91 8.71 2.73 1.64 0.76 3.06 1.55 0.43
kroB150 26130 3.36 1.23 7.67 1.61 0.74 0.77 2.60 1.06 0.40
pr152 73682 4.77 2.02 1.49 2.60 1.57 0.89 2.06 0.74 0.43
kroA200 29368 2.69 0.95 10.01 2.20 1.08 1.06 3.27 0.92 0.58
kroB200 29437 3.31 1.53 10.76 3.92 1.82 1.07 2.31 0.88 0.58
lin318 42029 6.04 2.89 14.04 5.51 3.63 1.86 4.31 2.65 1.53
att532 27686 8.08 5.84 24.25 4.21 3.29 3.80 5.31 4.24 3.22

Av 3.69 1.51 7.34 2.61 1.41 0.89 3.44 1.6 0.52

122 A.J. Abdulelah et al.

The results of our comparative computational tests are reported in Table 1.
These tests use the 20 problems solved by [10, 11]. For the test, we adopted 15
runs, whereas the authors of the previous two studies provided the best solution
found after 10 runs. Nevertheless, such difference does not affect the calculated
execution time because time is based on the rate of the implementation of all the
solutions. Table 1 shows the comparison between the best results obtained by the
proposed algorithm in this work with the best known results from the literature i.e.
Memetic and Co-adaptive. It can be clearly seen that the best results obtained by
our approach are competitive to the previously best known results on average
considering both the mean (PDM) and the best (PDB) solutions.

Generally, our approach with the small size instances DSS has an efficient record
in quality of solutions, but with the large instances there is a clear gap especially in
computation times. According to the results shown in above table, the proposed SS
algorithm is not the best choice compared with the other tested algorithms. The
proposed algorithm takes more computation time; however, it generates results that
are close to those of the other algorithm. To be competitive, the solution quality and
the computation time of the proposed SS, both must be improved both by a factor ten.

5 Conclusions

This paper presents a dynamic Scatter Search (SS) algorithm to solve the
well-known TSP problem. The effectiveness of the dynamic Scatter Search algo-
rithm was compared with that of the basic of SS design and two other algorithms
based on the basis of the percentage deviation of the mean solution (%PDM) and
the percentage deviation of the best solution (%PDB). Compared with a previous SS
algorithm with basic design, the proposed SS algorithm improves the solution
quality on standard test problem cities but with a possibly higher computation time.
Compared with other approaches, the proposed improved SS is relatively simple to
understand and to implement, and it offers good solutions. However, the proposed
SS consumes a longer execution time, but with the dynamic updating technique, the
time gap is decreased as much as possible. In our future study, the proposed SS
algorithm will be improved by a combining it with advanced RefSet specifically
dedicated to the TSP. As given that most of the computation time consumed is
related to the main loop of SS, study a lower-cost inexpensive improvement loop
coupled with some a number of standard construction strategies may be considered
for the future approach.

Acknowledgments The study is supported by Project No.: RG312-14AFR from University of
Malaya.

A Dynamic Scatter Search Algorithm for … 123

References

1. Glover Fred (1977) Heuristics for integer programming using surrogate constraints. Decis
Sci J 8:156–166

2. Glover F, Laguna M, Mart´ı R (2000) Fundamentals of scatter search and path relinking.
Control Cybern 39:653–684

3. El-Ghazali T (2009) Metaheuristics from design to implementation, 1st edn. Wiley
4. Liu Y-H (2007) A hybrid scatter search for the probabilistic traveling salesman problem.

Computers and Operations Research, vol 34. Elsevier Ltd, pp 2949–2963
5. Pantrigo JJ, Duarte A, Sánchez Á, Cabido R (2005) Scatter search particle filter to solve the

dynamic travelling salesman problem. In: Evolutionary computation in combinatorial
optimization. Lecture notes in computer science, vol 3448. Springer, Berlin Heidelberg,
pp 177–189

6. Sagheer AM, Sadiq AT, Ibrahim MS (2012) Improvement of scatter search using Bees
Algorithm. In: 6th International Conference, Signal Processing and Communication Systems
(ICSPCS), IEEE, Gold Coast. pp 1–7

7. Russell RR, Chiang WC (2006) Scatter search for the vehicle routing problem with time
windows. European J Oper Res 169:606–622. Elsevier

8. Tang J, Zhang J, Fung RYK (2011) A scatter search for multi-depot vehicle routing problem
with weight-related cost. Asia-pacific J Oper Res 28:323–348

9. Alkhazaleh HA, Ayob M, Othman Z, Ahmad Z (2013) Diversity measurement for a solution
of team orienteering problem. Int J Adv Comput Technol (IJACT). 5:21–28

10. Créput J, Koukam A (2009) A memetic neural network for the euclidean traveling salesman
problem. Neurocomputing 72 1250–1264. Elsevier Ltd

11. Cochrane EM, Beasley, JE (2003) The Co-adaptive neural network approach to the euclidean
travelling salesman problem. Neural Netw 16:1499–1525. Elsevier Ltd

124 A.J. Abdulelah et al.

	A Dynamic Scatter Search Algorithm for Solving Traveling Salesman Problem
	Abstract
	1 Introduction
	2 Basic Scatter Search Design
	3 Dynamic Scatter Search
	4 Computational Experience
	5 Conclusions
	Acknowledgments
	References

