

ISSN: 0067-2904

Strong and Weak Forms of μ -Kc-Spaces

Nadia A. Nadhim1*, Haider J. Ali2, Rasha N. Majeed3

Department of Mathematics, Faculty of Education for Pure Sciences, University of AL-Anbar, AL-Anbar, Iraq
 Department of Mathematics, College of Science, University of AL-Mustansiriyah, Baghdad, Iraq
 Department of Mathematics, Faculty of Education for pure sciences Abn AL-Haitham, University of Baghdad, Baghdad, Iraq

Received: 5/5/ 2019 Accepted: 21/9/2019

Abstract

In this paper, we provide some types of μ -Kc-spaces, namely, μ - $K(\alpha c)$ -(respectively, μ - $\alpha K(\alpha c)$ -, μ - $\alpha K(c)$ - and μ - $\theta K(c)$ -) spaces for minimal structure spaces which are denoted by (m-spaces). Some properties and examples are given. The relationships between a number of types of μ -Kc-spaces and the other existing types of weaker and stronger forms of m-spaces are investigated. Finally, new types of open (respectively, closed) functions of m-spaces are introduced and some of their properties are studied.

Keywords: Kc-space, minimal structure spaces, μ -Kc-space, α -open , θ -open.

الصيغ القوية و الضعيفة للفضاء μ-Κc

نادیه علی ناظم **، حیدر جبر علی 2، رشا ناصر مجید 3

أقسم الرياضيات، كليه التربية للعلوم الصرفة ،جامعه الانبار ، الانبار ،العراق.
قسم الرياضيات ،كليه العلوم ،الجامعة المستنصرية ،بغداد ،العراق.
قسم الرياضيات ،كليه التربية للعلوم الصرفة ابن الهيثم ،جامعه بغداد، بغداد ،العراق.

الخلاصة

1. Introduction

The concept of Kc-space was introduced by Wilansky [1], that is "A topological space $(\mathcal{X}, \mathcal{T})$ is said to be Kc-space if every compact subset of \mathcal{X} is closed". Also, many important properties were provided by that study, e.g., "Every Kc-space is T_1 -space" and "every T_2 -space is Kc-space". In 1996, Maki [2] introduced the minimal structure spaces, shortly m-spaces, that is "A sub collection μ of $P(\mathcal{X})$ is called the minimal structure of \mathcal{X} , if $\emptyset \in \mu$ and $\mathcal{X} \in \mu$, (\mathcal{X}, μ) is said to be m-structure space". The elements of μ are called μ -open sets and their complements are μ -closed sets, which is a generalization of topological spaces. Popa and Noiri [3] studied the m-spaces and defined the notion of continuous functions between them. In 2015, Ali et al. [4] defined the concept of Kc-space with

*Email: na8496292@gmail.com

-

respect to the m-space to obtain a new space which they called the μ -Kc-space. A weaker and stronger form of open sets plays an important role in topological spaces. In 1965, Najasted [5] introduced the concept of α -open sets as a generalization of open sets. That is, let (X, \mathcal{T}) be a topological space and a nonempty subset \mathcal{A} of X is said to be α -open set, if $\mathcal{A} \subseteq Int(Cl(Int(\mathcal{A})))$. In 2010, Min [6] generalized the concept of α -open sets to m-spaces. On the other hand, in 1968, Velicko [7] introduced the concept of θ -open sets. That is "Let (X, \mathcal{T}) be a topological space, $\mathcal{N} \subseteq X$, a point $b \in X$ is said to be an $\theta\mu$ -adherent point for a subset \mathcal{N} of X, if $\mathcal{N} \cap Cl(G) \neq \emptyset$ for any open set G of G and G and G and G are adherent point is said to be an G-closure of G which is denoted by G and G and G are adherent point. Also, in 2018, Makki [8] defined G-open sets in G-open sets in G-space. The aim of the present paper is to introduce and study new type of G-G-G-open, respectively G-open sets, with respect to the G-open. We study the basic properties of each space and give the relationships between them. Also, we introduce new kinds of continuous, open (respectively closed) functions on G-spaces and investigate their properties.

2.Preliminaries

Let us recall the following definitions, properties and theorems which we need in this work

Definition 2.1 [3] Let \mathcal{X} be a non-empty set and P(X) be the power set of \mathcal{X} . A sub collection μ of $P(\mathcal{X})$ is called the minimal structure of \mathcal{X} , if $\emptyset \in \mu$ and $\mathcal{X} \in \mu$, (\mathcal{X}, μ) is said to be m-structure space (shortly, m-spaces). The elements of μ are called μ -open sets and their complements are μ -closed sets. For a subset \mathcal{B} in an m-space on (\mathcal{X}, μ) , the interior (respectively, closure) of \mathcal{B} denoted by $\mu Int(\mathcal{B})$ (respectively, $\mu Cl(\mathcal{B})$) is defined as follows:

 $\mu \mathrm{Int}\,(\mathcal{B}\,) = \cup \, \{U \colon U \subseteq \, \mathcal{B} \, , \, U \in \mu \} \ \, \text{and} \ \, \mu \mathcal{C}l(\mathcal{B}) = \cap \, \{F \colon \mathcal{B} \, \subseteq \, \mathcal{F}, \mathcal{F}^c \in \mu \, \}.$

Remark 2.2 Note that according to a previous study [9], μ Int(\mathcal{B}) (respectively, μ Cl(\mathcal{B})) is not necessarily μ -open (respectively, μ -closed), but if \mathcal{B} is μ -open then $\mathcal{B} = \mu$ Int(\mathcal{B}), respectively, and if \mathcal{B} is μ -closed, then

 $\mathcal{B} = \mu Cl(\mathcal{B}).$

Definition 2.3 [10] an *m*-space (\mathcal{X}, μ) has a property β (respectively Υ) if the union (respectively intersection) of any family (respectively finite subsets) of μ also belongs to μ .

Definition 2.4 [6] A subset A of an m-space (\mathcal{X}, μ) is said to be an $\alpha\mu$ -open, if $A \subseteq \mu Int(\mu Cl(\mu Int(A)))$. The complement of $\alpha\mu$ -open set is called $\alpha\mu$ -closed set or, equivalently, $\mu Cl(\mu Int(\mu Cl(A))) \subseteq A$.

Definition 2.5 [6] An *m*-space (\mathcal{X}, μ) has a property αY , if the intersection of finite $\alpha \mu$ -open sets is an $\alpha \mu$ -open set in \mathcal{X} .

Remark 2.6 [6] From Definition 2.4, it is clear that every μ -open (respectively μ -closed) set is an $\alpha\mu$ -open (respectively $\alpha\mu$ -closed) set.

Definition 2.7 [10] Let (\mathcal{X}, μ) be an m-space. A point $x \in \mathcal{X}$ is called an $\alpha \mu$ -adherent point of a set $A \subseteq \mathcal{X}$ if and only if $G \cap A \neq \emptyset$ for all $G \in \mu$ such that $x \in G$. The set of all $\alpha \mu$ -adherent points of a set A is denoted by $\alpha \mu ICl(A)$, where $\alpha \mu Cl(A) = \bigcap \{F: A \subseteq F, F \text{ is } \alpha \mu\text{-closed set}\}$.

Proposition 2.8 [6] A subset F of m-space \mathcal{X} is $\alpha\mu$ -closed set in \mathcal{X} iff $F = \alpha\mu Cl(F)$.

Definition 2.9 [7] Let (\mathcal{X}, μ) be an m-space, $\mathcal{A} \subseteq \mathcal{X}$. Then $a \in \mathcal{X}$ is said to be $\alpha\mu$ -interior point to \mathcal{A} iff $\in U \subseteq \mathcal{A}$, for some $\alpha\mu$ -open set U and $x \in U$. The $\alpha\mu$ -interior point of a set \mathcal{A} is all $\alpha\mu$ -interior point to \mathcal{A} and denoted by $\alpha\mu Int(\mathcal{A})$, where $\alpha\mu Int(\mathcal{A}) = \bigcup \{U: U \subseteq \mathcal{A}, U \text{ is } \alpha\mu\text{-open set}\}$.

Proposition 2.10 [6] any subset of m-space \mathcal{X} is $\alpha\mu$ -open set iff every point in it is $\alpha\mu$ -interior point. **Remark 2.11** [6] If (\mathcal{X}, μ) is an m-space, then:

- 1. The union of any family of $\alpha\mu$ -open sets is $\alpha\mu$ -open set.
- 2. The intersection of any two $\alpha\mu$ -open sets may be not $\alpha\mu$ -open set.

Definition 2.12 [12] An m-space, (\mathcal{X}, μ) is called μ -compact if any μ -open cover of \mathcal{X} has a finite subcover. A subset \mathcal{H} of an m-space is said to be μ -compact in \mathcal{X} , if for any cover by μ -open of \mathcal{X} , there is a finite subcover of \mathcal{H} .

Proposition 2.13 [11] Every μ -closed set in μ -compact space is an μ -compact set.

Definition 2.14 [6] An m-space (\mathcal{X}, μ) is said to be $\alpha\mu$ -compact space if any $\alpha\mu$ -open cover of \mathcal{X} has a finite subcover. A subset \mathcal{B} of m-space \mathcal{X} is called $\alpha\mu$ -compact, if any $\alpha\mu$ -open set of \mathcal{X} which covers \mathcal{B} has a finite subcover of \mathcal{B} .

Remark 2.15 Any $\alpha\mu$ -compact is μ -compact set. However the converse is not necessarily true as shown by the following example.

Example 2.16 Let \mathcal{R} be the set of real numbers and \mathcal{X} be a non-empty set such that $\mathcal{X}=\{x\} \cup \{r: r \in \mathcal{R}\}$, where $x \in \mathcal{X}$. Also $\mu=\{\phi, \mathcal{X}, \{x\}\}$, then $\mathbb{C}=\{\{x, r\}: r \in \mathcal{R}\}$ is an $\alpha\mu$ -open cover to \mathcal{X} . Since $\{x, r\} \subseteq \mu Int \left(\mu Cl(\mu Int(\{x, r\}))\right) = \mathcal{X}$, so $\{x, r\}$ is an $\alpha\mu$ -open set. Now, \mathbb{C} is an $\alpha\mu$ -open cover to \mathcal{X} , but it has no finite subcover to \mathcal{X} , since, if we remove $\{x, 50\}$ then the reminder is not cover \mathcal{X} (cover all \mathcal{X} except 50), and it is infinite cover. Hence, \mathcal{X} is not $\alpha\mu$ -compact space and it is clear that \mathcal{X} is μ -compact space, since the only μ -open cover of \mathcal{X} is \mathcal{X} itself, which is one set, that is, a finite open cover to \mathcal{X} .

Definition 2.17 [10] An *m*-space is called an μ - T_1 -space, if for any two points a, b in \mathcal{X} , $a \neq b$ there is two μ -open sets N, M such that $a \in \mathbb{N}$, but $b \notin \mathbb{N}$ and $b \in \mathbb{M}$ but $a \notin \mathbb{M}$.

Proposition 2.18 [4] An *m*-space is μ - T_1 -space if and only if every singleton set is μ -closed set, whenever \mathcal{X} has β property.

Definition 2.19 [10] An *m*-space is said to be $\alpha\mu$ - T_1 -space, if for every two t points c, d in \mathcal{X} , there are two $\alpha\mu$ -open sets \mathcal{K} , \mathcal{H} with $c \in \mathcal{K}$, but $c \notin \mathcal{H}$ and $d \in \mathcal{H}$ but $d \notin \mathcal{K}$.

Remark 2.20 [10] Every μ - T_1 -space is $\alpha\mu$ - T_1 -space.

Definition 2.21 [10] An *m*-space (\mathcal{X} ,) is called μ - T_2 -space (respectively $\alpha\mu$ - T_2 -space), if for any two distinct points x, y in \mathcal{X} , there are two μ -open (respectively $\alpha\mu$ -open) U, V, such that $x \in U, y \in V$, and $U \cap V = \emptyset$.

Definition 2.22 [4] An *m*-space (\mathcal{X}, μ) is said to be μ -*Kc*-space if any μ -compact subset of \mathcal{X} is μ -closed set.

Example 2.23 Let \mathcal{R} be the real numbers, $(\mathcal{R}, \mu_{\text{U}})$ is the usual μ -space which is μ -Kc-space.

Proposition 2.24 [12] Every μ -compact set in μ - T_2 -space, that has the property β and Υ , is μ -closed set.

Remark 2.25 [4]

- 1. Every μ -Kc space is μ - T_1 -space.
- 2. Every μ - T_2 -space with the property β and Υ is μ -Kc-space.

Definition 2.26 Let $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be a function. Then f is called:

- 1. m-continuous [15] iff for any μ' -open $\mathcal N$ in , the inverse image $f^{-1}(\mathcal N)$ is an μ -open set in $\mathcal X$.
- 2. αm -continuous [6] iff for any μ' -open set \mathcal{M} in \mathcal{Y} , the inverse image $f^{-1}(\mathcal{M})$ is an $\alpha\mu$ -open set in \mathcal{X} .

Proposition 2.27 [14] The *m*-continuous image of μ -compact is μ' -compact.

Definition 2.28 [4] A function $f: (\mathcal{X}, \mu) \to (\mathcal{Y}, \mu')$ is said to be m-homeomorphism, if f is injective, surjective, continuous and f^{-1} continuous. If there exists an m-homeomorphism between (\mathcal{X}, μ) and (\mathcal{Y}, μ') then we say that (\mathcal{X}, μ) m-homeomorphic to (\mathcal{Y}, μ') .

Definition 2.29 [13] Let (\mathcal{X}, μ) be m-space, \mathcal{F} be a subset of \mathcal{X} and $x \in \mathcal{X}$. A point x is called an $\theta\mu$ -interior point of \mathcal{F} if there is $\mathcal{C} \in \mu$ such that $x \in \mathcal{C}$ and $x \in \mu Cl(\mathcal{C}) \subseteq \mathcal{F}$. And $\theta\mu$ -interior set which is denoted by $\theta\mu Int(\mathcal{F})$ is the set of all $\theta\mu$ -interior points. A subset \mathcal{F} of \mathcal{X} is called an $\theta\mu$ -open set if every point of \mathcal{F} is an $\theta\mu$ - interior point.

Definition 2.30 [13] Let (\mathcal{X}, μ) be m-space, $H \subseteq \mathcal{X}$, a point $b \in X$ is said to be an $\theta \mu$ -adherent point for a subset H of \mathcal{X} , if $H \cap \mu Cl(G) \neq \emptyset$ for any μ -open set G of \mathcal{X} and $b \in H$. The set of $\theta \mu$ -adherent point is said to be an $\theta \mu$ -closure of H, which is denoted by $\theta \mu Cl(H)$. A subset H of \mathcal{X} is called $\theta \mu$ -closed set if every point to H is an $\theta \mu$ -adherent point.

Example 2.31 Any subset of a discrete m-space (\mathcal{R}, μ_D) on a real number \mathcal{R} is $\theta\mu$ -closed set and $\theta\mu$ -open set.

Definition 2.32 [8] An *m*-space (\mathcal{X}, μ) is said to have the property θY (respectively $\theta \beta$) if the intersection (respectively union) of any finite number (respectively family) of $\theta \mu$ -open sets is an $\theta \mu$ -open set.

Remark 2.33 [8] If an *m*-space (\mathcal{X}, μ) has $\theta \Upsilon$ property, then every $\theta \mu$ -closed is an μ -closed.

Definition 2.34 [8] Let (\mathcal{X}, μ) be m-space, \mathcal{X} is said to be $\theta\mu$ -compact if any $\theta\mu$ -open cover of X has a finite subcover. A subset A of an m-space (\mathcal{X}, μ) is said to be $\theta\mu$ -compact if for any $\theta\mu$ -open cover $\{V_{\alpha} : \alpha \in I\}$ of \mathcal{X} and cover A then there is a finite subset $\{\alpha_0, \alpha_1, \alpha_2, ..., \alpha_n\}$ such that $A \subseteq \bigcup_{i=1}^n V_{\alpha_i}$. **Example 2.35** Let (\mathcal{R}, μ_{ind}) be an m-space where μ_{ind} be indiscrete m-space on a real number \mathcal{R} , so

is $\theta\mu$ -compact.

Remark 2.36 [8] Every μ -compact with the property $\theta\beta$ is $\theta\mu$ -compact.

Definition 2.37 [8] An m-space (\mathcal{X}, μ) is called $\theta \mu$ - T_2 -space, if for every two points a, b that belong to \mathcal{X} , $a \neq b$, there is $\theta \mu$ -open sets M and N containing a and b, respectively, such that $M \cap N = \emptyset$.

Definition 2.38 [8] Let (\mathcal{X}, μ) and (\mathcal{Y}, μ') be two *m*-spaces and $f: (\mathcal{X}, \mu) \to (\mathcal{Y}, \mu')$ be a function. Then f is called:

- 1. θm -continuous function iff for any μ' -closed (μ' -open) subset \mathcal{K} of \mathcal{Y} , the inverse image $f^{-1}(\mathcal{K})$ is $\theta \mu$ -closed ($\theta \mu$ -open) set in \mathcal{X} .
- 2. θ^*m -continuous function iff for every $\theta\mu'$ -closed ($\theta\mu'$ -open) \mathcal{M} subset of \mathcal{Y} , the inverse image $f^{-1}(\mathcal{M})$ is μ -closed (μ -open) set in \mathcal{X} .
- 3. $\theta^{**}m$ -continuous function iff for any \mathcal{N} $\theta\mu'$ -closed ($\theta\mu'$ -open) \mathcal{N} subset of \mathcal{Y} , the inverse image $f^{-1}(\mathcal{N})$ is $\theta\mu$ -closed ($\theta\mu$ -open) set in \mathcal{X} .
- 4. θm -closed function if f(F) is $\theta \mu'$ -closed set in \mathcal{Y} for each μ -closed subset F of \mathcal{X} .
- 5. θ^*m -closed function if f(F) is μ' -closed set in \mathcal{Y} for each $\theta\mu$ -closed subset F of X.

Proposition 2.39 [8] The $\theta^{**}m$ -continuous image of $\theta\mu$ -compact is $\theta\mu'$ -compact.

Proposition 2.40[8] If $f: (\mathcal{X}, \mu) \to (\mathcal{Y}, \mu')$ is an *m*-homeomorphism and \mathcal{B} is an $\theta \mu'$ -compact set in \mathcal{Y} then $f^{-1}(\mathcal{B})$ is an $\theta \mu$ -compact set in \mathcal{X} , with \mathcal{X} has the property $\theta \mathcal{B}$.

3. Strong and weak forms of μ-Kc-spaces

In this section, we provide some weak forms of μ -Kc-space, namely μ - $K(\alpha c)$ -space, μ - $\alpha K(c)$ -space and μ - $\alpha K(\alpha c)$ -space. In addition, we introduce μ - $\theta K(c)$ -space as a strong form of μ -Kc-space.

Definition 3.1 An *m*-space (\mathcal{X}, μ) is said to be μ - $K(\alpha c)$ -space if every μ -compact set in \mathcal{X} is an $\alpha \mu$ -closed set.

Now, we give some examples to explain the concept of μ - $K(\alpha c)$ -space.

Example 3.2 The discrete *m*-space (\mathcal{X}, μ_D) is μ - $K(\alpha c)$ -space.

Example 3.3 Let $\mathcal{X} = \{1, 2, 3\}$ and let $\mu = \{\emptyset, \mathcal{X}, \{1\}\}$. Then (\mathcal{X}, μ) is not μ - $K(\alpha c)$ -space, since there exists an μ -compact set $\{1, 2\}$ in \mathcal{X} but it is not $\alpha \mu$ -closed.

To show that Definition 3.1 is well defined, we give the following example to illustrate that there is no relation between the concepts of μ -compact set and $\alpha\mu$ -closed set.

Example 3.4

- 1. In the discrete m-space $(\mathcal{R}, \mu_{\mathbf{D}})$ where \mathcal{R} is a real number, \mathbb{Q} is the rational numbers subset of \mathcal{R} , \mathbb{Q} is $\alpha\mu$ -closed but not μ -compact set.
- In the indiscrete m-space (R, μ_{ind}), Q is μ-compact but not αμ-closed set.

Remark 3.5

- 1. Every μ -Kc space is μ - $K(\alpha c)$ -space.
- 2. In discrete *m*-space, the two definitions of μ -*Kc*-space and μ -*K*(αc)-paces are satisfied. The following example indicates that the converse of Remark 3.5 part (1) is not necessarily hold.

Example 3.6 Let (\mathcal{X}, μ) be an m-space, $\mathcal{X} = \{a, b, c\}$, $\mu = \{\emptyset, \mathcal{X}, \{a\}\}$, so $\{c\}$ is μ -compact since $\{c\}$ is finite set. Also it is $\alpha\mu$ -closed set since $\mu Cl(\mu Int(\mu Cl\{c\})) = \emptyset \subseteq \{c\}$, so \mathcal{X} is μ - $K(\alpha c)$ -space, but not μ -Kc-space since $\{c\}$ is not μ -closed set.

Proposition 3.7 An $\alpha\mu$ -compact subset of $\alpha\mu$ - T_2 -space is $\alpha\mu$ -closed, whenever \mathcal{X} has $\alpha\Upsilon$ property. **Proof:** Let \mathcal{B} be $\alpha\mu$ -compact in $\alpha\mu$ - T_2 -space. To show that \mathcal{B} is $\alpha\mu$ -closed, let $p \in \mathcal{B}^c$, since \mathcal{X} is $\alpha\mu$ -

Proof: Let \mathcal{B} be $\alpha\mu$ -compact in $\alpha\mu$ - I_2 -space. To show that \mathcal{B} is $\alpha\mu$ -closed, let $p \in \mathcal{B}^c$, since \mathcal{X} is $\alpha\mu$ - I_2 -space. So for every $q \in \mathcal{B}$, $p \neq q$, there exist $\alpha\mu$ -open sets G, H with $p \in H$, $q \in G$, such that $G \cap H = \emptyset$. Now the collection $\{G_{q_i}: q_i \in \mathcal{B}, i \in I\}$ is $\alpha\mu$ -open cover of \mathcal{B} . Since \mathcal{B} is $\alpha\mu$ -compact set, then there is a finite subcover of \mathcal{B} , so $\mathcal{B} \subseteq \bigcup_{i=1}^n G_{q_i}$. Let $H^* = \bigcap_{i=1}^m H_{q_i}(p)$ and $G^* = \bigcup_{i=1}^m G_{q_i}$, then H^* is an $\alpha\mu$ -open set $I_i \in \mathcal{A}$ (since $I_i \in \mathcal{A}$ has property $I_i \in \mathcal{A}$). Claim that $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ (since $I_i \in \mathcal{A}$) as a contradiction, then $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ for some $I_i \in \mathcal{A}$ and suppose that $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ has a contradiction, then $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ has a contradiction, then $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ has a contradiction, then $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ has a contradiction, then $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ has a contradiction, then $I_i \in \mathcal{A}$ has $I_i \in \mathcal{A}$ has

Theorem 3.8 Every αμ-closed set in αμ-compact space is αμ-compact set.

Proof: Let (\mathcal{X}, μ) be $\alpha\mu$ -compact, A is $\alpha\mu$ -closed set in \mathcal{X} , and $\{V_{\alpha}\}_{\alpha\in I}$ is an $\alpha\mu$ -open cover of A, that is $A\subseteq \bigcup_{\alpha\in I}V_{\alpha}$, where V_{α} is $\alpha\mu$ -open in \mathcal{X} . $\forall \alpha\in I$, since $\mathcal{X}=A\cup A^c\subseteq \bigcup_{\alpha\in A}V_{\alpha}\cup A^c$, also A^c is $\alpha\mu$ -open (since A is $\alpha\mu$ -closed set in \mathcal{X}). So $\bigcup_{\alpha\in I}V_{\alpha}\cup A^c$ is $\alpha\mu$ -open cover for \mathcal{X} which is $\alpha\mu$ -compact space, then there exists $\alpha_1,\alpha_2,\alpha_3,\ldots,\alpha_n$ such that $\mathcal{X}\subseteq \bigcup_{i=1}^nV_{\alpha_i}\cup A^c$, so $A\subseteq \bigcup_{i=1}^nV_{\alpha_i}$. Then $\bigcup_{i=1}^nV_{\alpha_i}$, $i=1,2,3,\ldots,n$ is a finite subcover of A. Therefore A is $\alpha\mu$ -compact set.

Remark 3.9 In the above theorem, if we replace the $\alpha\mu$ -compact by μ -compact, the theorem will not be true

Now, we introduce the weak form of μ - $K(\alpha c)$ -space which was introduced in Definition 3.1. **Definition 3.10** A space \mathcal{X} is said to be μ - $\alpha K(\alpha c)$ -space if any $\alpha \mu$ -compact subset of \mathcal{X} is $\alpha \mu$ -closed set

Example 3.11 Let (\mathcal{R}, μ_D) be a discrete m-space where \mathcal{R} is a real number. Let \mathbb{Q} is $\alpha\mu$ -compact subset of \mathcal{R} , then \mathbb{Q} is μ -compact in \mathcal{R} from Remark 2.15, and \mathbb{Q} is μ -closed so it is $\alpha\mu$ -closed by Remark 2.6. Hence (\mathcal{R}, μ_D) is μ - $\alpha K(\alpha c)$ -space.

Proposition 3.12 Every μ - $\alpha K(c)$ -space is μ - $\alpha K(\alpha c)$ -space.

Proof: Let (\mathcal{X}, μ) be m-space and \mathcal{K} be $\alpha\mu$ -compact subset of \mathcal{X} , which is μ - $\alpha K(c)$ -space, so \mathcal{K} is μ -closed subset of \mathcal{X} and, by Remark 2.6, \mathcal{K} is $\alpha\mu$ -closed set. Hence \mathcal{X} is μ - $\alpha K(\alpha c)$ -space.

Theorem 3.13 (\mathcal{X}, μ) is $\alpha \mu$ - T_1 -space iff $\{x\}$ is $\alpha \mu$ -closed subset of \mathcal{X} for all $x \in \mathcal{X}$.

Proof: Let $\{x\}$ be $\alpha\mu$ -closed set $\forall x \in \mathcal{X}$, let $a, d \in \mathcal{X}$ with $a \neq d$, and $\{a\}$ and $\{d\}$ are $\alpha\mu$ -closed sets, then $\{a\}^c$ is $\alpha\mu$ -open subset of \mathcal{X} , with $d \in \{a\}^c$ and $a \notin \{a\}^c$. Also $\{d\}^c$ is $\alpha\mu$ -open subset of \mathcal{X} , with $a \in \{d\}^c$ and $d \notin \{d\}^c$, so \mathcal{X} is $\alpha\mu$ - T_1 -space.

Conversely, we must prove that $\{x\}$ is $\alpha\mu$ -closed subset of \mathcal{X} , that is $\alpha\mu\text{Cl}(\{x\}) = \{x\}$, since $\{x\} \subseteq \alpha\mu\text{Cl}(\{x\}) \dots$ (1). Let $y \in \alpha\mu\text{Cl}(\{x\})$ and $y \notin \{x\}$, so $x \neq y$, but \mathcal{X} is $\alpha\mu$ - T_1 -space, so there exist two $\alpha\mu$ -open sets U_x and V_y containing x and y, respectively, with $y \notin U_x$ and $x \notin V_y$. Then V_y containing y, so y is not $\alpha\mu$ -adherent point to $\{x\}$, that is $y \notin \alpha\mu\text{Cl}(\{x\})$, and this is contradiction. Therefore, $y \in \{x\}$ and $\alpha\mu\text{Cl}(\{x\}) \subseteq \{x\} \dots$ (2), so by (1) and (2) we get $\alpha\mu\text{Cl}(\{x\}) = \{x\}$, and by Proposition 2.8, $\{x\}$ is $\alpha\mu$ -closed subset of \mathcal{X} .

Proposition 3.14 Every μ - $\alpha K(\alpha c)$ -space is $\alpha \mu$ - T_1 -space.

Proof: Let $x \in \mathcal{X}$ and let $\{x\}$ be $\alpha\mu$ -compact set in \mathcal{X} , since \mathcal{X} is μ - $\alpha K(\alpha c)$ -space, hence $\{x\}$ is $\alpha\mu$ -closed set, so \mathcal{X} is $\alpha\mu$ - T_1 -space by Theorem 2.18.

The next example shows that the converse of Proposition 3.14 is not true.

Example 3.15 Let (\mathcal{R}, μ_{cof}) be a co-finite m-space on a real number \mathcal{R} which is $\alpha \mu$ - T_1 -space, if we take $\mathbb{Q} \subseteq \mathcal{R}$ as $\alpha \mu$ -compact (since there exists one $\alpha \mu$ -open cover of \mathbb{Q} which is R), but \mathbb{Q} is not $\alpha \mu$ -closed in \mathcal{R} (since $\mu Cl(\mu Int(\mu Cl(\mathbb{Q}))) = \mathcal{R} \not\subset \mathbb{Q}$.

Proposition 3.16 Every $\alpha \mu$ - T_2 -space is μ - $\alpha K(\alpha c)$ -space, whenever \mathcal{X} has αY property.

Proof: Let (\mathcal{X}, μ) be an m-space and \mathcal{P} be an $\alpha\mu$ -compact subset in \mathcal{X} . Also \mathcal{X} is $\alpha\mu$ - T_2 -space, so \mathcal{P} is an $\alpha\mu$ -closed set from Proposition 3.7. Therefore, \mathcal{X} is μ - $\alpha K(\alpha c)$ -space.

The converse of Proposition 3.16 may not be hold. The following example explains that.

Example 3.17

Let (\mathcal{R},μ_{coc}) be a co-countable m-space on a real number \mathcal{R} , which is μ - $\alpha K(\alpha c)$ -space, but not $\alpha \mu$ - T_2 -space, since the μ -compact set in it are just the finite set, if we μ -compact set then it is finite, so it is countable, then it is μ -closed since in μ_{coc} the closed take sets are \emptyset , \mathcal{R} and countable sets. Now suppose that it is $\alpha \mu$ - T_2 -space, $\forall x,y \in \mathcal{R}, x\neq y$, there are U_x , V_y as two $\alpha \mu$ -open sets such that $x \in U_x$, $y \in V_y$ and $U_x \cap V_y = \emptyset$, $(U_x \cap V_y)^c = \emptyset^c$, $(U_x)^c \cup (V_y)^c = \mathcal{R}$, but this is a contradiction. Since U_x and V_y are countable, the union also countable, but \mathcal{R} is not countable so it is not $\alpha \mu$ - T_2 -space. Therefore (\mathcal{R},μ_{coc}) are μ -Kc-, μ - $K(\alpha c)$ - and μ - $\alpha K(\alpha c)$ -spaces.

Proposition 3.18 A subset \mathcal{F} of an m-space \mathcal{X} is $\alpha\mu$ -closed set in \mathcal{X} if and only if there exists an μ -closed set M such that $\mu Cl(\mu Int(M)) \subseteq \mathcal{F} \subseteq M$.

Proof: Suppose that \mathcal{F} is $\alpha\mu$ -closed set in \mathcal{X} , so $\mu Cl\left(\mu Int(\mu Cl(\mathcal{F}))\right) \subseteq \mathcal{F}$, by Definition 2.3, and $\mathcal{F} \subseteq (\mu Cl(\mathcal{F}))$, then $\mu Cl\left(\mu Int(\mu Cl(\mathcal{F}))\right) \subseteq \mathcal{F} \subseteq \mu Cl(\mathcal{F})$, put $\mu Cl(\mathcal{F}) = M$, so $\mu Cl(\mu Int(M)) \subseteq \mathcal{F} \subseteq M$.

Conversely, suppose that $\mu Cl(\mu Int(M)) \subseteq \mathcal{F} \subseteq M$. To prove that \mathcal{F} is $\alpha \mu$ -closed set whenever M is μ -closed set, $\mu Cl(\mu Int(M)) \subseteq \mu Cl(\mathcal{F}) \subseteq \mu Cl(M) = M$, then $\mu Cl(\mu Int(M)) \subseteq \mu Cl(\mathcal{F}) \subseteq M$, and $\mu Int(\mu Cl(\mu Int(M))) \subseteq \mu Int(\mu Cl(\mathcal{F})) \subseteq \mu Int(M)$, by hypothesis $\mu Cl(\mu Int(M)) \subseteq \mathcal{F} \subseteq M$, we get $\mu Cl(\mu Int(M)) \subseteq \mathcal{F}$. Therefore \mathcal{F} is $\alpha \mu$ -closed set.

Definition 3.19 An *m*-space \mathcal{X} is called μ - $\alpha K(c)$ -space if any $\alpha\mu$ -compact subset in \mathcal{X} is μ -closed set. **Example 3.20** Let (, μ _D) be a discrete *m*-space on any space \mathcal{X} , it is μ - $\alpha K(c)$ -space.

Remark 3.21

- 1. Every μ -Kc-space is μ - $\alpha K(c)$ -space.
- 2. Every μ - $\alpha K(c)$ -space is μ - $\alpha K(\alpha c)$ -space.
- 3. Every μ - T_2 -space is μ - $\alpha K(c)$ -space.
- 4. Every μ - $\alpha K(c)$ -space is $\alpha \mu$ - T_1 -space.

Now, we define a strong form of μ -Kc-space which is μ - $\theta K(c)$ -space.

Definition 3.22 An *m*-space (\mathcal{X}, μ) is called μ - $\theta K(c)$ -space, if every $\theta \mu$ -compact of \mathcal{X} is μ -closed set.

Example 3.23 Let (\mathcal{R}, μ_{cof}) be a co-finite *m*-space on a real line \mathcal{R} . Then (\mathcal{R}, μ_{cof}) is an μ - $\theta K(c)$ -space.

Proposition 3.24 Every $\theta\mu$ -compact subset of $\theta\mu$ - T_2 -space is $\theta\mu$ -closed, whenever that space has $\theta\Upsilon$ property.

Proof: Let A be an $\theta\mu$ -compact set in \mathcal{X} . Let $p \notin A$, so for each $q \in A$ then $p \neq q$. But \mathcal{X} is $\theta\mu$ - T_2 -space, so there exist two $\theta\mu$ -open sets U and V containing q and p, respectively, then $A = \bigcup_{\alpha \in I} \{U_{q_\alpha}\}$. But A is $\theta\mu$ -compact, so $A = \bigcup_{i=1}^n \{U_{q_{\alpha_i}}\} = U^*$ and $V^* = \bigcap_{i=1}^n V_{q_i}(p)$ is $\theta\mu$ -open (since X has θY property). Claim that $U^* \cap V^* = \emptyset$, and suppose that $U^* \cap V^* \neq \emptyset$, since $p \in V^*$, let $p \in U^*$, that is $p \in A$, but this is a contradiction. So $U^* \cap V^* = \emptyset$ and then there exists V^* containing p and $V^* \subseteq A^c$, that is $p \in \mu Int(A^c)$, then A^c is $\theta\mu$ -open, by Proposition 2.10, so A is $\theta\mu$ -closed.

Proposition 3.25 If an μ -space has θY property, then every $\theta \mu$ - T_2 -space is μ - $\theta K(c)$ -space.

Proof: Let H be an $\theta \mu$ -compact subset of \mathcal{X} . To prove that H is μ -closed set, since \mathcal{X} is $\theta \mu$ - T_2 -space, so by proposition 3.24, we get H is $\theta \mu$ -closed set and by Remark 2.33, we get H is μ -closed, hence \mathcal{X} is μ - $\theta K(c)$ -space.

Proposition 3.26 If an μ -space has $\theta\beta$ property, then every μ - $\theta K(c)$ -space is μ -kc-space.

Proof: Let (\mathcal{X}, μ) be m-space, A be μ -compact of \mathcal{X} by Remark 2.36, A is $\theta\mu$ -compact and since \mathcal{X} is μ - $\theta K(c)$ -space, so A is μ -closed subset of \mathcal{X} , hence \mathcal{X} is μ -kc-space.

Remark 3.27 The following diagram shows the relationships between the stronger and weaker forms of μ -kc-space.

4-Some types of continuous, open (closed) function on m-spaces.

Definition 4.1 Let $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be a function, then f is called:

- 1. m-open (respectively m-closed) function [2], if $f(\mathcal{H})$ is an μ' -open respectively μ' -closed set in \mathcal{Y} for any μ -open (respectively μ -closed) \mathcal{H} in \mathcal{X} .
- 2. αm -open (respectively αm -closed) function [6], if f(A) is an $\alpha \mu'$ -open (respectively $\alpha \mu'$ -closed) set in \mathcal{Y} for every μ -open (respectively μ -closed) A in \mathcal{X} .
- 3. α^*m -open (respectively α^*m -closed) function, if $f(\mathcal{K})$ is an μ' -open (respectively μ' -closed) set in \mathcal{Y} for any $\alpha\mu$ -open (respectively $\alpha\mu$ -closed) subset \mathcal{K} of \mathcal{X} .
- 4. $\alpha^{**}m$ -open (respectively $\alpha^{**}m$ -closed) function, if $f(\mathcal{N})$ is an $\alpha\mu'$ -open (respectively $\alpha\mu'$ -closed) subset of \mathcal{Y} for any $\alpha\mu$ -open (respectively $\alpha\mu$ -closed) set \mathcal{N} in \mathcal{X} .
- 5. α^*m -continuous iff for any $\alpha\mu'$ -open set \mathcal{A} in \mathcal{Y} , the inverse image $f^{-1}(\mathcal{A})$ is μ -open set in \mathcal{X} .
- $\alpha^{**}m$ -continuous iff for every $\alpha\mu'$ -open set \mathcal{B} in \mathcal{Y} , the inverse image $f^{-1}(\mathcal{B})$ is $\alpha\mu$ -open set in \mathcal{X} .

Example 4.2 Let $\mathcal{X} = \mathcal{Y} = \{a, b, c\}, \ \mu = \mu' = \{\emptyset, \mathcal{X}, \{a\}\} \ \text{and} \ f: (\mathcal{X}, \mu) \longrightarrow (\mathcal{Y}, \mu') \ \text{defined by}$ f(a) = f(b) = a and f(c) = c. Then f is μ -open, $\alpha\mu$ -open and $\alpha^{**}\mu$ -open but it is not $\alpha^*\mu$ -open function (where $\alpha\mu$ -open set in μ and μ' are $\{\phi, \mathcal{X}, \{a\}, \{a, b\}, \{a, c\}\}\}$.

Next, we introduce a proposition about α** μ-closed function. But before that we need to introduce the following proposition:

Proposition 4.3 Let $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be a function. Then for every subset A of \mathcal{X} :

- 1. f is m-homeomorphism iff $\mu Cl(f(A)) = f(\mu Cl(A))$.
- 2. f is m-homeomorphism iff $\mu Int(f(A)) = f(\mu Int(A))$.

Proof: The proof follows directly from the Definition 2.26 part (1) and Definition 4.1 part (1).

Theorem 4.4 If $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ is *m*-homeomorphism, then f is $\alpha^{**}\mu$ -closed function.

Proof: Let \mathcal{F} be $\alpha\mu$ -closed subset of \mathcal{X} , by Proposition 3.18, there exists μ -closed set M such that $\mu Cl(\mu Int(M)) \subseteq \mathcal{F} \subseteq M$. Now, by taking the image, we get $f(\mu Cl(\mu Int(M))) \subseteq f(\mathcal{F}) \subseteq f(M)$. But f is m-homeomorphism, so

$$f(\mu Cl(\mu Int(M))) \subseteq f(\mathcal{F}) \subseteq f(M) \dots (1)$$

 $f(\mu Cl\left(\left(\mu Int(M)\right)\right)\subseteq f(\mathcal{F})\subseteq f(M)\dots(1).$ Also from Proposition 4.3 $f\left(\mu Int(M)\right)=\mu Int(f(M)),$ hence

$$\mu Cl\left(f\big(\mu Int(M)\big)\right) = \mu Cl\left(\mu Int\big(f(M)\big)\right)...(2).$$

Now, from (1) and (2) we have, $\mu Cl(\mu Int(f(M))) \subseteq f(\mathcal{F}) \subseteq f(M)$. Therefore, $f(\mathcal{F})$ is $\alpha \mu$ -closed subset of Y.

Corollary 4.5 If $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ is m-homeomorphism, then f is $\alpha^{**}\mu$ -open function.

Proof: Let K be an $\alpha\mu$ -open set in \mathcal{X} . To prove that f(K) is $\alpha\mu$ -open set in \mathcal{Y} . Now, K^c is $\alpha\mu$ -closed set in \mathcal{X} , and since f is m-homeomorphism. From Theorem 4.4, $f(K^c)$ is $\alpha\mu$ -closed set in \mathcal{Y} . But f is surjective, so $f(K^c) = (f(K))^c$, which means that f(K) is $\alpha \mu$ -open set in \mathcal{Y} . Hence f is $\alpha^{**}\mu$ -open function.

Theorem 4.6 Let $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be $\alpha^{**}m$ -continuous. Then $f(\mathcal{M})$ is $\alpha\mu$ -compact in \mathcal{Y} , whenever \mathcal{M} is $\alpha\mu$ -compact in \mathcal{X} .

Proof: Let \mathcal{M} be an $\alpha\mu$ -compact in \mathcal{X} . To prove that $f(\mathcal{M})$ is $\alpha\mu$ -compact in \mathcal{Y} , let $\{V_{\alpha}: \alpha \in I\}$ be a family of $\alpha\mu$ -open cover of $f(\mathcal{M})$. That is $(M) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$, so $f^{-1}(V_{\alpha})$ is $\alpha\mu$ -open cover of $\mathcal{M}, \forall \alpha \in I$. Also, since \mathcal{M} is $\alpha \mu$ -compact in \mathcal{X} , then there exist $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ such that $\mathcal{M} \subseteq \bigcup_{i=1}^n f^{-1}(V_{\alpha_i})$, then $f(\mathcal{M}) \subseteq f(\bigcup_{i=1}^n f^{-1}(V_{\alpha_i})) = \bigcup_{i=1}^n V_{\alpha_i}$. Therefore, $f(\mathcal{M})$ is $\alpha \mu$ -compact in \mathcal{Y} .

Theorem 4.7 Let $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be $\alpha^*\mu$ -continuous function. Then $f(\mathcal{N})$ is μ -compact in \mathcal{Y} , whenever \mathcal{N} is $\alpha\mu$ -compact in \mathcal{X} .

Proof: Let \mathcal{N} be an $\alpha\mu$ -compact in \mathcal{X} . To prove that $f(\mathcal{N})$ is μ -compact in \mathcal{Y} , let $\{V_{\alpha}: \alpha \in I\}$ be a family of μ -open cover of $f(\mathcal{N})$. That is $(\mathcal{N}) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$, so $f^{-1}(V_{\alpha})$ is an $\alpha \mu$ -open cover of $\mathcal{N}, \forall \alpha \in I$. Also, since \mathcal{N} is $\alpha \mu$ -compact in \mathcal{X} , then $\mathcal{N} \subseteq \bigcup_{i=1}^m f^{-1}(V_{\alpha_i})$. This implies that $f(\mathcal{N}) \subseteq I$ $f(\bigcup_{i=1}^m f^{-1}(V_{\alpha_i})) = \bigcup_{i=1}^m V_{\alpha_i}$. Therefore, $f(\mathcal{N})$ is μ -compact in \mathcal{Y} .

Theorem 4.8 Let $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be $\alpha^{**}\mu$ -continuous function. If a space \mathcal{X} is $\alpha\mu$ -compact and a space $\mathcal Y$ is $\alpha \mu$ - T_2 , then the function f is $\alpha^{**}\mu$ -closed, whenever $\mathcal X$ has $\alpha \Upsilon$ property.

Proof: Let \mathcal{H} be an $\alpha\mu$ -closed set in \mathcal{X} . Since \mathcal{X} is $\alpha\mu$ -compact, then \mathcal{H} is $\alpha\mu$ -compact in \mathcal{X} by Theorem 3.8 and the function f is $\alpha^{**}\mu$ -continuous. Then $f(\mathcal{H})$ is $\alpha\mu'$ -compact subset of \mathcal{Y} from Theorem 4.6, and since \mathcal{Y} is $\alpha\mu$ - T_2 -space, so $f(\mathcal{H})$ is $\alpha\mu'$ -closed set of \mathcal{Y} by proposition 3.7. Therefore f is $\alpha^{**}\mu$ -closed function.

Theorem 4.9 Let $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be a $\alpha^*\mu$ -continuous function, from $\alpha\mu$ -compact space \mathcal{X} into μ -Kc-space \mathcal{Y} , then f is $\alpha^*\mu$ -closed function.

Proof: Let \mathcal{B} be $\alpha\mu$ -closed set in \mathcal{X} which is $\alpha\mu$ -compact, so \mathcal{B} is $\alpha\mu$ -compact in \mathcal{X} from Theorem 3.8. Also, from the hypotheses, f is $\alpha^*\mu$ -continuous, then $f(\mathcal{B})$ is μ -compact in \mathcal{Y} by Theorem 4.7. But \mathcal{Y} is μ - $\mathcal{K}c$ -space, hence $f(\mathcal{B})$ is μ' -closed set of \mathcal{Y} . Therefore, f is $\alpha\mu^*$ -closed function.

Proposition 4.10 Let the function $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be m-continuous. If (\mathcal{X},μ) is μ -compact and (\mathcal{Y},μ') is μ - $K(\alpha c)$ -space, then f is $\alpha \mu$ -closed function.

Proof: Let S be an μ -closed set in X, also X is μ -compact, then S is μ -compact subset of X from Proposition 2.13, and f is m-continuous function, then f(S) is μ -compact set in Y from Proposition 2.27. Also Y is μ - $K(\alpha c)$ -space, so f(S) is $\alpha \mu$ -closed in Y, therefore f is $\alpha \mu$ -closed.

Proposition 4.11 If the function $f: (\mathcal{X}, \mu) \to (\mathcal{Y}, \mu')$ is $\alpha^{**}m$ -continuous, (\mathcal{X}, μ) is α -compact and (\mathcal{Y}, μ') is μ - $\alpha K(\alpha c)$ -space, then f is $\alpha^{**}m$ -closed function.

Proof: Let F be an $\alpha\mu$ -closed set of \mathcal{X} , since \mathcal{X} is αm -compact, so by Theorem 3.8, F is $\alpha\mu$ -compact in \mathcal{X} and f is $\alpha^{**}m$ -continuous. Then f(F) is $\alpha\mu$ -compact in \mathcal{Y} . Also by Theorem 4.6, \mathcal{Y} is μ - $\alpha K(\alpha c)$ -space, hence f(F) is $\alpha\mu$ -closed in \mathcal{Y} . Therefore, f is $\alpha^{**}m$ -closed.

Theorem 4.12 If $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ is *m*-closed, $\alpha^{**}m$ -open bijective function and (\mathcal{X},μ) is μ - $\alpha K(c)$ -space, then (Y,μ') is μ - $\alpha K(c)$ -space.

Proof: Let \mathcal{K} be $\alpha\mu$ -compact in \mathcal{Y} and $\{V_{\alpha}: \alpha \in I\}$ be an $\alpha\mu$ -open cover of $f^{-1}(\mathcal{K})$ in \mathcal{K} , that is $f^{-1}(\mathcal{K}) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$. Since f is bijective, so $\mathcal{K} = f(f^{-1}(\mathcal{K})) \subseteq f(\bigcup_{\alpha \in I} V_{\alpha}) = \bigcup_{\alpha \in \Lambda} f(V_{\alpha})$. And f is $\alpha^{**}m$ -open function, so $\bigcup_{\alpha \in I} f(V_{\alpha})$ is $\alpha\mu'$ -open in \mathcal{Y} , for each $\alpha \in I$. Also, \mathcal{K} is $\alpha\mu'$ -compact in \mathcal{Y} , so $\mathcal{K} \subseteq \bigcup_{i=1}^n f(V_{\alpha_i})$. This implies that $f^{-1}(\mathcal{K}) \subseteq f^{-1}(\bigcup_{i=1}^n f(V_{\alpha_i})) = \bigcup_{i=1}^n f^{-1}(f(V_{\alpha_i})) = \bigcup_{i=1}^n V_{\alpha_i}$, so $f^{-1}(\mathcal{K})$ is $\alpha\mu$ -compact in \mathcal{X} , which is μ - $K(\alpha c)$ -space, so $f^{-1}(\mathcal{K})$ is μ -closed. Also, since f is m-closed function, therefore $f(f^{-1}(\mathcal{K})) = \mathcal{K}$ is μ' -closed in \mathcal{Y} . Hence \mathcal{Y} is μ - $K(\alpha c)$ -space.

Theorem 4.13 Let the injective function $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be m-continuous and $\alpha^{**}m$ -continuous. Then (\mathcal{X},μ) is μ - $K(\alpha c)$ -space whenever (\mathcal{Y},μ') is μ - $K(\alpha c)$ -space.

Proof: Let K be μ -compact in \mathcal{X} . To prove that K is $\alpha\mu$ -closed, let $\{V_{\alpha} : \alpha \in I\}$ be an μ -open cover to f(K) in \mathcal{Y} , that is $f(K) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$. But f is m-continuous function, so by Proposition 2.27, f(K) is μ -compact in \mathcal{Y} , hence $f(K) \subseteq \bigcup_{i=1}^n V_{\alpha_i}$. Also f is injective function, so $K = f^{-1}(f(K) \subseteq f^{-1}(\bigcup_{i=1}^n V_{\alpha_i}) = \bigcup_{i=1}^n f^{-1}(V_{\alpha_i})$. Also, f is m-continuous, hence $f^{-1}(V_{\alpha_i})$ is μ -open in \mathcal{X} , $\forall i = 1,2,3,...,n$. This implies that $f(K) \subseteq \bigcup_{i=1}^n V_{\alpha_i}$, hence f(K) is μ -compact set of \mathcal{Y} which is μ - $K(\alpha c)$ -space, that is f(K) is $\alpha\mu$ -closed subset of \mathcal{Y} . But f is $\alpha^{**}m$ -continuous and $f^{-1}(f(K)) = K$, so K is $\alpha\mu$ -closed set in \mathcal{X} . Therefore \mathcal{X} is μ - $K(\alpha c)$ -space.

Theorem 4.14 Let a bijective function $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be $\alpha^{**}m$ -continuous. If \mathcal{Y} is μ - $\alpha K(\alpha c)$ -space, then \mathcal{X} is μ - $\alpha K(\alpha c)$ -space.

Proof: Let A be $\alpha\mu$ -compact in \mathcal{X} , so f(A) is $\alpha\mu$ -compact in \mathcal{Y} by Theorem 4.6. And since \mathcal{Y} is μ - $\alpha K(\alpha c)$ -space, so that f(A) is $\alpha\mu'$ -closed set of \mathcal{Y} and $f^{-1}(f(A)) = A$ (f is injective), so A is $\alpha\mu$ -closed subset in \mathcal{X} since f is $\alpha^{**}m$ -continuous function. Therefore, \mathcal{X} is μ - $\alpha K(\alpha c)$ -space.

Proposition 4.15 If $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ is *m*-continuous function, \mathcal{X} is μ -compact space and \mathcal{Y} is μ - $\theta k(c)$ -space, then f is $\theta \mu^*$ -closed function, whenever \mathcal{X} has $\theta \mathcal{Y}$ property.

Proof: Let \mathcal{N} be $\theta\mu$ -closed subset of \mathcal{X} , so that \mathcal{N} is μ -closed in \mathcal{X} by Remark 2.33. And since \mathcal{X} is μ -compact, then \mathcal{N} is μ -compact by Proposition 2.13. Also f is m-continuous function, so by Proposition 2.27, $f(\mathcal{N})$ is μ -compact, hence from Remark 2.36, $f(\mathcal{N})$ is $\theta\mu$ -compact in \mathcal{Y} which is μ - $\theta k(c)$ -space. Therefore $f(\mathcal{N})$ is μ' -closed. That is f is θ^*m -closed function.

Proposition 4.16 Let $f:(\mathcal{X},\mu) \to (\mathcal{Y},\mu')$ be m-homeomorphsim function. Then (\mathcal{Y},μ') is μ - $\theta k(c)$ -space, whenever (\mathcal{X},μ) is μ - $\theta k(c)$ -space which has $\theta \beta$ property.

Proof: Let \mathcal{H} be an $\theta\mu$ -compact set in \mathcal{Y} , by Proposition 2.40, $f^{-1}(\mathcal{H})$ is $\theta\mu$ -compact in \mathcal{X} which is μ - $\theta k(c)$ -space. So $f^{-1}(\mathcal{H})$ is μ -closed set in \mathcal{X} and $f(f^{-1}(\mathcal{H})) = \mathcal{H}$ is μ -closed set in \mathcal{Y} . Therefore, (\mathcal{Y}, μ') is μ - $\theta k(c)$ -space.

References

- 1. Wilansky, A. 1967. T₁ and T₂., Amer, Math Monthly, 74: 261-266.
- 2. Maki, H. 1996. On generalizing semi-open and preopen sets, Report for Meeting on topological spaces theory and its applications, August, Yaatsus hiro College of Technology, 13-18.
- 3. Popa, V. and Noiri, T. 2000. On m-continuous functions, *Anal. Univ. Dunarea de Jos Galati. Ser. Mat. Fiz. Mec. Teor. Fasci.*, 18(23): 31-41.
- **4.** Ali, H. J. and Dahham, M. M. **2017**. When m-compact sets are m_{χ} -semi closed. *International Journal of Mathematical Archive*, **8**(4): 116-120.
- Najasted, O. 1964. On some classes of nearly open sets, Pacific journal of mathematics, 3: 961-970.
- Won, K. M. 2010. αm-open sets and αm-continuous functions, Commum. Korean Math. Soc. 25 (2): 251-256.
- Velicko, N. V. 1968. H-closed topological spaces, Trans. Amer. Math. Soc. Transl. 78 (1968): 102-118.
- 8. Das, P. 1973. Note on some application on semi open set, *Progress of Math.* 7: 33-44.
- 9. Ali, H. J and Harith, M. 2014. Some types of *m*-compact functions. *Al Mustansiriyah J. Sci.* 25(4): 65-74.
- 10. Carpintero, C., Rosas, E. and Salas, M. 2007. Minimal structure and separation properties, *International Journal of Pure and Applied Mathematics*, 34(4): 473-488.
- Muthana, H. A and Ali, H. J. 2014. Some type of μ-compact functions, Journal of sci. Al Mustansiriyah university, 25(4).
- 12. Ali, H. J. 2010. Strong and weak form of m-lindelof space, Editorial board of Zenco J. for pure and Apple. Sciences, Salahaddin university, Howler-Iraqi Kurdistan Region, special issue 22: 60-64.
- Hader, J. A. and Marwa, M. D. 2018. When m-Lindelof sets are m_χ-semi closed, Journal of Physics: Conference series. 1003012044.
- Popa, V. and Noiri, T. 2000. On M-continuous functions. Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Tcor. Fasc. II, 18(23): 31-41.
- **15.** Popa, V. and Noiri, T. **2001**. On the definition of some generalized form of continuity under minimal conditions. *Men. Fac. Ser. Kochi. Univ. Ser. Math.* **22**: 9-19.