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Abstract

In this paper, we provide some types of u-Kc-spaces, namely, u-K(ac)-
(respectively, pu-aK(ac)- , p-aK(c)- and u-6K(c)-) spaces for minimal structure
spaces which are denoted by (m-spaces). Some properties and examples are given.
The relationships between a number of types of p-Kc-spaces and the other existing
types of weaker and stronger forms of m-spaces are investigated. Finally, new types
of open (respectively, closed) functions of m-spaces are introduced and some of
their properties are studied.
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1. Introduction
The concept of Kc-space was introduced by Wilansky [1], that is "A topological space (X,T) is
said to be Kc-space if every compact subset of X is closed". Also, many important properties were
provided by that study, e.g., “Every Kc-space is T;-space” and “every T,-space is Kc-space”. In 1996,
Maki [2] introduced the minimal structure spaces , shortly m-spaces, that is “ A sub collection u of
P(X) is called the minimal structure of X, if @ e and X eu, (X, p) is said to be m-structure
space”. The elements of p are called p-open sets and their complements are u-closed sets, which is a
generalization of topological spaces. Popa and Noiri [3] studied the m-spaces and defined the notion
of continuous functions between them. In 2015, Ali et al. [4] defined the concept of Kc-space with
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respect to the m-space to obtain a new space which they called the u-Kc-space. A weaker and stronger
form of open sets plays an important role in topological spaces. In 1965, Najasted [5] introduced the
concept of a-open sets as a generalization of open sets. That is, let (X, T") be a topological space and a
nonempty subset A of X is said to be a-open set, if A S Int(Cl( Int(A4))). In 2010, Min [6]
generalized the concept of c-open sets to m-spaces. On the other hand, in 1968, Velicko [7]
introduced the concept of @-open sets. That is “Let (X, T) be a topological space, N’ € X, a point
b € X is said to be an @ u-adherent point for a subset N of X, if N' N C1(G)= @ for any open set G of
X and b € V. The set of #-adherent point is said to be an 6-closure of N'which is denoted by
GCI(N). A subset Nof X is called 8-closed set if every point to IV is an §-adherent point. Also, in
2018, Makki [8] defined &-open sets in m-space. The aim of the present paper is to introduce and
study new type of u-Kc-spaces, namely, u-K(ac)- (resp. p-aK(c)- . pu-aK(ac)- and p-0K(c)-)
spaces by using the concept of o-open, respectively €-open sets, with respect to the m-space. We
study the basic properties of each space and give the relationships between them. Also, we introduce
new kinds of continuous, open (respectively closed) functions on m-spaces and investigate their
properties.

2.Preliminaries

Let us recall the following definitions, properties and theorems which we need in this work

Definition 2.1 [3] Let X be a non-empty set and P(X) be the power set of X'. A sub collection u of
P(X) is called the minimal structure of X, if @ e p and X ep, (X, ¢) is said to be m-structure space
(shortly, m-spaces). The elements of pare called p-open sets and their complements are p-closed sets.
For a subset B in an m-space on (X, 1), the interior (respectively, closure) of B denoted by ulnt(B)
(respectively, uCl(B )) is defined as follows:

puInt (B )=u{U:U € B,U € u} and pCl(B)=n{F:B € F,F e€u}.

Remark 2.2 Note that according to a previous study [9], pInt (B) (respectively, pCIl(B)) is not
necessarily y-open (respectively, p-closed), but if B is p-open then B = plnt (B), respectively, and if
B 1s p-closed, then

B =pCl(B).

Definition 2.3 [10] an m-space (X, u) has a property f (respectively Y) if the union (respectively
intersection) of any family (respectively finite subsets) of u also belongs to u.

Definition 2.4 [6] A subset A of an m-space (X, pu) is said to be an au-open, if
A C uint(uCl(uint(A))).The complement of au-open set is called au-closed set or, equivalently,

ucl (,u!nt(,uC!(A))) iy

Definition 2.5 [6] An m-space (X, ) has a property &Y, if the intersection of finite au-open sets is an
ay-open set in X.

Remark 2.6 [6] From Definition 2.4, it is clear that every g-open (respectively pt-closed) set is an ay-
open (respectively apu-closed) set.

Definition 2.7 [10] Let (X, ) be an m-space. A point x € X is called an au-adherent point of a set
A< X ifand only if G N A # @ for all G € u such that x € G .The set of all au-adherent points of a
set A is denoted by aulICI(A), where auCl(A) =N {F: A € F,F is au-closed set}.

Proposition 2.8 [6] A subset F of m-space X is ap-closed set in X iff F = apCI(F).

Definition 2.9 [7] Let (X, ) be an m-space, A € X. Then a € X is said to be ap-interior point to A
iff € U<S A, for some au-open set U and x € U. The au -interior point of a set A4 is all au-
interior point to A and denoted by auint(A), where aulnt(A)=U{U: Uc A, U is au-open set}.
Proposition 2.10 [6] any subset of m-space X is ap-open set iff every point in it is ap -interior point.
Remark 2.11 [6] If (X, u) is an m-space, then:

1. The union of any family of au-open sets is au-open set.

2. The intersection of any two a@u-open sets may be not au-open set.

Definition 2.12 [12] An m-space, (X, p) is called u-compact if any p-open cover of X has a finite
subcover. A subset H of an m-space is said to be y-compact in X, if for any cover by u-open of X,
there is a finite subcover of H.

Proposition 2.13 [11] Every u-closed set in y-compact space is an g-compact set.
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Definition 2.14 [6] An m-space (X, u) is said to be au-compact space if any au-open cover of X has
a finite subcover. A subset B of m-space X is called au-compact, if any au-open set of X' which
covers B has a finite subcover of B.

Remark 2.15 Any au-compact is g-compact set. However the converse is not necessarily true as
shown by the following example.

Example 2.16 Let R be the set of real numbers and X be a non-empty set such that X={x} U
{r:r € R}, where x € X. Also u={¢, X, {x}]}, then C={{x, r}:r € R} is an au-open cover to X.
Since{x, r}c uint (,uCI(pInt({x,r}))) =X, so {x, r} is an qu-open set. Now, C is an au-open
cover to X, but it has no finite subcover to X, since, if we remove {x, 50} then the reminder is not
cover X (cover all X except 50), and it is infinite cover. Hence, X is not au-compact space and it is
clear that X is u-compact space, since the only p-open cover of X is X itself, which is one set, that is,
a finite open cover to X.

Definition 2.17 [10] An m-space is called an u-T, -space, if for any two points a, b in X, a # b there
is two p-open sets N, M such that a € N,butb € Nand b € Mbuta & M.

Proposition 2.18 [4] An m-space is u-T, -space if and only if every singleton set is u-closed set,
whenever X has # property.

Definition 2.19 [10] An m-space is said to be au-T;-space, if for every two t points ¢, d in X, there
are two ap-open sets 7, H withc € X ,butc € H andd € H butd € X.

Remark 2.20 [10] Every pu-T;-space is au-T;-space.

Definition 2.21 [10] An m-space (X, ) is called pu-T,-space (respectively au-T,-space), if for any
two distinct points x, y in X, there are two u-open (respectively au-open) U, V, such that x € U,y €
V,andU NV = 0@.

Definition 2.22 [4] An m-space (X, u) is said to be p-Kc-space if any u-compact subset of X is p-
closed set.

Example 2.23 Let R be the real numbers, (R , py) is the usual p-space which is p-Kc-space.
Proposition 2.24 [12] Every u-compact set in u-T,-space, that has the property £ and Y, is u-closed
set.

Remark 2.25 [4]

1. Every u-Kc space is u-T;-space.

2. Every u-T,-space with the property § and Y is u-Kc-space.

Definition 2.26 Let f: (X, u) — (Y, u") be a function. Then f is called:

1. m-continuous [15] iff for any u’-open NV in , the inverse image f ~1(JV') is an p-open set in X.

2. am-continuous [6] iff for any u'-open set M in Y, the inverse image FY(M)is an ap-open set
in X.

Proposition 2.27 [14] The m-continuous image of g-compact is u’-compact.

Definition 2.28 [4] A function f: (X, u) — (Y, u’) is said to be m-homeomorphism, if f is injective,
surjective, continuous and f ~1 continuous. If there exists an m-homeomorphism between (X, u)
and (Y, ') then we say that (X, u) m-homeomorphic to (Y, u').

Definition 2.29 [13] Let (X, i) be m-space, F be a subset of X and x € X. A point x is called an Gu-
interior point of F if there isC € u such that x € C and x € uCl(C) € F. And @Qu-interior set
which is denoted by GuInt(F) is the set of all fu-interior points. A subset F of X is called an & pu-
open set if every point of F is an @ u- interior point.

Definition 2.30 [13] Let (X, ) be m-space, H € X, apoint b € X is said to be an & u-adherent point
for a subset H of X, if H N uCl(G)=® for any u—open set G of X and b € H. The set of § p-adherent
point is said to be an @ u-closure of H, which is denoted by @uCI(H). A subset H of X is called Gpu-
closed set if every point to H is an 8u-adherent point.

Example 2.31 Any subset of a discrete m-space (R, up) on a real number R is fu-closed set and G-
open set.

Definition 2.32 [8] An m-space (X, u) is said to have the property @Y (respectively 6f) if the
intersection (respectively union) of any finite number (respectively family) of fu-open sets is an Gu-
open set.

Remark 2.33 [8] If an m-space (X, 1) has @Y property, then every fu-closed is an p-closed.
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Definition 2.34 [8] Let (X, ) be m-space, X is said to be Ou-compact if any 8u-open cover of X has
a finite subcover. A subset A of an m-space (X, u) is said to be fu-compact if for any 8u-open cover
{Vy * @ € I} of X and cover A then there is a finite subset {@y,;, @, ..., @, } such that A € Ui, V,, .
Example 2.35 Let (R, p,,4) be an m-space where y;,,; be indiscrete m-space on a real number R, so
is Gu-compact.

Remark 2.36 [8] Every u-compact with the property 85 is 8u-compact.

Definition 2.37 [8] An m-space (X, u) is called 8u-T, -space, if for every two points a, b that belong
to X, a # b, there is fu-open sets M and N containing a and b, respectively, suchthat MNN =0 .
Definition 2.38 [8] Let (X, p) and (Y, ") be two m-spaces and f: (X, u) — (Y, u') be a function.
Then f is called:

1. @m-continuous function iff for any u’-closed (u’-open) subset K of Y, the inverse image f (%K) is
Ou-closed (fu-open) set in X

2. 8*m-continuous function iff for every Ou'-closed (Ou'-open) M subset of Y, the inverse image
f1(M) is u-~closed (u-open) set in X.

3. 8**m-continuous function iff for any " 8u’-closed (6u’-open) IV subset of Y, the inverse image
(V) is Bu-closed (Au-open) set in X.

4. Om-closed function if f(F) is 8u'-closed set in Y for each p-closed subset F of X.

5. 6*m-closed function if f(F) is u’'-closed set in Y for each Gu-closed subset F of X.

Proposition 2.39 [8] The 8**m-continuous image of fu-compact is fu’-compact.

Proposition 2.40[8] If f: (X, ) — (Y, x’) is an m-homeomorphism and B is an fu’-compact set in
Y then f~1(B) is an Bu-compact set in X, with X has the property 6B.

3. Strong and weak forms of p-Kc-spaces

In this section, we provide some weak forms of p-Kc-space, namely p-K (ac)-space, p -aK (c)-space
and p-aK (ac)-space. In addition, we introduce p-8K (c)-space as a strong form of p-Kc-space.
Definition 3.1 An m-space (X, u) is said to be p-K(ac)-space if every g-compact set in X is an au-
closed set.

Now, we give some examples to explain the concept of p-K (ac)-space.

Example 3.2 The discrete m-space (X, tp ) is p-K (ac)-space.

Example 3.3 Let X’ = {1,2, 3} and let u = {@, X,{1}}. Then (X, ) is not p-K (ac)-space, since there
exists an p-compact set {1,2} in X but it is not au-closed.

To show that Definition 3.1 is well defined, we give the following example to illustrate that there is no
relation between the concepts of u-compact set and ap-closed set.

Example 3.4

1. In the discrete m-space (R, itp) where R is a real number, @ is the rational numbers subset of R,
@ is au-closed but not p-compact set.

2. In the indiscrete m-space (R, Uinq), Q@ is p-compact but not apu-closed set.

Remark 3.5

1. Every u-Kc space is p-K (ac)-space.

2. In discrete m-space, the two definitions of u-Kc-space and u-K (ac)-paces are satisfied.

The following example indicates that the converse of Remark 3.5 part (1) is not necessarily hold.
Example 3.6 Let (X, u) be an m-space, X = {a,b,c}, u = {0, X, {a}}, so {c} is p-compact since {c}
is finite set. Also it is au-closed set since uCl (,u!nt(pCI{c})) =@ < {c},s0 X is p-K(ac)-space, but
not p- Kc-space since {c} is not y-closed set.

Proposition 3.7 An ap-compact subset of ap-T,-space is ap-closed, whenever X has aY property.
Proof: Let B be api-compact in ap-T,-space. To show that B is ap-closed, let p € B¢, since X is aji-
T,-space. So for every q € B, p=g, there exist ap-open sets G,H with p € H, q € G, such that
G N H=@, Now the collection {G,: q; € B,i € I} is ap-open cover of B.Since B is aj -compact set,
then there is a finite subcover of B, so B€ Ui, Gg,- Let H* = N2, Hy (p) and G* = UL, Gg,, then
H" is an ap-open set p € H* (since X has property aY). Claim that G* N H* = @, let x € G*, thenx €
Gg,. for some q; and suppose that x € H*, BN H" # (. This is a contradiction, then p € H* € B¢,
so B€ is ap-open set in X, hence B is ap-closed set.

Theorem 3.8 Every ayp-closed set in ap-compact space is api-compact set.
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Proof: Let (X, u) be ap-compact , A is api-closed set in X, and {V,},e; is an ap-open cover of A, that
is A € Uger Vi, where V, is ap-open in X. Va € [, since X = AU A€ € Uge, Vo U A, also A€ is ap
-open (since A is ap-closed set in X). So U 4¢; V; U A€ is ap -open cover for X which is ap-compact
space, then there exists @;,@ @s,..,a, such that X € UL, Ve, UAS, soAE U?=1Vai.
Then U], Vo, 0i = 1,2,3,...,n s a finite subcover of A. Therefore ,A is aji-compact set.
Remark 3.9 In the above theorem, if we replace the ap-compact by p-compact, the theorem will not
be true.
Now, we introduce the weak form of u-K(ac)-space which was introduced in Definition 3.1.
Definition 3.10 A space X is said to be u-aK (ac)-space if any api-compact subset of X is ap-closed
set.
Example 3.11 Let (R, up) be a discrete m-space where R is a real number. Let @ is ap-compact
subset of R, then @ is g-compact in R from Remark 2.15, and @ is p-closed so it is au-closed by
Remark 2.6. Hence (R, up) is p-aK (ac)-space.
Proposition 3.12 Every u-aK(c)-space is pu-aK (ac)-space.
Proof: Let (X, u) be m-space and K be ap-compact subset of X', which is u-aK (c)-space, so K is pi-
closed subset of X and, by Remark 2.6, K is ap-closed set. Hence X is u-aK (ac)-space.
Theorem 3.13 (X, u) is ap-T;-space iff {x} is ap-closed subset of X forall x € X.
Proof: Let {x} be ap-closed set Yx € X, leta,d € X with a=d, and {a} and {d} are ap-closed sets,
then {a}® is ap-open subset of X, with d € {a}° and a ¢ {a}°. Also {d}° is ap-open subset of X,
witha € {d}*andd € {d}*, so X is ap-T;-space.
Conversely, we must prove that {x} is ap-closed subset of X, that is apCl({x}) = {x}, since {x} €
apCl({x}) ... (1). Let y € apCl({x}) and y & {x}, sox=y , but X is ap- T;-space, so there exist
two ap-open sets Uy and V), containing x and y, respectively, with y € Uy and x € V}, . Then V},
containing y, so y is not ap-adherent point to {x}, that is y € apCl({x}), and this is contradiction.
Therefore, y € {x} and apCl({x}) € {x}...(2), so by (1) and (2) we get apCl({x}) = {x}, and by
Proposition 2.8, {x} is ap-closed subset of X.
Proposition 3.14 Every p-aK (ac)-space is ap-T;-space.
Proof: Let x € X and let {x} be ap-compact set in X, since X is u-aK(ac)-space, hence {x} is ap-
closed set, so X is ap-T;-space by Theorem 2.18.

The next example shows that the converse of Proposition 3.14 is not true.
Example 3.15 Let (R, Uco f) be a co-finite m-space on a real number R which is ap-T;-space, if we
take @ S R as ap-compact (since there exists one ap-open cover of @ which is R), but @ is not op-
closed in R (since uCl(uInt (uCl(Q))) =R ¢ Q.
Proposition 3.16 Every ap-T,-space is u-aK (ac)-space, whenever X has aY property.
Proof: Let (X, u) be an m-space and P be an ap-compact subset in X. Also X is ap-T,-space, so P is
an ap-closed set from Proposition 3.7. Therefore, X is u-aK (ac)-space.

The converse of Proposition 3.16 may not be hold. The following example explains that.
Example 3.17
Let (R, Ucoc) be a co-countable m-space on a real number R, which is u-aK (ac)-space, but not ap-
T,-space, since the u-compact set in it are just the finite set, if we p-compact set then it is finite, so it
is countable, then it is g-closed since in p.,. the closed take sets are @, R and countable sets. Now
suppose that it is ap-T,-space, V x,y € R, x=y, there are U,, V), as two ap-open sets such thatx € U,,
yEVKandU, NV, =@, (Uy NV) € =@° ,(Ux)° U (K5)° = R, but this is a contradiction. Since Uy
and V), are countable, the union also countable, but R is not countable so it is not ap-T,-space.
Therefore (R, U.oo) are u-Kc-, u-K(ac)- and u-aK(ac)-spaces.
Proposition 3.18 A subset F of an m-space X is ap-closed set in X if and only if there exists an u-
closed set M such that ,uCI(pInt(M)) C FCM.

Proof: Suppose that F is ap-closed set in X, so uCl (,u!nt(,uCI(T }) C F, by Definition 2.3, and
F € (uCU(F). then uCl (uint(uCI(F)) € F € uCI(F), put uCl(F) = M, so uCl(uint(M)) €
FCS M.
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Conversely, suppose that ,uCI(,uInt(M]) € F € M. To prove that F is ap-closed set whenever M is
p-closed set, uCl(uCl( pint(M))) € uCI(F) € pCI(M) = M. then pCl(uint(M)) € uCl(F) €
M, and pInt(uCl(uint(M))) € pint(uCl(F)) € pint(M), by hypothesis uCl(uint(M)) € F <
M, we get uCl (,ufnt (;LCI(.’F ))) C F Therefore F is ap-closed set.

Definition 3.19 An m-space X is called u-aK (c)-space if any op-compact subset in X is p-closed set.
Example 3.20 Let (, u;, ) be a discrete m-space on any space X, it is g-aK (c)-space.
Remark 3.21
1. Every u-Kc-space is p-aK(c)-space.
2. Every u-aK(c)-space is p-aK (ac)-space.
3. Every pu-T,-space is u-aK (c)-space.
4. Every u-aK(c)-space is ap-T,-space.
Now, we define a strong form of p-Kc-space which is u-0K (c)-space.
Definition 3.22 An m-space (X, pu) is called u-8K (c)-space, if every Op-compact of X is p-closed
set.
Example 3.23 Let (R, ucop) be a co-finite m-space on a real line R. Then (R, Ueor) is an u-6K(c)-
space.
Proposition 3.24 Every fpu-compact subset of 8p-T,-space is @p-closed, whenever that space has
Y property.
Proof: Let A be an @ u-compact set in X. Let pe € A, so for each g € A then p=g. But X is 8p-T,-
space, so there exist two & u-open sets U and V containing g and p, respectively, then A = Uqer{Ug, }-
But A is #u-compact, so A = UL, {U, - }=U" and V" = N[, V,, (p) is Gp-open (since X has Y
property). Claim that U* N V* = @, and suppose that U* N V"* # @, since p € V", let p € U", that is
p € A, but this is a contradiction. So U* N V* = @ and then there exists V *containing p and V* S A€,
that is p € uInt(A°), then A€ is @ u-open, by Proposition 2.10, so A is & u-closed.
Proposition 3.25 If an u-space has @Y property, then every 8p-T,-space is u-0K (c)-space.
Proof: Let H be an @ u-compact subset of X. To prove that H is p-closed set, since X is 8p-T,-space,
so by proposition 3.24, we get H is @ u-closed set and by Remark 2.33, we get H is u-closed, hence X
is u-6K (c)-space.
Proposition 3.26 If an u-space has 88 property, then every p-0K (c)-space is u-kc-space.
Proof: Let (X, u) be m-space, A be u-compact of X by Remark 2.36, A is Ou-compact and since X is
u-0K (c)-space, so A is u-closed subset of X, hence X is u-kc-space.
Remark 3.27 The following diagram shows the relationships between the stronger and weaker forms
of u-kc-space.

p-T,-space

&Y property

T, p-spa u-8K(c)-space
B,Y property 8p property p-T;-space
u-kc-space

7

v u-aK (c)-space

u-K (ac)-space au-‘b—space
ap-T;-space

u-aK (ac)-space
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4-Some types of continuous, open (closed) function on m-spaces.

Definition 4.1 Let f: (X, u) — (Y, ') be a function, then f is called:

1. m-open (respectively m-closed) function [2], if f () is an u’-open respectively u'-closed set in Y
for any p-open (respectively g-closed) H in X.

2. am-open (respectively am-closed) function [6], if f(A) is an au’-open (respectively au’-closed)
set in Y for every p-open (respectively p-closed) A in X.

3. a'm-open (respectively a*m-closed) function, if f(J() is an u’-open (respectively u’-closed) set in
Y for any ap-open (respectively ap-closed) subset K of X.

4. o"*m-open (respectivelya"*m-closed) function, if f(N') is an au’-open (respectively au’-closed)
subset of Y for any op-open (respectively ap-closed) setV in X,

5. a*m-continuous iff for any au’-open set A in Y, the inverse image f~1(A) is p-open set in X.

6. o m-continuous iff for every au’-open set B in Y, the inverse image f~1(B) is ap-open set
in X.

Example 4.2 Let X =Y ={a,b,c}, p=p' ={0,X,{a}} and f:(X,p) — (Y,u') defined by
f(a) = f(b) =a and f(c) = c. Then f is p-open, ap -open and o *p-open but it is not o p-open
function (where api-open set in g and ' are {;#, X,{a},{a, b}, {a, c}}.

Next, we introduce a proposition about o** p-closed function. But before that we need to introduce the
following proposition:

Proposition 4.3 Let f: (X,p) — (Y, #") be a function. Then for every subset A of X:

1. f is m-homeomorphism iff uCl(f(A)) = f(uCl(4)).

2. f is m-homeomorphism iff uInt(f(4)) = f(uint(4)).

Proof: The proof follows directly from the Definition 2.26 part (1) and Definition 4.1 part (1).
Theorem 44 If f: (X, n) — (Y, 1') is m-homeomorphism, then f is a**p-closed function.

Proof: LetF be ap-closed subset of X, by Proposition 3.18, there exists p-closed set M such
that uCl(uInt(M)) € F < M. Now, by taking the image, we get f(uCl(unt(M))) € f(F) < f(M).
But f is m-homeomorphism, so

f(ucl ((,umr(M))) € f(F) € F(M) ...(1).
Also from Proposition 4.3 f(uInt(M)) = uInt(f(M)), hence

uCl (f(plnt(M))) = uCl (mm(f(m)) - (2).
Now, from (1) and (2) we have, ﬂC!(ulnt(f(M))) C f(F) € f(M). Therefore, f(F) is ap-closed
subset of Y.
Corollary 45 1If f: (X, n) — (Y, u") is m-homeomorphism, then f is o**p-open function.
Proof: Let K be an ap-open set in X. To prove that f(K) is ap-open set in Y. Now, K¢ is ap-closed
set in X, and since f is m-homeomorphism. From Theorem 4.4, f (K€) is ap-closed set in Y. But f is
surjective, so f(K¢) =(f(K))¢, which means that f(K) is ap-open set in Y. Hence f is o*p-open
function.
Theorem 4.6 Let f:(X,p) — (Y,u') be o'*m-continuous. Then f(M) is ap-compact in Y,
whenever M is ap-compact in X.
Proof: Let M be an otp-compact in X. To prove that f (M) is ap-compact in Y, let {V,: ael} be a
family of ap-open cover of f(M). That is (M) € Uge; Vp - so f1(Vy ) is ap-open cover of M,Vael.
Also, since M is ap-compact in X, then there exist @, @,., @3 ..., @, such that M € UL, f~ (V).
then f(M) € f(ULy f~" (Vo)) = UJLq Vy,. Therefore, f(M) is ap-compact in Y.
Theorem 4.7 Let f: (X,pn) — (Y, ') be o*p-continuous function. Then f(N) is p-compact in Y,
whenever IV is arpi-compact in X.
Proof: Let V' be an ap-compact in X. To prove that f(N) is p-compact in Y, let {V,: ael} be a
family of p-open cover of f(N). That is (W) S Uger Vi » so f (V) is an ap-open cover of
N Vael. Also, since N is ap-compact in X, then N € U, f~! (Vg,)- This implies that f(N) <
fURL f71 (Vo)) = UL, Vg, Therefore, () is p-compact in Y.
Theorem 4.8 Let f: (X, 1n) — (Y, ") be a**p-continuous function. If a space X is ap-compact and
a space Y is ap-T,, then the function f is a** p-closed, whenever X has @Y property.
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Proof: Let H be an ap-closed set in X. Since X is ap-compact, then H is oap-compact in X by
Theorem 3.8 and the function f is o**p-continuous. Then f(H) is au’-compact subset of Y from
Theorem 4.6, and since Y is ap-T,-space, so f(H)is au'-closed set of Y by proposition 3.7.
Therefore f is a* p -closed function.

Theorem 4.9 Let f: (X, 1) — (Y, ") be a a*p-continuous function, from ap-compact space X into
u-Kc-space Y, then f is a”p-closed function.

Proof: Let B be ap-closed set in X which is ap-compact, so B is ap-compact in X from Theorem
3.8. Also, from the hypotheses, f is a"p-continuous, then f(B) is y-compact in Y by Theorem 4.7.
But Y is u-Kc-space, hence f(B) is u'-closed set of Y. Therefore, f is ap®-closed function.
Proposition 4.10 Let the function f: (X, pn) — (Y, ¢") be m-continuous. If (X, p) is p-compact and
(Y, u'") is u-K (ac)-space, then f is ap-closed function.

Proof: Let § be an p-closed set in X, also X is p-compact, then § is p-compact subset of X from
Proposition 2.13, and f is m-continuous function, then f(8) is p-compact set in Y from Proposition
2.27. Also Y is p-K (ac)-space , so f(8) is ap-closed in Y, therefore f is ap-closed .

Proposition 4.11 If the function f: (X, ) — (Y, ") is o**m-continuous, (X, p) is ap-compact and
(Y, 1) is p-aK (ac)-space, then f is a**m-closed function.

Proof: Let F be an ayp-closed set of X, since X is am-compact, so by Theorem 3.8, F is ap-compact
in X and f is a**m-continuous. Then f(F) is ap-compact in Y. Also by Theorem 4.6, Y is pu-
aK (ac)-space, hence f(F) is ap-closed in Y. Therefore, f is a**m-closed .

Theorem 4.12 If f: (X, 1) — (Y, u') is m-closed, a**m-open bijective function and (X, p) is -
aK (c)-space, then (Y,u")is u-aK(c)-space.

Proof: Let K be ap-compact in Y and { V,: @ € I} be an ap-open cover of f~1(X)in X, that is
fTU(K) € Uger Vo - Since f is bijective, so K = f(f_l(_‘}‘{‘)) S f(Uger Vo) = Ugeaf (Va )-
And fis o*m-open function, so Uge; f(Vy ) is ap'-open in Y, for each ael . Also, K is au'-
compact in Y, o) K€ Uiy Fl)- This implies that
fFUE) e Y URL (V) = UL 2 (Ve)) = ULy Vy,, so f71(XK) is ap-compact in X,
which is p-K(ac)-space, so f~1(H) is p-closed. Also, since f is m-closed function, therefore
FUfFHH)) = K is u'~closed in Y. Hence Y is u-K (ac)-space.

Theorem 4.13 Let the injective function f: (X, u) — (Y, u") be m-continuous and a**m-continuous.
Then (X, p) is u-K(ac)-space whenever (Y, u') is u-K (ac)-space.

Proof: Let K be u-compact in X. To prove that K is ap-closed, let {V,: @ € I} be an g-open cover to
f(K)in Y, thatis f(K) € Uge V- But f is m-continuous function, so by Proposition 2.27, f(K) is p-
compact in Y, hence f(K)<S UjL,V,. Also f is injective function, so K= f7'(f(K) <
fHUL1 Va) = ULy f 71 (Va)- Also, f is m-continuous, hence f~*(V,,) is p-open in X, Vi =
1,2,3, ..., n. This implies that f(K) € UL, Ve, » hence f(K) is u-compact set of Y which is u-K (ac)-
space, that is f(K) is ap-closed subset of Y. But f is «**m-continuous and f~*(f(K)) =K, so K is
ap-closed set in X. Therefore X is u-K (ac)-space.

Theorem 4.14 Let a bijective function f: (X, p) = (Y, 1') be a"*m-continuous. If Y is u-aK(ac)-
space, then X 1s u-aK (ac)-space.

Proof: Let A be ap-compact in X, so f(A) is ap-compact in Y by Theorem 4.6. And since Y is u-
aK (ac)-space, so that f(A) is au’-closed set of Y and f~1(f(A)) = A (f is injective), so A is ap-
closed subset in X since f is a**m -continuous function. Therefore, X is u-aK (ac)-space.
Proposition 4.15If f: (X, p) — (Y, #') is m-continuous function, X is y-compact space and Y is u-
0k (c)-space, then f is Ou"-closed function, whenever X has @Y property.

Proof: Let IV be O pu-closed subset of X, so that NV is g-closed in X by Remark 2.33. And since X
is yu-compact, then ' is p-compact by Proposition 2.13. Also f is m-continuous function, so by
Proposition 2.27, f(N') is u-compact, hence from Remark 2.36, f (') is & u-compact in Y which is
u-6k(c)-space. Therefore f(N') is u'-closed. That is f is 8*m-closed function.

Proposition 4.16 Let f: (X, p) = (Y, u') be m-homeomorphsim function. Then (Y, i') is u-0k(c)-
space, whenever (X, ) is u-6k(c)-space which has 68 property.
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Proof: Let H be an fu-compact set in Y, by Proposition 2.40, f~1(H) is Bu-compact in X which
is u-0k(c)-space. So f~1(H) isu-closed set in X and f(f Y(H)) =H isu'-closed set in Y.
Therefore, (Y, 1) is u-0k(c)-space.
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