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Abstract

Through this treatise, a study has been submitted about modified of Szasz-Mirakyan-Schurer-
Kantrovich operators which that preserving e−bx , b > 0 function. We interpret and study the
uniform convergence of the modern operators to f. Also, by analyzing the asymptotic conduct
of our operator.
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1. Introductions

Previous research has shown that approximation theory is frequently based on the best mis-
takes of existing linear operators. The following operator, as shown below had been introduced by
Kantorovich [1]:

Kn(f)(x) = Kn(f ;x) = (n+ 1)
∞∑
k=0

(
n

k

)
xk(1− x)n−k

∫ (k+1)/n

k/n

f(t)dt

Where f ∈ L1[0, 1] and x ∈ [0,∞) .
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Many researchers discussed the approximation problems for Kantorovich type operators [3] and
regarding to the same subject, it is necessary start with Szasz definition [5]:

Sn(f ;x) = e−nx

∞∑
k=0

(nx)k

k!
f(
k

n
), n > 0, for x ∈ [0,∞]

And followed by some modifications which called Szasz-Mirakyan-Kantorovich variants [9, 4, 12].
The introduction of Schurer [13], in 1962, is:

Kr,s(f ;x) = (r + s)
∞∑
k=0

e−(r+s)x((r+s)x)k

k!

∫ k+1
r+s

k
r+s

f(t)dt, where r ∈ [0, 1] and s ≥ 0

These operators motivated several authors to investigate Schurer extensions of other linear positive
operators, a few of which can still be found in utilize nowadays [6, 7]. In 2010, linear and positive
operator was introduced by Aldaz and Render[2] where exponential function is being preserved.
Then the discussing preserving exponential functions of operators took a wide area by authors [1,
5, 8]. During our work was created established a unused generalization of Szasz-mirakyan-Schurer-
Kantorovich operator

Kr,s(f ;x) = (r + s)
∞∑
k=0

e−(r+s)x((r+s)x)k

k!

∫ k+1
r+s

k
r+s

f(t)dt, such that r > 0 and s ∈ [0,∞].

So, the modified form is

Zr,s(e
−2t, x) = (r + s)

∞∑
k=0

e−(r+s)T (r + s)(x)
(
(r + s)T (r + s)(x)

)k
k!

∫ k+1
r+s

k
r+s

e−2tdt (1.1)

We take into account the modification of the szasz-mirakyan-schurer-kantorovich operators pre-
serving e−2x, leading to the function Tr,s which satisfying Kr.s (f ;x) = Kr.s (e

−2x;x) = e−2x as follows

e−2x = (r + s)
∞∑
k=0

e−(r+s)Tr,s(x)
(
(r + s)Tr,s(x)

)k
k!

∫ k+1
r+s

k
r+s

e−2tdt

= (r + s)
∞∑
k=0

e−(r+s)Tr,s(x)
(
(r + s)Tr,s(x)

)k
k!

[
−1

2
e−2t

] k+1
r+s

k
r+s

= (r + s)
∞∑
k=0

e−(r+s)Tr,s(x)
(
(r + s)Tr,s(x)

)k
k!

[
1

2
e

−2k
r+s

(
1− e

−2
r+s

)]

=
1

2
(r + s)

(
1− e

−2
r+s

) ∞∑
k=0

e−(r+s)Tr,s(x)
(
(r + s)Tr,s(x)e

−2k
r+s

)k
k!

=
1

2
(r + s)

(
1− e

−2
r+s

)
e
(r+s)Tr,s(x)

(
1−e

−2
r+s

)

= e
ln

(
1
2
(r+s)

(
1−e

−2
r+s

)
e
(r+s)Tr,s(x)

(
1−e

−2
r+s

))
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Then we have

Tr,s(x) =
−x− ln

(
(r + s)

(
1− e

−2
r+s

))
1
2
(r + s)

(
e

−2
r+s − 1

) (1.2)

2. Basic outcomes

Lemma 2.1. Where B > 0 and s > 0 , r ≥ 0 , for Tr,sbe given by (1.1), then we arrive to

Kr,s(e
Bt;x) = 2(r + s)e

(r+s)Tr,s(x)

(
−1+e

−2B
r+s

)(
−1 + e

−2B
r+s

B

)
(2.1)

Proof . we’ve got

Zr,s(e
Bt, x) = (r + s)

∞∑
k=0

e−(r+s)T (r + s)(x)
(
(r + s)T (r + s)(x)

)k
k!

∫ k+1
r+s

k
r+s

eBtdt

= (r + s)
∞∑
k=0

e−(r+s)Tr,s(x)
(
(r + s)Tr,s(x)

)k
k!

[
−2eBt

B

] k+1
r+s

k
r+s

=
(r + s)

B

∞∑
k=0

e−(r+s)Tr,s(x)
(
(r + s)Tr,s(x)

)k
k!

[
2e

−2Bk
r+s

(
1− e

−2B
r+s

)]
=

−2

B
(r + s)

(
1− e

−2B
r+s

)
e(r+s)Tr,s(x)

(
−1 + e

−2B
r+s

)
□

Lemma 2.2. For j = 0, 1, 2, . . . ej (t) = tj , we get the moments as
Zr.s (e0.x) = 1
Zr.s (e1.x) = Tr,s (x) +

1
2n

Zr.s (e2.x) = (Tr,s (x))
2 − 2

n
Tr,s (x) +

1
3n2

Lemma 2.3. From Lemma 2.2 and let Zr.s (∅m
x (t) .x)=Zr.s((t ¸ x)

m¸ x), m = 0, 1, 2, . . . . then

(i) Zr.s (∅0
x(t).x) = 1

(ii) Zr.s (∅1
x (t) .x) = Tr,s (x) +

1
2n

− x

(iii) Zr ş (∅2
x (t)¸ x) = (Tr ş (x))2 − 2xTr ş (x) + x2 + 2

n
Tr ş(x)− x

n
+ 1

3n2

In addition to that, from (1.2)

lim
r→∞

[
Tr,s(x) +

1

2n
− x

]
=

1

2
x (2.2)

lim
r→∞

[
(Tr,s(x))

2 − 2xTr,s(x) + x2 +
2

n
Tr,s(x)−

x

n
+

1

3n2

]
= x (2.3)
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3. Main results

Theorem 3.1. [10] For an arrangement of a operators for a linear positive
Lr : C

∗[ 0 ¸ ∞) → C∗[ 0 ¸ ∞) satisfy attached equations.

∥Lr (e0)− 1∥[0,∞) = Br∥∥Lr

(
e−t
)
− e−x

∥∥
[0,∞)

= γr∥∥Lr

(
e−2t

)
− e−2x

∥∥
[0,∞)

= δr, then,

∥Lrf − f∥[0,∞) ≤ Br ∥f∥[0,∞) + (2 +Br)ω
∗(f,

√
Br + γr + δr), (3.1)

for every function of f ∈ C∗[0,∞).

And the modules of continuity can also be defined in this theorem as

ω∗ (f, µ) = sup
|e−x−e−t|≤µx,t>0

|f(t)− f(x)|.

Here Br, γr and δr tend to zero as r → ∞.

Theorem 3.2. let a function ∈ C∗ [0¸∞) , we have∥∥Zr ş −
∥∥
[0,∞)

≤ 2ω∗(Zr ş,
√
δr ş); Were δr ş tends to zero as r → ∞ and

{ Zr ş converges uniformly to the above function.
Proof . the szasz-mirakyan-schurer-kantrovich operators Zr ş preserve stability in addition to e−2bx¸
b > 0 and upon it,

Br ş = ∥Zr (e0)− 1∥[0,∞) = 0 and γr ş =
∥∥Zr

(
e−t
)
− e−x

∥∥
[0,∞)

= 0.

Now we only have to evaluateδr,s.
From lemma 2.1 we have.

Zr,s(e
−2t, x) = (r + s)

∞∑
k=0

e−(r+s)T(r+s)(x)
(
(r + s)T (r + s)(x)

)k
k!

∫ k+1
r+s

k
r+s

e−2tdt

=
(r + s)

(
1− e

−2
r+s

)
2

e
(r+s)T(r+s)(x)

[
e

−2
r+s−1

]

Where T(r+s)(x) is find by (2) as

Tr,s (x) =
(
2 (r + s)

(
e

−1
r+s − 1

))−1 (
−x− ln

[
(r + s)

(
1− e

−1
r+s

)])
To find the right hand part of above equality using the software Mathematica, we get

Zr,s(e
−2t, x) = (r + s)

(
1− e

−2
r+s

)
e
(r+s)T(r+s)(x)

[
e

−2
r+s−1

]

= (r + s)
(
1− e

−2
r+s

)
e

(
1−e

1
r+s

)(
−x−ln

[
(r+s)

(
1−e

−1
r+s

)])
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Hence

Zr ş

(
e−2t, x

)
− e−2x =

x

e2x (r + s)
+

6
(
x2 − x− 5

6

)
e2x (r + s)2

+O (r + s)−3

Since supx∈[0,∞) xe−2x = 1
2
e−1, supx∈[0,∞) x2 e−2x = 1

4
e−1

δr,S =
∥∥Zr,s

(
e−2t

)
− e−2x

∥∥
[0,∞)

= sup
x∈[0,∞)

∣∣Zr,s

(
e−2t

)
− e−2x

∣∣
≤ 1

2
((r + s) e)−1 + (r + s)−2

(
9

2
e−1 + 5

)
+ (r + s)−3

≤ O (r + s)−1

Here δr,S tend to zero as r → ∞.
From that the proof of this theorem is complete. □

Theorem 3.3. let a function f, f́ ∈ C∗[0,∞), the following inequality holds.∣∣∣(r + s)[Zr,s(f ;x)− f(x)]− x

2

(
f́(x)− ´́

f
)∣∣∣ ≤ |pr,s(x)|

∣∣∣f́(x)∣∣∣+ |qr,s|
∣∣∣ ´́f(x)∣∣∣

+ 2 (2qr,s(x) + x+ lr,s(x))ω
∗
(
´́
f,

1√
r + s

)
where

pr,s(x) =
2(r + s)kr(ψ1/x(t), x)− x

2
, qr,s(x) =

(r + s)kr(ψ2/x(t), x)− x

2

lr,s = n2
√
kr ((e−x − e−t)4, x) kr(ψ4

x(t), x),

Proof . from ”Taylor’s expansion of f at the point x” we’ve got

f(t) = f(x) + f́(x)(t− x) +
´́
f(x)

2
(t− x)2 + h(t, x)(t− x) (3.2)

Where h(t, x) =
´́
f(λ)− ´́

f(x)
2

, λ may be a number that falls within the period specified by x and t.
Whenever apply Zu on all side of Taylor’s expansion (3.2) we can get

Zr,s(f, x)− f(x)− f́(x)Zr,s(e
x
1(t), x)−

´́
f(x)Zr,s(e

x
2(t), x)

2
= Zr,s(h(t, x)e

x
2(t), x) (3.3)

using lemma 2.3 we have∣∣∣(r + s)[Zr,s(f ;x)− f(x)]− x

2

(
f́(x)− ´́

f
)∣∣∣ ≤ ∣∣∣∣f(x)2

∣∣∣∣ |2(r + s)Zr,s(e
x
1(t), x) + x|∣∣∣∣∣ ´́f(x)2

∣∣∣∣∣ |(r + s)Zr,s(e
x
2(t), x)− x|+ |(r + s)Zr,s

(
h(t, x)(t− x)2, x

)
|.
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We define pr,s(x), qr,s(x) by the following equations,

pr,s(x) =
1

2
[2(r + s)Zr(e

x
1(t), x)− x], qr,s(x) =

(r + s)Zr(e
x
2(t), x)− x

2

Those ∣∣∣(r + s)[Zr,s(f ;x)− f(x)]− x

2

(
f́(x)− ´́

f
)∣∣∣ ≤ |f́(x)||pr,s(x)|+ | ´́f(x)||qr,s(x)|+

|(r + s)Zr,s

(
h(t, x)(t− x)2, x

)
|.

(3.4)

By using (2.2) and (2.3), it is possible noted that if we it is expected r → ∞, pr,s(x) and qr,s(x)
approaches zero when x is anywhere.
To reach the end of the proof, must be counted the term |(r + s)Zr,s (h(t, x)(t− x)2, x) |.
From the property

|f(t)− f(x)| ≤

(
1−

(
e−x − e−t

δ

)2
)
ω∗(

´́
f, δ),

Here for |e−x − e−t| ≤ δ and δ > 0 than |h (t, x)| ≤ 2ω∗
(
´́
f, δ
)
,

or if |e−x − e−t| > δ than |h(t ¸ x )| ≤ 2
(

e−x−e−t

δ

)2
ω∗(

´́
f, δ) so we get

|h(t, x)| ≤ 2 + 2

(
e−x − e−t

δ

)2

ω∗(
´́
f, δ)

By using (3.4) we have

(r + s)Zr,s

(
h(t, x)(t− x)2, x

)
≤ 2(r + s)ω∗(

´́
f, δ)Zr,s(e

x
2(t), x)+

2(r + s)δ−2ω∗(
´́
f, δ)

√
Zr,s ((e−x − e−t)2ex2(t), x)

By ”applying Cauchy-Schwarz inequality”, we obtain

(r + s)Zr,s

(
h(t, x)(t− x)2, x

)
≤ 2(r + s)ω∗(

´́
f, δ)Zr,s(e

x
2(t), x)+

2(r + s)δ−2ω∗(
´́
f, δ)

√
Zr,s ((e−x − e−t)4, x)Zr,s (ex2(t), x)

Through some mathematical operations we can find

Zr,s

(
e4x(t), x

)
= e

−1
r+s(4+4(r+s)x+(r+s)2Tr,s)

[
e(r+s)Tr,s+

4
r+s − 1

4
(r + s)e4x+(r+s)Tr,se

−4
r+s

+
1

4
(r + s)e4x+(r+s)Tr,se

−4
r+s+ 4

r+s +
4

3
(r + s)e3x+(r+s)Tr,se

−3
r+s+ 1

r+s

−4

3
(r + s)e3x+(r+s)Tr,se

−3
r+s+ 4

r+s − 3(r + s)e2x+(r+s)Tr,se
−2
r+s+ 2

r+s

+3(r + s)e2x+(r+s)Tr,se
−2
r+s+ 4

r+s + 4(r + s)ex+(r+s)Tr,se
−1
r+s+ 3

r+s

−4(r + s)ex+(r+s)Tr,se
−1
r+s+ 4

r+s

]
(3.5)
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And

Zr,s

(
(e−x − e−t)4, x

)
=

1

4

[
1− 5x(r + s) + 10x2(r + s)2 − 10x3(r + s)3 + 5x4(r + s)4

+30(r + s)Tr,s − 70x(r + s)2Tr,s + 60x2(r + s)3Tr,s − 20x3(r + s)4Tr,s

+75(r + s)2T 2
r,s(x)− 90x(r + s)3T 2

r,s(x) + 30x2(r + s)4T 2
r,s(x)

+40(r + s)3T 3
r,s(x)− 20x(r + s)4T 3

r,s(x) + 5(r + s)4T 4
r,s(x)

] (3.6)

Choosing δ = 1√
r+s

and setting

lr,s(x) = (r + s)2
√
Zr,s ((e−x − e−t)4, x)Zr,s ((t− x)4, x)

From this we can reach to the desired result. □

Theorem 3.4. Let f,
´́
f ∈ C∗[0,∞) then for x ∈ [0,∞) the following statement is valid

lim
r→∞

(r + s)[Zr,s(f, x)− f(x)] =
x

2

(
f́(x)− ´́

f(x)
)
.

Proof . from ”Taylor’s expansion of f” can wright

f(t) = f(x) + f́(x)(t− x) +
´́
f(x)

2
(t− x)2 + φ(t, x)(t− x)2

Where

φ(t, x) = f(t)(t− x)−2 − f́(t)(t− x)− x

2
´́
f(t)

Since φ( x ¸ x ) = 0 and this function φ (., x) ∈ C∗ [0,∞) .
By lemma 2.3 we can say that

lim
r→∞

(r + s)[Zr,s(f, x)− f(x)] =

(
Tr,s(x) +

1

2n
− x

)(
f́(x)− ´́

f(x)
)
+ (r + s)Zr,s(φ(t, x)(t− x)2;x)

We can count on ”Cauchy- Schwarz inequality” we deduce that

Zr,s(ϕ
2
x(t)φ(t, x);x) ≤

√
Zr,s(φ2(t, x);x)

√
Zr,s((t− x)4;x)

We can also calculate that
lim
r→∞

Zr,s

(
φ2 (t, x) ;x

)
= φ2 (x, x) = 0

This leads to
lim
r→∞

(r + s)Zr,s

(
∅2

x(t)φ (t, x) ;x
)
= φ2 (x, x) = 0 (3.7)

Consequently,

lim
r→∞

(r+s)[Zr,s(f, x)−f(x)] = lim
r→∞

(
Tr,s(x) +

1

2n
− x

)(
f́(x)− ´́

f(x)
)
+(r+s)Zr,s(φ(t, x)(t−x)2;x)

From the facts above and lim
r→∞

[
Tr ş (x) +

1

2n
− x

]
=

1

2
x, the required results can be obtained. □
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