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Histone deacetylase (HDAC) inhibitors have been suggested as a new class of anticancer agents with
promising effect on breast cancer. HDAC plays an important role in progression of breast cancer as it is
overexpressed in the cancer cells. The study aimed at finding the HDAC inhibitory effect of three newly
designed and synthesized hybrid molecules; made up of SAHA conjugated with the biguanid moiety of
metformin. The molecules were amino[(E)-{amino[(4-anilino-4oxobutyl)amino] methylidene}amino]
methaniminium chloride, amino[(E)-(amino{[4-(4-fluoroanilino)-4-oxobutyl] amino} methylidene)
amino]methaniminium chloride, amino[(E)-(amino{[4-(4-chloroanilino)-4-oxobutyl]amino}methyli
dene) amino] methaniminium chloride, (7–9 respectively). Briefly, the plausible inhibitory effect against
HDAC enzymes (HDAC1, HDAC2 and HDAC3) of the above mentioned compounds was deducted in silico
using a chemo-informative simulation software programs, viz; SeeSAR and Chimera programs. Then, the
compounds were synthesized, purified and identified using conventional synthetic and characterization
methods. After that, their cytotoxic activity was determined against breast cancer using MCF-7 cell line
and the results were compared with that of each of SAHA and metformin. The results revealed an appre-
ciable cancer growth inhibition of all the synthesized analogues (IC50 range 161–72.5 mM). This suggests
that these compounds could be a promising novel class of HADC inhibitors against breast cancer.
� 2021 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the Technology Innovation
in Mechanical Engineering-2021.
1. Introduction

Breast cancer is the most prevalent cancer among women at the
postmenopausal age and rarely incurs in men. It a multifactorial
disease with a high rate of mortality and morbidity [1,2]. Histone
deacetylases enzymes (HDACs) are enzymes involved in the de-
acetylation of the acetylated histone protein within the structure
of chromatin fiber [3]. During the cellular activation, a cascade of
transcription factors are produced and act on DNA to trigger genes
expression. Their binding needs loss of the chromatin fibers com-
pactness that can be achieved via histones acetylation through his-
tone acetyl transferase enzyme [4]. This acetylation is balanced by
the Histone Deacetylase enzyme (HDAC) which maintains the
compactness of the chromatin fibers [5]. A dynamic balance
between histone acetylation and de-acetylation is required to keep
the cell in order and to do an epigenetic control on the genes
expression [3]. Any imbalance between the two processes resulting
in disruption of the feedback control of the cellular growth and
proliferation resulting in enhancement of different types of cancers
[6]. Some types of cancers are promoted via overexpression of
HDAC enzyme resulting in histone deacetylation as this may
results in suppression of the transcription factors involved in sup-
pression or regulation of the cellular growth and proliferation.
Breast cancer is a type of cancers; promoted by the enzymatic
deacetylation of histone [7,8]. Interestingly, breast cancer cells
show measurable levels of HDACs 1, 2, and 3 while normal breast
cells do not show any and this may contribute the role of these
enzymes in cancer development and progression [9,10]. This urged
the scientists to propose HDAC inhibitors as candidate new drugs
id ana-
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in breast cancer therapy [8]. The aberrant silencing of genes in can-
cer may be associated with loss of histone acetylation. HDAC-
inhibitors re-establish normal histone acetylation patterns in the
breast cancer resulting in an anti-tumorigenic and an anti-
metastasis effects characterized by the induction of the cell cycle
arrest, apoptosis as well as cancer cells invasiveness and migration.
These anti-proliferative effects are mediated by reactivation of
silenced tumor suppressor genes [11–13]. Previous studies
revealed a promising effect for the HDAC inhibitors against breast
cancer [14,15]. Most of the zinc-dependent HDAC inhibitors like
SAHA have common pharmacophores consisting of three distinct
domains: (1) a surface recognition unit or cap group which usually
a hydrophobic and aromatic group or may be heteroaromatic,
which interacts with the rim of the binding pocket. (2) A zinc bind-
ing group (ZBG) or zinc binding domain (ZBD), such as the hydrox-
amic acid, benzamide or carboxylic acid groups, which coordinate
with of Zn2+ ion in the active site. (3) A linker domain which is
either saturated or unsaturated with linear or cyclic structure, that
connects the cap group to the ZBD [16]. Besides the antidiabetic
effect, metformin showed prominent anticancer properties with
plausible mechanisms where its anticancer effect is suggested to
be via its direct impact against some cellular targets [17], such as
AMPK (Adenosine Monophosphate kinase) and mitochondria
complex-I [18]. Furthermore, it can indirectly affects progression
of cancer through its impact against development of the insulin
resistance [19]. However, further studies are recommended to dis-
cover the exact mechanism of its action as anticancer agent
[15,20].

The main objective of this study was primarily to design and
synthesis novel class of HDAC inhibitors containing biguanides
moieties through the generation of hybrid molecule [21] from
fusion of two pharamcophoric structures, vorinostat and
biguanide.
2. Materials and methods

2.1. Materials

The chemicals used in this study were boc-gamma aminobu-
tyric acid (boc-GABA), aniline, 4-fluoroaniline, 4-chloroaniline,
ethylchloroformate, triethylamine, dicyandiamide, trifluoroaceti-
cacid, HCl
2.2. Drug design

The study aimed at discovering a new HDAC-I derived from
hybridization of SAHA with a biguanide moiety and biological
study to assess the activity of the newly synthesized analogues
using in vitro cancer cell culture on MCF7 cell line of
Her2 + breast cancer.

Accordingly a docking study was proposed to explore the most
optimum pharmacophore among many designed molecules
depending on HDAC-I SAR which are suspected to have appreciable
activity on specific types of cancers like breast cancer by their
HDAC inhibiting properties. According to the Structure activity
relationship, the strategy was to design new class of non hydrox-
amic acid HDAC Inhibitors to achieve a good anticancer activity
with the following potentials (a) the ability of biguanide to form
many hydrogen bonds with the adjacent H-bond forming groups
of amino acids like Histidine in the active site of HDAC enzyme,
(b) anionic aspartate that could form strong ionic interaction with
cationic biguanide moiety which is ionized in the physiological pH
at the active site, (c) the interaction of biguanide group with zinc
by forming coordinate bond is an appreciable goal [22,23].
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2.3. In silico molecular docking study

Docking study selection is to be carried out using combination
of SeeSAR, Chimera and ChimeraX tools to get appreciable realistic
data about the designed analogues and which will be promising
candidate to be synthesized experimentally.

2.4. Hybrid molecules synthesis is to be carried out by three steps

Amide coupling method which involves reaction of aniline, 4-
fluoroaniline or 4-chloroaniline with free carboxylic group of N-
protected amino acid (boc-GABA) forming N-protected amide
using specific coupling reagent (Fig. 2). De-protection of the boc-
amine to remove boc protecting group getting free amine using
an acid catalyzed de-protection method. Coupling of free amine
of the synthesized intermediate with dicyandiamide through acid
catalyzed reaction resulting 3 of the designed analogues as men-
tioned above.

2.5. Synthesis of tert-butyl (4-anilino-4-oxobutyl) carbamate
compound (1), (2) and (3)

Boc-GABA 10mmole (2.03 g) was dissolved in 50 ml DCM then
12mmole TEA was added then the solution cooled in ice bath to
�5℃ in hood then ethylchloroformate (ECF) 12mmole added
slowly with continuous stirring for thirty minutes then 10mmole
of (aniline for (1) ,fluoroaniline for (2) and chloroaniline for (3))
was dissolved in 10 ml DCM and then added dropwise to the mix-
ture which left on stirring for 20 h, and then refluxed for three
hours, the product then poured into separatory funnel and washed
with 5% sodium bicarbonate solution, 5% HCl solution, Brine solu-
tion and finally with Distilled water many times, the organic layer
was evaporated and the crude precipitated product was then trit-
urated and washed with petroleum ether 40–60%, finally with
ether to get white crystals [24].

2.6. Synthesis of 4-amino-N-phenylbutanamide HCl salt compound
(4), (5) and (6)

From (1), (2) or (3) (5 mmol) was dissolved in 2 ml DCM con-
taining anisole 10 mmole (1.1 ml) then 8 ml TFA was added slowly
with continuous stirring at zero�C for forty minutes the success of
deprotection was confirmed by TLC, then the mixture solvents
were evaporated, the resulted crude product was washed with of
acidic acetonitrile solution (acetonitrile 24.4 ml : 0.6 ml conc.
HCl) and stirred, with time white crystals were appeared of HCl
salt then filtration was done then washed with DCM and diethyl
ether resulting white needle shaped crystals [25].

2.7. Synthesis of compounds (7), (8) and (9)

This step required dissolution of 3 mmole (4), (5) or (6) in 10 ml
n-butanol then dicyandiamide 3.6 mmole (0.302 g) was added the
mixture was refluxed for 20 h the reaction mixture was then
poured into a beaker and dried then dissolved in 3 ml methanol
then introduced into reversed phase preparative HPLC system
[26–28] (Fig. 1).

2.8. Synthesized molecules purification, separation and
characterization

Purification of the final products was done by using gradient
reversed phase HPLC. The HPLC separation was achieved on C18
(250X10) and 5 mm particles size using gradient two solvents sys-
tem, gradient mobile A (0.05% TFA in HPLC grade water) and
mobile B (acetonitrile HPLC grade), firstly the optimization was



Fig. 1. Synthetic pathway.
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done for each sample to get suitable gradient concentration and
time resulting in an optimum separation pattern. The molecular
characterization was done through TLC, Melting points, IR spec-
troscopy and HNMR studies [29,30].

2.9. Impact of the newly synthesized molecules on growth of MCF-7
cell line

MCF-7 cells were maintained in RPMI-1640 supplemented with
10% Fetal bovine serum, 100 units/mL penicillin, and 100 mg/mL
streptomycin. Cells were passaged using Trypsin-EDTA reseeded
at 80% confluence twice a week, and incubated at 37�C [31,32].
To determine the cytotoxic effect of compounds (7–9, SAHA and
Metformin), the MTT tetrazolium assay was done using 96-well
plates [33,34]. Cell lines were seeded at 1 � 104cells/well. After
24 h a confluent monolayer was achieved, cells were treated with
analogues at five different concentration. Cell viability was mea-
sured after 72 h of treatment by removing the medium, adding
28 mL of 2 mg/mL solution of MTT and incubating the cells for
2.5 h at 37 �C. After removing the MTT solution, the crystals
remaining in the wells were solubilized by the addition of 130 mL
of DMSO followed by 37 �C incubation for 15 min with shaking
[35]. The absorbency was determined on a microplate reader at
492 nm; the assay was performed in triplicate [36,37]. The inhibi-
tion rate of cell growth (the percentage of cytotoxicity) was calcu-
lated as the following equation percentage of growth inhibition =
[(A-B)/A] * 100, wherein A is the optical density of control, and B
is the optical density of the samples [38]. To visualize the shape
of the cells under an inverted microscope, the cell were seeded into
24-well micro-titration plates at a density of 1 � 105 cells ml�1 and
incubated for 24 h at 37 �C. Then, cells were exposed to test sam-
ples (7, 8, 9, SAHA and metformin) at IC50 concentration for 24hr.
After the exposure time, the plates were stained with crystal violet
stain and incubated at 37 �C for 10–15 min [36]. The stain was
washed off gently with tap water until the dye was removed. The
cells were observed under an inverted microscope [38–40].
3. Result and discussion

3.1. Characterization of the prepared materials

Based on the calculation of SeeSAR tool which provide a realistic
ligand–protein interaction as estimated affinity values, these val-
ues have relied on HYDE[41] scoring method (estimates the free
energy of binding based on dehydration and hydrogen bond). Upon
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docking of HDAC1 and by adjusting SeeSAR tool to obtain the max-
imum number of poses (about 500 poses); the better interaction
what we get was for 7 and 8, that have intermediate inhibition
of 100 mM, better than 9 ligand. On the other hand docking against
HDAC2; Vorinostat (VS or SAHA) has scored approximately 35 nM
(Table.1) while other ligands have given less extent of affinity
scores, 7 took the second place after VS by scoring 8 mM. Due to
the limitation of access deep into HDAC2, 7 takes the lead among
biguanides because of its size, however some poses were success-
ful to be close enough from Zn atom making coordinate bond,
although, biguanide based ligands have failed to be as potent as
VS, but have showed excellent blockage of the binding pocket as
well as a cross interaction with HDACs. Finally docking against
HDAC3; VS has scored approximately 3.5 nM, while other ligands
have given less extent of affinity scores, 9 took the second place
after VS by scoring 169 mM better than others 7 or 8 which gave
very weak interaction.

The identification of these compounds was carried out by ATR-
IR through the disappearance of bands of the lost functional groups
and the appearance of new bands of the newly formed functional-
ities. The resulted amide bond appeared obviously as band in the
usual amide region around 1660 as shown below. The removal of
boc moiety results in disappearance of carbamate carbonyl and
tri-methyl bands and appearance of multiple bands of primary
ammonium salts. The coupling with dicyandiamide resulting in
multiple NH and NH2 bands through region above 3000 and the
appearance of C = N double bond bands (Table 2).

The most important procedure of identification is the HNMR
study which showed structural conformity with the resulted
chemical shifts, splitting pattern and integrations (Table 3).
3.2. Biological study

The study of cytotoxic effect of VS, MET and biguanide ana-
logues against cancer cells was carried out MCF-7 as an in vitro cell
line of HER2 + breast cancer. The activity of these analogues was
tested by studying their ability to inhibit the proliferation of cancer
cells. MTT assay method was the first widely accepted easy method
used to measure cell proliferation and cytotoxic effect of the tested
analogues. Even though it is widely used, the MTT stain was
replaced by SRB (sulforhodamine B) stain for studying the cyto-
toxic effects which gives more consistent, less variant data and
more accurate results but it was not available at study period.
The overall results of the newly synthesized compounds showed
highly significant cytotoxic activity against the human breast can-



Table 1
The results of interactions of the ligands with the three histone deacetylases.

Code Targeted
receptor

Estimated
affinity

Hydrogen bonds Best non- hydrogen
bond interaction

DG of non-hydrogen bond
interaction(kJ/mol)

Coordinating bond length
(with Zinc) (Å)

VS HDAC1 1.5 mM His178 (1.93 Å) Leu271 (1.86 Å) His178/Tyr303 Phe150 �9.2 2.23
7 HDAC1 104 mM Asp99 (1.97 Å) His178, Gly300, His140 �8.3 2.29
8 HDAC1 101 mM Asp99 (1.93 Å) His178, Tyr33 �7.6 2.33
9 HDAC1 1.0 M Tyr303 (1.77 Å) Nothing special Non non
VS HDAC2 34 nM Asp104 (1.88 Å) His145 (2.10 Å), His146

(1.92 Å), Tyr308 (2 Å)
His145, Gly306 �11.6 2.18

7 HDAC2 8.4 mM 2H-bond with Asp104 (1.87 Å and 2 Å),
His183 (1.92 Å)

Phe210, Phe155 �4.4 No bond

8 HDAC2 23 mM 2H-bonds with Asp104 (2.02 Å and
1.90 Å), His183 (1.93 Å)

Leu 276 �3.9 No bond

9 HDAC2 28 mM Asp104 (1.97 Å) Glu103 (1.92 Å) Gly154, Phe210, Phe155 �4.9 No bond
VS HDAC3 3.5 nM Gly143 (1.75 Å), His172 (1.91 Å), Phe200

(1.82 Å)
His172, Tyr298 �5.5 1.98

7 HDAC3 1,000 M Gly143 (2.2 Å), questionable bond! His172 �6.7 1.98
8 HDAC3 1.3 mM Asp93 (1.90 Å), His172 (1.94 Å) Phe144, His172, Tyr298 �3.9 No bond
9 HDAC3 169 mM Asp93 (2.08 Å), Gly143 (1.70 Å) Leu133, Gly295 �7.2 2

Table 2
The characteristic IR data of the synthesized compounds.

No. Characteristic IR data The important bands

1 3329, 3267, 3202, 3140, 3082,
2987, 2866, 1686, 1659, 1600,
1492, 1531 and1165

Carbamate (1686) Amide I (1659)

2 3317, 3275, 3217, 3159, 3082,
2987, 2866, 1686, 1659, 1600,
1492, 1531 and 1165

Carbamate (1686) Amide I (1659)

3 3309, 3256, 3194, 3121, 3063,
2978, 2874, 1666, 1600, 1489,
1531 and 1169

Amide I (1666)

4 3236–3128, 3078, 3032–2812,
2812–2000, 2920, 2862, 1666,
1601, 1489, 1601 and 1543

3032–2812 band of NH3+ (broad)
2812–2000 Multiple bands of
NH3 + group

5 3252, 3013, 3013–2812, 2812–
2000, 2955, 2870, 1651,
1616,1508, 1562, 1470 and 1543

3013–2812 band of NH3 + group
(broad)
2812–2000 Multiple bands of
NH3 + group

6 3252–3182, 3001–2870, 3001,
2870–2000, 2947, 2870, 1659,
1609 and 1493, 1593, 1470 and
1539

3001–2870 band of NH3 + group
(broad)
2870–2000 Multiple bands of
NH3 + group

7 3341, 3263, 3194, 3140, 3024,
2978, 2874, 1651, 1635, 1597,
1501 and 1543

1635C = N str. and NH bending of
NH2 & NH2 + overlapped bands

8 3348, 3256, 3152, 3086, 3020,
2978, 2874, 1632, 1562, 1508,
1543

1632Carbonyl str. of anilide
carbonyl (amide I), C = N str. band,
C = N str. and NH bending of NH2
& NH2 + overlapped bands

9 3348, 3267, 3182, 3124, 3001,
2970, 2874, 1647, 1612, 1593,
1493, 1539

1612C = N str. and NH bending of
NH2 & NH2 + overlapped bands

Table 3
The characteristic HNMR data for the newly synthesized compounds.

No. Chemical shift, No. of protons(Multiplicity)

1 1.37,9H(s), 1.66–1.72,2H(p), 2.28–2.31,2H(t), 2.95–2.99,2H(q), 6.81–
6.84,1H(t), 7.00–7.03,1H(t), 7.26–7.29,2H(t), 7.58–7.59,2H(d), 9.86,1H
(s)

2 1.37,9H(s), 1.65–1.71,2H(p), 2.26–2.29,2H(t), 2.94–2.98,2H(q), 6.81–
6.83,1H(t), 7.09–7.14,2H(t), 7.58–7.61,2H(m), 9.92,1H(s)

3 1.37,9H(s), 1.65–1.71,2H(p), 2.28–2.31,2H(t), 2.94–2.98,2H(q), 6.81–
6.83,1H(t), 7.31–7.34,2H(m), 7.60–7.62,2H(d), 10.00,1H(s)

4 1.85–1.91,2H(p), 2.43–2.46,2H(t), 2.82–2.86,2H(t), 7.02–7.05,1H(d),
7.27–7.31,2H(t), 7.60–7.62,2(d), 7.95,3H(s), 10.12,1H(s)

5 1.86–1.89,2H(p), 2.43–2.46,2H(t), 2.81–2.85,2H(t), 7.13–7.16,2H(m),
7.63–7.64,2H(m), 7.96,3H(s), 10.23,1H(s)

6 1.83–1.91,2H(p), 2.44–2.47,2H(t), 2.81–2.85,2H(t), 7.25–7.37,2H(d),
7.65–7.68,2H(d), 7.96,3H(s), 10.33,1H(s)

7 1.88–1.94,2H(m), 2.46–2.49,2H(t), 2.83–2.86,2H(t), 7.00–7.04,3H(m),
7.26–7.29,2H(t), 7.64, 7.65,2H(d), 7.69,1H(s), 8.46,4H(br s), 10.29,1H(s)

8 1.83–1.91,2H(p), 2.42–2.46,2H(t), 2.81–2.85,2H(t), 7.00,2H(s), 7.11–
7.16,2H(t), 7.62–7.65, 2H(m), 7.97,4H(s), 10.23,1H(s)

9 1.87–1.93,2H(m), 2.47–2.50,2H(t), 2.82–2.85,2H(t), 7.00–7.04,2H(s),
7.32–7.34,2H(d), 7.68–7.71,3H(m), 8.43,4H(br s), 10.50,1H(s)

Table 4
The IC50 of the SAHA, MET, 7, 8 and 9.

No. Compound Name IC50(mM) ± SD

1 MET 4901.4 ± 256*
2 SAHA 97.5 ± 6.75
3 7 155.75 ± 12.82*
4 8 99.18 ± 11.11
5 9 145.55 ± 8.55*

* represent a statistically significant different value of IC50 for the tested com-
pound as compared with SAHA (P < 0.01).

Fig. 2. Normal untreated MCF-7 Cells.
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cer cells. These results suggest the significant ability of these com-
pounds to suppress the growth of cells in concentration dependent
manner. Metformin as it is showed very weak activity on breast
cancer cells with concentration of 4.9 mM IC50 while VS and other
analogues showing moderate activity of concentration range 97.5–
155.75 mM. The response and growth inhibition for the 3 analogues
was somewhat different, the best result among them was for com-
pound 8 with lower IC50 of 99.18 mM which is comparable with VS
IC50 (97.5 mM) while both compounds 7 and 9 are with moderate
activity but weaker than VS (Table 4, Figs. 3–9).

4. Conclusion

The breast cancer treatment is an objective target for many
researches to find safe effective treatment to decrease its mortality
4



Fig. 3. Dose response (A) and log dose response (B) curves for the cytotoxic effect of SAHA, MET, 7, 8 and 9 against MCF-7 cell line. The results were expressed as mean ± SD of
the triplicate. The linear regression analysis of the log dose response curve showed a significant correlation between the log of the dose and the percentage of cell growth
inhibition.

Fig. 4. The interaction of ligands with HDAC1 active site.
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and morbidity through the discovery of novel classes of anticancer
agents with distinct mechanism of action could be used individu-
ally or in combination. From the docking study it was concluded
that biguanide moiety was very successful to bind tightly to HDACs
by making numerous interaction modes. Through searching for
allosteric binding site in case of HDAC2 may be could show better
results with biguanides based ligands. Modification on amide moi-
ety may lead to more likely better interaction with HDAC1. 8
seemed to have a prosperous future as an inhibitor for HDAC3,
cell-based experiments are recommended for further investigation
of its activity. Therefore these newly synthesized analogues may be
5

represent an exploitable source of new anticancer agents fighting
breast cancer. The therapeutic potential of these agents is fairly
obvious suggesting a promising novel class of HADC inhibitors
fighting breast cancer.
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Fig. 5. The occupation of the binding pocket of HDAC1 by the ligands.

Fig. 6. The interaction of ligands with HDAC2 active site. In another hand, biguanide-ligands have competed VS in making fruitful interaction with HDAC1 and HDAC3.
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Fig. 7. The occupation of the binding pocket of HDAC2.

Fig. 8. The binding site of HDAC3 that has contained ligands 7–9 and VS.
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Fig. 9. Occupying the binding pocket of HDAC3 by ligands 7–9 as well as Vs.
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