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Abstract 
Recently, several techniques have been developed for vegetable and fruit maturing recognition. 

Adding hardware designs will enhance the recognition performance. Especially, parallel processing 

designs efficiently speed up the process functions. This paper utilizes a hardware parallel processing 

design called field programmable gate array for that purpose. In addition, two different methods; namely 

K-means clustering and color thresholding are used for recognizing the apple maturation. This study aims 

to design and implement a mature apple recognition system based on field programmable gate array. The 

results demonstrate that the color thresholding technique is faster, more reliable and more effective than 

the K-means clustering technique.  

Keywords: Color Thresholding, K-Means Clustering, Fruit Mature Recognition, Field Programmable Gate 

Array, Parallel Processing 

 

 

摘要 最近，已经开发了几种技术来识别蔬菜和水果。添加硬件设计将提高识别性能。特别地，并

行处理设计有效地加快了处理功能。为此，本文采用了称为现场可编程门阵列的硬件并行处理设

计。另外，两种不同的方法； 也就是说，使用 K均值聚类和颜色阈值识别苹果成熟度。本研究旨

在设计和实现基于现场可编程门阵列的成熟苹果识别系统。结果表明，颜色阈值技术比 K均值聚

类技术更快，更可靠，更有效。 

关键词: 颜色阈值，K均值聚类，水果成熟识别，现场可编程门阵列，并行处理 
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I. INTRODUCTION 
Earlier, the human perspective to 

differentiating between mature and immature 

fruits was erroneous [1]. Currently, several 

methods are being improvised to enhance the 

working speed and reduce system failure to 

identify mature and immature vegetables and 

fruits. One of these methods is image partitioning. 

It is the primary part of the human visual 

observation, which refers to partitioning an image 

into various segments that are homogeneous 

according to a specific image characteristic. 

People depend on dividing their environment into 

different parts to help distinguish them and guide 

their movements on using their visual sense [2]. 

The analysis of objects’ shape, color, texture, 

and motion in images represents many complex 

processes for the human visual system. However, 

image partitioning is a normal activity. 

Unfortunately, there is no easy way to generate 

artificial algorithms whose execution is like the 

human visual system. Image partitioning is 

weakened by several suspicions rendering the 

greatest simple partitioning techniques 

ineffective due to a tendency to underestimate the 

difficulty of the problem. This occurs because the 

human performance is mediated by methods is 

the main problem which obstruct the successful 

development partitioning theories [3]. Tasks such 

as feature extraction and object recognition 

depend considerably on the quality of 

partitioning. If a partitioning algorithm operates 

inefficiently, an object may never be 

recognizable. Significant care is therefore taken 

to increase the probability of successful 

partitioning. 

The last few years have witnessed the rise of 

deep learning fields and their employment in 

different applications, such as those involved in 

the medical sector [29], [30]. However, one of 

the most serious barriers to deep learning is the 

lack of training data. This deficiency discouraged 

us from implementing this innovation in our 

work. Contrastingly, the use of field 

programmable gate arrays (FPGAs) boosts 

performance efficiency [31], [32], thus driving its 

implementation in the present research.  

 

II. LITERATURE SURVEY 
The foundation of any image is color 

composition, which is critical to, for example, the 

identification of image elements such as fruits 

and vegetables. Consequently, most studies 

commonly use models that are based on color 

identification [4], [5], [6], [7], [8], [9]. A case in 

point is the work of Xu et al. [5], who proposed a 

color-grounded model that can be used to analyze 

color information regarding fruit. The model uses 

red-blue (R-B) chromatic deviation information 

to identify oranges on a tree. A similar study is 

that conducted by Arefi et al. [11], who 

combined the divergences between a background 

and ripe and unripe tomatoes with loss separation 

to complete tomato identification. The authors 

then performed morphological analysis to 

complement color features via shape information 

and accordingly identified tomatoes on an image. 

Despite the benefits provided by these methods, 

however, they fail to acceptably identify elements 

on images with specific crucial backgrounds [6]. 

In contrast to the above-mentioned 

approaches, the machine vision system developed 

by Hannan and Bulanon [6] combines shape 

analysis, adaptive segmentation, and a color 

model in detecting red and green oranges. More 

specifically, the shape analysis model uses the 

Hough transform to simplify target identification 

[10]. Identification based on texture can be very 

helpful in detecting and classifying objects 

because it contributes significantly to vision 

perception [8], [12], [13]. In recent years, 

machine learning methods have become very 

popular and widely used by many researchers [7], 

[8], [14], [15], [16]. Such approaches involve 

several different methods, such as soft computing, 

supervised classification, and unsupervised 

classification. Machine learning was 

implemented by Bulanon et al. [15] in their use 

of K-means clustering to detect red apples, but 

the changes that they applied to lighting 

conditions negatively affected classification 

accuracy. Chinchulun et al. [16] used a 

supervised classifier to detect citrus fruits and 

eliminate the risky effects of different lighting 

conditions. Similar to color-based identification, 

however, detection anchored in machine learning 

still suffers from insufficient accuracy in real-

world applications. To increase detection 

efficiency and accuracy, Ji et al. [7] used a 

support vector machine to classify apples, and 

Dubey and Jalal [8] applied an approach based on 

a multi-class support vector machine to classify 

vegetables and fruits. The latter combines texture 

and color, thereby enhancing classification 

accuracy. These techniques exhibit high accuracy 

in fruit classification, but they are time-

consuming and inapplicable to real-time 

processing.  

To address the deficiencies discussed above, 

the current research adopted the parallel 

architecture concept in identification and 

classification. It investigated the implementation 

of FPGAs in accelerating the classification of 
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mature apples. The results indicated extremely 

accurate performance in real time. 

 

III. FRUIT SEGMENTATION 
Fruit segmentation depends on colors for an 

image to be partitioned into significant regions. 

Image partitioning is accomplished through the 

use of monochromatic images, whose intensity is 

the only source of information for division. A 

more desirable strategy is the partitioning of 

color images, instead of grayscale images, 

because the human eye can detect thousands of 

color intensities and shades. In the case of 

grayscale images, however, the human eye can 

identify only two dozen gray shades. The main 

purposes of using color images are to extend 

identification capacity, derive more information 

for such detection, and ensure fast information 

processing [1]. 

 

A. Color Conversion 

Color images are converted from RGB to 

YCbCr images for two reasons: 

1. Intensity is the aspect in which images 

most strongly differ. Hence, the majority of 

signal energy is focused on a luminance element 

through the translation process. 

2. The weights used to convert an RGB 

image into a YCbCr one are influenced by the 

relative sensibility of the human visual system, 

and this conversion is implemented using many 

codecs. 

The transformation equations [1], [18] in this 

regard are as follows: 

 

 

 

where  is the luma component,  denotes 

the red-difference chroma component, and  

represents the blue-difference chroma component. 

Table 1 lists the red shades and corresponding 

decimal values of R, G, and B intensities for each 

shade [19]. 

 
Table 1.  

Red shade 

Red shades Light Hex RGB 

 
90% #FFCCCC RGB(255, 204, 204) 

 
85% #FFB3B3 RGB(255, 179, 179) 

 
80% #FF9999 RGB(255, 153, 153) 

 
75% #FF8080 RGB(255, 128, 128) 

 
70% #FF6666 RGB(255, 102, 102) 

 
65% #FF4D4D RGB(255, 77, 77) 

 
60% #FF3333 RGB(255, 51, 51) 

 
55% #FF1A1A RGB(255, 26, 26) 

 
50% #FF0000 RGB(255, 0, 0) 

 

B. Color Thresholding  

Color thresholding involves the assignment of 

a label to every pixel primarily to detect which 

pixels have its place in each set of colors. The 

output is a labeled image given that every single 

label is matched to a class of colors. Combining a 

color class with a rectangular box in color 

coordinates is a simple computational method, 

which entails the use of a couple of thresholds in 

each part the define the box boundaries alongside 

that part [20]. Illumination must be fixed to use 

an RGB space for the purpose of ensuring a 

robust relationship among the three basic 

elements, namely, red, green, and blue. These 

elements must be resized with illumination. 

When intensity changes, points travel crosswise 

in RGB space, which in turn, compels the 

enlargement of the box. Therefore, only a small 

number of separated colors can be discovered. In 

addition, colors are poorly recognized [21], [22]. 

Some improvements occur as a result of 

conversion to YCbCr images because rectangular 

boxes that are adjacent to YCbCr axes become 

crosswise in RGB space. The maximum of red, 

green, and blue elements or luminance resizes 

chrominance components, thus achieving 

enhanced discrimination [22], [23]. The circuit 

shown in Figure 1 needs to be repeated for each 

color class to be detected.  

 

C. K-Means Clustering 

Clustering is an effective method for image 

processing of fruit. It is one of the most 

frequently used techniques in classifying objects 

into numerous distinctive sets or dividing a 

dataset into clusters. Dividing data is a method 

for statistical data analysis, which is utilized in 

various fields such as data mining, bioinformatics, 

pattern recognition, machine learning, and image 

analysis [17]. 
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Figure 1. Color thresholding circuit 

 

Separating the data set into k subsets is a 

computational task called unsupervised learning. 

There are many methods of clustering. K-means 

technique is one of them. It is a typical clustering 

algorithm considered for a wide variety of 

functions [18], [23]. With the purpose of 

determining the pixel sets presented in an image, 

K-means is exploited. K-means is very fast and 

attractive in exercise because it is straightforward. 

The data set can be partitioned into k clusters by 

K-means. All the clusters are indicated with 

cluster centers, beginning from particular original 

values called seed points. In the K-means 

technique, the distances between the centers and 

the input data points are calculated, and these 

input points are allocated to the closest center. 

This technique categorizes the input data objects 

according to their inherent distance from each 

other into several classes [24], [25]. 

However, the vector space in a clustering 

algorithm is designed from features of the data. A 

clustering algorithm attempts to classify 

clustering inside it. Note that clustering the 

objects should be about the centroids μi∀i equal 

to 1 [1], [26]. 

                    (2) 

Note that the number of clusters is represented 

by k, where, , i = 1, 2 , . . . , k, and μi is the 

mean point or the centroid of each point in ∈ . 

An iterative version of K-means algorithm is 

applied as part of this design.  

 
Figure 2. The hardware setup for the ripe apple recognition system 

 

The input should be a color image as required 

by the algorithm. K-means clustering algorithm 

performs the following: 

a) Calculates the intensity values 

distribution. 

b) K random intensities are employed for 

initializing the centroids. 

c) Steps 4 and 5 are repeated until there is 

no further change in the cluster labels. 

d) Cluster the image points according to the 

distance from the centroid intensity values to 

their intensity values. 

c(t): = arg min j                       (3) 

e) Each new cluster centroid will be 

computed. 

                        (4) 

where i is the centroid density, t iterates over 

each value of intensity, j iterates over each 

centroid of each cluster, and k is the number of 

the clusters.  

 

IV. HARDWARE SETUP  
The FPGA technique has become widely used 

in video and image processing applications due to 

their architecture. The main goal of this work is 

to design and implement a ripe apple recognition 

based on FPGA. When the size of an image and 

bit depth increases, the software becomes less 

useful in real-time image-processing applications. 

These real-time systems need a powerful 

processor to increase speed. The problem is 

dealing with huge data. Since FPGA performs the 

logic the application requires by constructing 

independent hardware for each function, the 

FPGA is parallel and inherent. These aspects give 

FPGA speed in calculation result and relatively 
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less cost. This makes FPGA very suitable for 

image-processing experiments [27], [28]. 

Figure 2 shows the hardware setup for the ripe 

apple recognition system. Firstly, the input image 

is taken by a real-time camera on the conveyor 

belt that carries the apples. Next, these images 

are sent to the FPGA (here using Altera DE2 

Cyclone II) for classifying apples as ripe or 

unripe fruits, dependent on color segmentation 

algorithms. It is worth mentioning that these 

steps are programmed using the Verilog language. 

 

V. RESULT 
The processing sequence starts by reading the 

image data from a camera in ITU656 format. 

This camera transforms the input format to YUV 

4:2:2 format, or so-called YCbCr. Next, the 

system shrinks the samples of the input signal 

from 720 to 640 horizontal pixels, and buffers the 

output frame into a frame buffer (SDRAM FIFO). 

The FIFO output is transformed from YUV 4:2:2 

to 4:4:4 format. Finally, a 10-bit RGB format is 

generated based on the new YUV format. The 

RGB data is delivered to the VGA controller for 

display on the VGA monitor, either directly or 

through one or more modules, such as noise 

filtering, morphology technique, or color 

segmentation algorithms. Figure 3 illustrates the 

data flow diagram of the video decoder hardware 

for ripe apple recognition. 

After reading the input image (e.g. Figure 4), 

“1” represents all detected pixels and “0” 

represents the other pixels, as shown in Figure 5. 

The binary thresholding explained that the fruit is 

shown as black and the background is shown as 

white. The first step is segmenting the ripe apple 

by the color thresholding technique, which, in 

turn, depends on the color shading. 

The following code written in the Verilog 

language illustrates the range of red shades:  

if (((aRed-aGreen) > 10'd0)  

&& ((aRed-aGreen) < 10'd74))  

begin 

raw_R < = 10'h3FF; 

raw_G < = 10'h3FF; 

raw_B < = 10'h3FF; 

data_reg1 [VGA_A1] < = 1'b1; 

end 

else begin 

raw_R < = 10'h0; 

raw_G < = 10'h0; 

raw_B < = 10'h0; 

data_reg1 [VGA_A1] < = 1'b0; 

end

 
Figure 3. Mature apple recognition steps 

 

The range of color shading (10’d0 to 10’d74) 

is tested randomly by the trial-and-error method 

to select the required color. For enhancing the 

binary image, the morphology technique is 

applied, such as the erosion process to remove 

the separated pixels. Next, the dilation process is 

used for filling the holes in the black region, as 

shown in Figures 6 and 7. Figure 9 illustrates the 

steps of the K-means clustering algorithm. 

Initially, the color image of the strawberry fruit is 

converted to the L*a*b model. Next, the color is 

classified using the K-means method. Labeling 

each pixel of the algorithm output is the next step, 

followed by separating the original image by 

color. Figures 10 to 13 illustrate the results. 

 
Figure 4. Original image 
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Figure 5. Raw segmentation step 

 

 
Figure 6. Erosion result 

 

 
Figure 7. Filled reign 

 

 
 

Figure 8. Last result

 
Figure 9. The overall procedure of K-means clustering algorithm 

 

 
Figure 10. Original image 

 

 
Figure 11. Image filtered by Gaussian 
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Figure 12. Noise-removed binary image 

 

 
Figure 13. Cropped fruit region 

 

Figures 14 and 15 summarize the flow 

summary obtained from Quartus II 11.1 web 

edition (32 bit) from the Altera DE2 Cyclone II 

(EP2C35F672C8) family. With a look at these 

summaries, we found the total logic element 

(total combinational functions and dedicated 

logic register), total register, total memory and 

embedded multiplier bits for color thresholding 

are greater than K-means clustering in hardware 

components, due to the complex operation of the 

latter technique. 

 
Figure 14. Flow summary of color thresholding 
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Figure 15. Flow summary of K-means clustering 

 

Table 2 lists the execution time for both 

techniques. The time exhausted in color 

thresholding is smaller than K-means clustering 

due to the simplicity of the process of color 

thresholding that affects the hardware design size. 

 
Table 2. 

The execution time on Altera DE2 

Technique Execution time (msec) 

Color thresholding 10.2478 

K-mean clustering 64.8741 

 

VI. CONCLUSIONS 
This paper employed two techniques for 

performing apple mature recognition; which are 

color thresholding and K-means clustering. The 

results obtained the following points: 

 Red color thresholding is simpler than K-

means algorithm, since it requires only the 

intensity information for the detection process, 

while the K-means requires training and learning 

algorithms for finding the clustering center. 

 At changing the luminance, the K-means 

method would find the chosen red shade, while 

color thresholding finds only a binary color at 

another contrast band. This procedure needs to be 

repeated for the execution of the searching 

algorithm at any change in the environment.  

 Color thresholding is faster than K-

means, as well as requiring less significant 

hardware design.  
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