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Abstract

Recently, several techniques have been developed for vegetable and fruit maturing recognition.
Adding hardware designs will enhance the recognition performance. Especially, parallel processing
designs efficiently speed up the process functions. This paper utilizes a hardware parallel processing
design called field programmable gate array for that purpose. In addition, two different methods; namely
K-means clustering and color thresholding are used for recognizing the apple maturation. This study aims
to design and implement a mature apple recognition system based on field programmable gate array. The
results demonstrate that the color thresholding technique is faster, more reliable and more effective than
the K-means clustering technique.

Keywords: Color Thresholding, K-Means Clustering, Fruit Mature Recognition, Field Programmable Gate
Array, Parallel Processing
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I. INTRODUCTION

Earlier, the human  perspective to
differentiating between mature and immature
fruits was erroneous [1]. Currently, several
methods are being improvised to enhance the
working speed and reduce system failure to
identify mature and immature vegetables and

fruits. One of these methods is image partitioning.

It is the primary part of the human visual
observation, which refers to partitioning an image
into various segments that are homogeneous
according to a specific image characteristic.
People depend on dividing their environment into
different parts to help distinguish them and guide
their movements on using their visual sense [2].

The analysis of objects’ shape, color, texture,
and motion in images represents many complex
processes for the human visual system. However,
image partitioning is a normal activity.
Unfortunately, there is no easy way to generate
artificial algorithms whose execution is like the
human visual system. Image partitioning is
weakened by several suspicions rendering the
greatest ~ simple  partitioning  techniques
ineffective due to a tendency to underestimate the
difficulty of the problem. This occurs because the
human performance is mediated by methods is
the main problem which obstruct the successful
development partitioning theories [3]. Tasks such
as feature extraction and object recognition
depend considerably on the quality of
partitioning. If a partitioning algorithm operates
inefficiently, an object may never be
recognizable. Significant care is therefore taken
to increase the probability of successful
partitioning.

The last few years have witnessed the rise of
deep learning fields and their employment in
different applications, such as those involved in
the medical sector [29], [30]. However, one of
the most serious barriers to deep learning is the
lack of training data. This deficiency discouraged
us from implementing this innovation in our
work.  Contrastingly, the use of field
programmable gate arrays (FPGAS) boosts
performance efficiency [31], [32], thus driving its
implementation in the present research.

Il. LITERATURE SURVEY

The foundation of any image is color
composition, which is critical to, for example, the
identification of image elements such as fruits
and vegetables. Consequently, most studies
commonly use models that are based on color
identification [4], [5], [6], [7]. [8], [9]- A case in
point is the work of Xu et al. [5], who proposed a
color-grounded model that can be used to analyze

color information regarding fruit. The model uses
red-blue (R-B) chromatic deviation information
to identify oranges on a tree. A similar study is
that conducted by Arefi et al. [11], who
combined the divergences between a background
and ripe and unripe tomatoes with loss separation
to complete tomato identification. The authors
then performed morphological analysis to
complement color features via shape information
and accordingly identified tomatoes on an image.
Despite the benefits provided by these methods,
however, they fail to acceptably identify elements
on images with specific crucial backgrounds [6].

In contrast to the above-mentioned
approaches, the machine vision system developed
by Hannan and Bulanon [6] combines shape
analysis, adaptive segmentation, and a color
model in detecting red and green oranges. More
specifically, the shape analysis model uses the
Hough transform to simplify target identification
[10]. Identification based on texture can be very
helpful in detecting and classifying objects
because it contributes significantly to vision
perception [8], [12], [13]. In recent years,
machine learning methods have become very
popular and widely used by many researchers [7],
[8], [14], [15], [16]. Such approaches involve
several different methods, such as soft computing,
supervised classification, and unsupervised
classification. Machine learning was
implemented by Bulanon et al. [15] in their use
of K-means clustering to detect red apples, but
the changes that they applied to lighting
conditions negatively affected classification
accuracy. Chinchulun et al. [16] used a
supervised classifier to detect citrus fruits and
eliminate the risky effects of different lighting
conditions. Similar to color-based identification,
however, detection anchored in machine learning
still suffers from insufficient accuracy in real-
world applications. To increase detection
efficiency and accuracy, Ji et al. [7] used a
support vector machine to classify apples, and
Dubey and Jalal [8] applied an approach based on
a multi-class support vector machine to classify
vegetables and fruits. The latter combines texture
and color, thereby enhancing classification
accuracy. These techniques exhibit high accuracy
in fruit classification, but they are time-
consuming and inapplicable to real-time
processing.

To address the deficiencies discussed above,
the current research adopted the parallel
architecture concept in identification and
classification. It investigated the implementation
of FPGAs in accelerating the classification of



mature apples. The results indicated extremely
accurate performance in real time.

1. FRUIT SEGMENTATION

Fruit segmentation depends on colors for an
image to be partitioned into significant regions.
Image partitioning is accomplished through the
use of monochromatic images, whose intensity is
the only source of information for division. A
more desirable strategy is the partitioning of
color images, instead of grayscale images,
because the human eye can detect thousands of
color intensities and shades. In the case of
grayscale images, however, the human eye can
identify only two dozen gray shades. The main
purposes of using color images are to extend
identification capacity, derive more information
for such detection, and ensure fast information
processing [1].

A. Color Conversion

Color images are converted from RGB to
YCDbCr images for two reasons:

1. Intensity is the aspect in which images
most strongly differ. Hence, the majority of
signal energy is focused on a luminance element
through the translation process.

2. The weights used to convert an RGB
image into a YCbCr one are influenced by the
relative sensibility of the human visual system,
and this conversion is implemented using many
codecs.

The transformation equations [1], [18] in this
regard are as follows:

Y=(R+2G+B)/4
Cr=R-G (1)
Cb=B -G

where ¥ is the luma component, Cr denotes
the red-difference chroma component, and Ch

represents the blue-difference chroma component.

Table 1 lists the red shades and corresponding
decimal values of R, G, and B intensities for each
shade [19].

Table 1.
Red shade

Red shades Light Hex RGB
90% #FFCCCC RGB(255, 204, 204)
85% #FFB3B3 RGB(255, 179, 179)
80%  #FF9999 RGB(255, 153, 153)
75%  #FF8080 RGB(255, 128, 128)
70% #FF6666 RGB(255, 102, 102)

65% #FFADAD  RGB(255, 77, 77)
RGB(255, 51, 51)
RGB(255, 26, 26)

RGB(255, 0, 0)

60%  #FF3333

55% #FF1AlA
50%  #FF0000

B. Color Thresholding

Color thresholding involves the assignment of
a label to every pixel primarily to detect which
pixels have its place in each set of colors. The
output is a labeled image given that every single
label is matched to a class of colors. Combining a
color class with a rectangular box in color
coordinates is a simple computational method,
which entails the use of a couple of thresholds in
each part the define the box boundaries alongside
that part [20]. Illumination must be fixed to use
an RGB space for the purpose of ensuring a
robust relationship among the three basic
elements, namely, red, green, and blue. These
elements must be resized with illumination.
When intensity changes, points travel crosswise
in RGB space, which in turn, compels the
enlargement of the box. Therefore, only a small
number of separated colors can be discovered. In
addition, colors are poorly recognized [21], [22].
Some improvements occur as a result of
conversion to YCbCr images because rectangular
boxes that are adjacent to YCbCr axes become
crosswise in RGB space. The maximum of red,
green, and blue elements or luminance resizes
chrominance  components, thus  achieving
enhanced discrimination [22], [23]. The circuit
shown in Figure 1 needs to be repeated for each
color class to be detected.

C. K-Means Clustering

Clustering is an effective method for image
processing of fruit. It is one of the most
frequently used techniques in classifying objects
into numerous distinctive sets or dividing a
dataset into clusters. Dividing data is a method
for statistical data analysis, which is utilized in
various fields such as data mining, bioinformatics,
pattern recognition, machine learning, and image
analysis [17].
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Figure 1. Color thresholding circuit

Separating the data set into k subsets is a
computational task called unsupervised learning.
There are many methods of clustering. K-means
technique is one of them. It is a typical clustering
algorithm considered for a wide variety of
functions [18], [23]. With the purpose of
determining the pixel sets presented in an image,
K-means is exploited. K-means is very fast and

attractive in exercise because it is straightforward.

The data set can be partitioned into k clusters by

K-means. All the clusters are indicated with
cluster centers, beginning from particular original
values called seed points. In the K-means
technique, the distances between the centers and
the input data points are calculated, and these
input points are allocated to the closest center.
This technique categorizes the input data objects
according to their inherent distance from each
other into several classes [24], [25].

However, the vector space in a clustering
algorithm is designed from features of the data. A
clustering algorithm attempts to classify
clustering inside it. Note that clustering the
objects should be about the centroids piVi equal
to 1 [1], [26].

W= E:{:lzn}'Ezi(nj - }J-l} . (2)
Note that the number of clusters is represented
by k, where, zi, i =1, 2, ...,k and ui is the

mean point or the centroid of each point in njezi.

An iterative version of K-means algorithm is
applied as part of this design.

Verilog code
for color
segmentation

A

Recognition
of ripe fruit

Figure 2. The hardware setup for the ripe apple recognition system

The input should be a color image as required
by the algorithm. K-means clustering algorithm
performs the following:

a) Calculates the
distribution.

b) K random intensities are employed for
initializing the centroids.

C) Steps 4 and 5 are repeated until there is
no further change in the cluster labels.

d) Cluster the image points according to the
distance from the centroid intensity values to
their intensity values.

c(t): = arg min jllx(t) — will? 3)

e) Each new cluster centroid will be
computed.

o IR 1e() = ) x(0)
=73 1@ = 3 @)

intensity  values

where pi is the centroid density, t iterates over
each value of intensity, j iterates over each
centroid of each cluster, and k is the number of
the clusters.

IV. HARDWARE SETUP

The FPGA technique has become widely used
in video and image processing applications due to
their architecture. The main goal of this work is
to design and implement a ripe apple recognition
based on FPGA. When the size of an image and
bit depth increases, the software becomes less
useful in real-time image-processing applications.
These real-time systems need a powerful
processor to increase speed. The problem is
dealing with huge data. Since FPGA performs the
logic the application requires by constructing
independent hardware for each function, the
FPGA is parallel and inherent. These aspects give
FPGA speed in calculation result and relatively



less cost. This makes FPGA very suitable for
image-processing experiments [27], [28].

Figure 2 shows the hardware setup for the ripe
apple recognition system. Firstly, the input image
is taken by a real-time camera on the conveyor
belt that carries the apples. Next, these images
are sent to the FPGA (here using Altera DE2
Cyclone 1I) for classifying apples as ripe or
unripe fruits, dependent on color segmentation
algorithms. It is worth mentioning that these
steps are programmed using the Verilog language.

V. RESULT

The processing sequence starts by reading the
image data from a camera in ITU656 format.
This camera transforms the input format to YUV
4:2:2 format, or so-called YCbCr. Next, the
system shrinks the samples of the input signal
from 720 to 640 horizontal pixels, and buffers the
output frame into a frame buffer (SDRAM FIFO).

segmentation algorithms. Figure 3 illustrates the
data flow diagram of the video decoder hardware
for ripe apple recognition.

After reading the input image (e.g. Figure 4),
“1” represents all detected pixels and “0”
represents the other pixels, as shown in Figure 5.
The binary thresholding explained that the fruit is
shown as black and the background is shown as
white. The first step is segmenting the ripe apple
by the color thresholding technique, which, in
turn, depends on the color shading.

The following code written in the Verilog
language illustrates the range of red shades:

if (((aRed-aGreen) > 10'd0)

&& ((aRed-aGreen) < 10'd74))

begin

raw_R < = 10'h3FF;

raw_G < = 10'h3FF;

raw_B < = 10'h3FF;

data_regl [VGA_A1] < =1bl,;

The FIFO output is transformed from YUV 4:2:2 end
to 4:4:4 format. Finally, a 10-bit RGB format is else begin .
generated based on the new YUV format. The raw_R <= 10|h0?
RGB data is delivered to the VGA controller for raw_G <= 10|h0_?
display on the VGA monitor, either directly or raw_B <= 10'h0; .
through one or more modules, such as noise data_regl [VGA_A1] <= 1'0;
filtering, morphology technique, or color end
Camera/Video [TU656 to Down sample SDRAM frame
input device YUV 4:2:2 from 720 to 640 [ Buffer
Noise filtering, 1
VGA Morphology technique. YUV 4:4:4 YUV 4:2:2
controller and color segmentation to RGB to YUV
algorithms

Figure 3. Mature apple recognition steps

The range of color shading (10°d0 to 10°d74)
is tested randomly by the trial-and-error method
to select the required color. For enhancing the
binary image, the morphology technique is
applied, such as the erosion process to remove
the separated pixels. Next, the dilation process is
used for filling the holes in the black region, as
shown in Figures 6 and 7. Figure 9 illustrates the
steps of the K-means clustering algorithm.
Initially, the color image of the strawberry fruit is
converted to the L*a*b model. Next, the color is
classified using the K-means method. Labeling
each pixel of the algorithm output is the next step,
followed by separating the original image by
color. Figures 10 to 13 illustrate the results.

Figure 4. Original image
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Figure 7. Filled reign

Figure 6. Erosion result

Figure 8. Last result

Input image

Y

Transform the image
from RGB to
L*a*b color space

Assort color using K-

L J

means clustering
method

L)

Mature an apple are |,

segmented

Divide the original
image by color

Each pixel in the image

from the output of
K -means are labeled

Figure 9. The overall procedure of K-means clustering algorithm

Figure 10. Original image

\

v

T —

Figure 11. Image filtered by Gaussian




Figure 12. Noise-removed binary image

Figure 13. Cropped fruit region

Figures 14 and 15 summarize the flow
summary obtained from Quartus 1l 11.1 web
edition (32 bit) from the Altera DE2 Cyclone II
(EP2C35F672C8) family. With a look at these
summaries, we found the total logic element
(total combinational functions and dedicated
logic register), total register, total memory and
embedded multiplier bits for color thresholding
are greater than K-means clustering in hardware
components, due to the complex operation of the
latter technique.

Flow Status
Quartus II 32-hit Version
Revision Name
Top-ewvel Entity Mame
Family
Device
Timing Models
4 Total logic elements

Total registers
Total pins

Total virtual pins
Total memory bits

Total PLLs

Total combinational functions
Dedicated logic registers

Embedded Multiplier 9-bit elements

Successful - Sat Feb 16 02:01:47 2019
11.1 Build 173 11/01/2011 5] Web Edition
DEZ2_TV

DEZ_TV

Cydone II

EFP2C35F&T72CE

Final

5,160 f 33,216 ( 16 %)

4,733 /33,216 ( 14 %)

2,031 /33,216 (6 %)

2031

476 f 475 (90 % )

a

246,088 /483,840 (51 %)

28 /70 (40 %)

1/4(25%:)

Figure 14. Flow summary of color thresholding
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Flow Status

Quartus II 32-bit Version

Revision Mame

Top-evel Entity Mame

Family

Device

Timing Models

4 Total logic elements

Total combinational functions
Dedicated logic registers

Total reqisters

Total pins

Total virtual pins

Total memory bits

Embedded Multiplier 9-bit elements

Total PLLs

Successful - Sat Feb 16 01:57:30 2019
11.1 Build 173 11/01/2011 5] Web Edition
DE2_TV

DEZ2_TV

Cydone IT

EP2C35F672CH

Final

20,661 f 33,216 (62 %)

20,392/ 33,216 (61 %)

7,822 [ 33,216 ( 24 % )

7322

425 | 475 (90 %)

a

53,184 [ 483,890 ( 11 %)

18 /70 ( 26 % )

1/4(25%)

Figure 15. Flow summary of K-means clustering

Table 2 lists the execution time for both
techniques. The time exhausted in color
thresholding is smaller than K-means clustering
due to the simplicity of the process of color

thresholding that affects the hardware design size.

Table 2.
The execution time on Altera DE2

Technique Execution time (msec)
Color thresholding 10.2478
K-mean clustering 64.8741

V1. CONCLUSIONS

This paper employed two techniques for
performing apple mature recognition; which are
color thresholding and K-means clustering. The
results obtained the following points:

¢ Red color thresholding is simpler than K-
means algorithm, since it requires only the
intensity information for the detection process,
while the K-means requires training and learning
algorithms for finding the clustering center.

e At changing the luminance, the K-means
method would find the chosen red shade, while
color thresholding finds only a binary color at
another contrast band. This procedure needs to be
repeated for the execution of the searching
algorithm at any change in the environment.

e Color thresholding is faster than K-
means, as well as requiring less significant
hardware design.
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