
182 Int. J. Reasoning-based Intelligent Systems, Vol. 4, No. 4, 2012

Copyright © 2012 Inderscience Enterprises Ltd.

An evolutionary tic-tac-toe player

Belal Al-Khateeb
Department of Computer Science,
College of Computer,
University of Anbar,
Ramadi, Al-Anbar, Iraq
Email: belal@computer-college.org

Abstract: In this paper, artificial neural networks are used as function evaluators in order to
evolve game playing strategies for the game of tic-tac-toe. The best evolved player is tested
against an online perfect tic-tac-toe player, and also against a nearly perfect player which allows
10% random moves and finally against five selected human players. Those players are with
different playing abilities. The results are promising, suggesting many other research directions.

Keywords: artificial neural networks; tic-tac-toe; evolutionary algorithms.

Reference to this paper should be made as follows: Al-Khateeb, B. (2012) ‘An evolutionary
tic-tac-toe player’, Int. J. Reasoning-based Intelligent Systems, Vol. 4, No. 4, pp.182–185.

Biographical notes: Belal Al-Khateeb received the BSc (Hons.) (first class) degree in Computer
Science from Al-Nahrain University, Baghdad, Iraq, in 2000, and the MSc degree in Computer
Science from Al-Nahrain University, Baghdad, Iraq, in 2003, and the PhD degree from the
School of Computer Science, University of Nottingham, Nottingham, UK, in 2011. He is
currently a Lecturer at the College of Computer, University of Anbar. He has published over
14 refereed journal and conference papers. His current research interests include evolutionary and
adaptive learning particularly in computer games, expert systems, and heuristics and meta/hyper-
heuristics. He has a particular interest in computer games programming.

This paper is a revised and expanded version of a paper entitled ‘An evolutionary tic-tac-toe
player’ presented at the ‘2nd Conference on Computer and Information Technology (CCIT’
2012)’, Ramadi, Iraq, 4–5 April 2012.

1 Introduction

The game of tic-tac-toe is a commonly played game. Many
who play the game develop some strategies on their own which
usually do not let the player lose the game. However, in a
significant proportion of the games played, the game ends with
a draw. In the past, researchers have studied computing
methods to generate efficient strategies for not having to lose
the game even once. Hochmuth (2003) demonstrated how
a genetic algorithm (GA) can be used to evolve a perfect
tic-tac-toe strategy, which never loses a game it plays.
He concluded that there are 827 unique game states that are
encountered during game play and concentrated on finding
a single no-loss strategy. The study reported a single no-loss
strategy, but did not provide the description of that strategy
to know its properties. Soedarmadji (2005) suggested a
decentralised decision-making procedure to find a competent
strategy which forces a draw or a win depending on the
proficiency of the opponent player. Although such a goal
should result in a no-loss game-playing strategy, Bhatt et al.
(2008) observed that the resulting strategy reported in the study
loses in at least three different scenarios. In the work of Bhatt et
al. (2008), the goal was to revisit the use of GAs in finding not
one but as many no-loss strategies as possible. For this purpose,
a representation scheme similar to that in Hochmuth (2003)
was used and designed as new ways of evaluating a solution
through matrix processing in MATLAB, a new initialisation

scheme, customised GA operators with a controlled elite
preservation scheme and two-tier GA procedure. Interestingly,
the study is able to find more than 72,000 no-loss strategies for
playing the game of tic-tac-toe, which were not reported earlier.
Furthermore, the paper analysed the set of 72,657 no-loss
solutions to arrive at a number of efficient strategies which
produce excellent win-to-draw ratio, a matter which has not
also been paid much attention in the past. The results of this
study are interesting and may motivate similar such studies for
other board games as well.

Our experiments demonstrate that the evolutionary
algorithms can be used to evolve a reasonably good tic-tac-toe
players in a short time without injecting human experts
knowledge.

The rest of the paper is organised as follows: in Section 2
the nature of the game of tic-tac-toe together with related
work is presented. Section 3 gives background about the
evolutionary algorithms. The statistical tests are discussed in
Section 4. Section 5 shows the experimental set-up. Section 6
presents the results and a conclusion is presented in Section 7.

2 Tic-tac-toe

This section gives a brief description of tic-tac-toe game,
and then summarises previous approaches to learning to
play it. Tic-tac-toe, also known as noughts and crosses, is

 An evolutionary tic-tac-toe player 183

played on a 33 board between two players, black and white
(black moves first). Each player has five pieces, which are
placed on empty squares. Pieces are fixed in their positions.
The player who succeeds in placing three respective marks
in a horizontal, vertical, or diagonal row wins the game.
Figure 1 shows a tic-tac-toe board.

Figure 1 Tic-tac-toe board

In this paper, our goal is to evolve a reasonably good tic-tac-toe
player in a short time without injecting any human expert
knowledge rather than the basic rules of the game. The
results of this study are interesting and may motivate similar
such studies for other board games as well.

3 Background

Evolutionary algorithms draw their inspiration from the real
life behaviour of how humans learn and how they
continuously evolve throughout their life time. These
algorithms form part of the machine learning research
domain. For more than a decade, researchers have attempted
to get machines to learn some given task by embedding
knowledge into the machine, integrating the machine with a
database(s) that contains human knowledge or providing a
learning algorithm to enable it to learn by itself.

Based on Michalski et al. (1983), there are two basic
forms of learning, these being knowledge acquisition and
skill refinement. In knowledge acquisition, the person learns
some new information and has the ability to apply that
information in an effective manner. In skill refinement, with
some basic information at the start of the learning process,
the person repeats a certain activity in order to continually
improve their skill level. Humans learn by a combination of
these two activities.

In Fogel’s work (Chellapilla and Fogel, 1999a;
Chellapilla and Fogel, 1999b; Chellapilla and Fogel, 2000;
Chellapilla and Fogel, 2001; Fogel, 2002; Fogel and
Chellapilla, 2002; Fogel et al., 2004; Fogel et al., 2005;
Fogel et al., 2006), no information was given to the
machine. The machine learnt to play a game by itself
through its experience, using co-evolutionary learning.
Fogel combined evolution strategies with neural networks
and used a minimax search tree as a look ahead mechanism
to find potentially good moves for the game of checkers
(Chellapilla and Fogel, 1999a; Chellapilla and Fogel,
1999b; Chellapilla and Fogel, 2000; Chellapilla and Fogel,
2001; Fogel, 2002; Fogel and Chellapilla, 2002) and chess

(Fogel et al., 2004; Fogel et al., 2005; Fogel et al., 2006).
Blondie24 (an automated checkers player) can play at the
human expert level. The work on chess (Blondie25) is still
ongoing, but initial results are promising.

4 Statistical test

A student t-test with the following settings: unequal
variances, alpha (α) = 0.05, and one-tail test, will be used in
order to determine whether two players are statistically the
same. It is worth mentioning that any two players are
statistically the same if the value (called p value) obtained
from the t-test is less than alpha.

5 Experimental set-up

For the purpose of investigating our hypothesis (producing a
reasonably good tic-tac-toe player in a short time without
injecting any human expert knowledge), the following
evolutionary algorithm is used:

1 Initialise a random population of 20 neural networks
(players) sampled uniformly [–0.5,0.5] for the weights.

2 Each neural network is fully connected and consists of
nine input nodes, each one represents a square from the
tic-tac-toe board, two hidden layers consist of five and
three nodes respectively, and finally one output node.
The output (in the range [–1,1]), is calculated using the
hyperbolic tangent, of the neural network represents
how strong is the tic-tac-toe board.

3 Each player has its associated self-adaptive parameter,
initialised to 0.05.

4 Play each player against all other players using round
robin tournament.

5 For each game, the player receives a score of +1 for a
win, 0 for draw and –1 for a loss.

6 Games are played until either side wins, or until nine
moves are made by both sides, in which case a draw is
declared.

7 After completing all games, the 10 strategies that have
the highest scores are selected as parents and retained
for the next generation. Those parents are then mutated
to create another 10 offspring using the following
equations:

si(j) = si(j)exp(tNj (0,1)), j = 1, ..., Nw

wi(j) = wi(j) + si(j)Nj(0,1), j = 1, ..., Nw

 where Nw is the number of weights and biases in the

neural network
1

2 w

t
N




, and Nj(0,1) is a standard

Gaussian random variable resembled for every j.

8 Repeat steps 4 to 7 for 2000 generations

184 B. Al-Khateeb

The best player from the above algorithm, which is obtained
over 2000 generations, is called TTT. In order to make sure
that the TTT is not a ‘fluke’ of optimisation, we decided to
construct 20 players, comparing them by using round robin
tournament and test if they are statistically the same by
using student t-test (assuming unequal variances, α = 0.05,
and one-tail test) for their total score (each win got three
points, a draw got one point and a loss got zero points). The
null hypothesis is that two players are the same if the p value
obtained from the t-test is greater than alpha. Bearing in
mind that all the players are end products (always playing
with the same strategy). Table 1 shows the results.

Table 1 Number of scored points for all the players

Player Points

TTT(10) 51

TTT(15) 51

TTT(6) 50

TTT(14) 50

TTT(17) 50

TTT(4) 49

TTT(12) 49

TTT(1) 48

TTT(7) 48

TTT(16) 48

TTT(20) 48

TTT(8) 47

TTT(11) 47

TTT(18) 47

TTT(2) 46

TTT(5) 46

TTT(19) 46

TTT(3) 45

TTT(9) 45

TTT(13) 45

Based on Table 1, there is no statistical difference between
the players as the p value (p-value = 1) for the one tail t-test
is greater than alpha. So as all the players are statistically
the same, we decided to choose the player with the most
number of points to be the baseline player, TTT.

6 Results

In order to test the outcome of the evolutionary tic-tac-toe
player, TTT is set to play 50 games against an online
program, which can be found at http://www.agame.com/
game/tic-tac-toe.html. As the online program is designed to
avoid lose (perfect player), a high number of draws will be
considered as a success for the TTT player. Also TTT is set
to play 50 games against a nearly perfect tic-tac-toe player
(it is a perfect player but allowed to make 10% random
moves). The results are shown in Tables 2 and 3. Finally the

performance of TTT is tested against five selected human
players. Those human players are with different abilities
(they are sorted in ascending order according to their
strength) and each player played 50 games against TTT. The
results are shown in Tables 4 through 8.

All the experiments were run using the same computer
(1.33 GHz Intel Atom processor and 2GB Ram). All the
experiments to evolve the players were run 2000 generations
took about two days.

The results in Table 2 show that TTT drew 43 games,
out of 50, against a perfect tic-tac-toe player, which reflects
a success for the evolved TTT player, bearing in mind that
TTT is trained for two days only. Table 3 shows that TTT is
better than a nearly perfect player, as the results show that
TTT won 28 games and lose only two games, out of the
50 played games, which reflect a success for the evolved
TTT player.

Table 2 Results when playing TTT against online program

 Opponent: Online Program

 Win Draw Lose

TTT 0 43 7

Table 3 Results when playing TTT against a nearly perfect
player

 Opponent: Nearly Perfect Player

 Win Draw Lose

TTT 28 20 2

The results in Table 4 show that TTT is better than the first
selected human player, as the results show that TTT won 35
games and lose only two, out of 50 played games, which
clearly indicates a success for our hypothesis. Table 5 shows
that TTT won 27 games and lose only 5 games, out of the
50 played games, against the second selected human player,
which reflect another success for the evolved TTT player.
According to the results in Table 6, TTT is better than the
third selected human player as TTT won 20 games and lose 10,
out of the 50 played games, while the results in Table 7
show another success for TTT, as TTT won 14 games
and drew 14 games, out of the 50 played games, against a
strong human player. Finally Table 8 shows that TTT drew
39 games, out of the 50 played games, against the fifth
selected human player. The fifth player is played 50 games
against the perfect online tic-tac-toe player in which all the
games end in draw, which clearly indicates that the fifth
selected human player is a perfect player. Those results
reflect the success for the evolved TTT player as getting
39 draws against a perfect player is clearly considered as
a success.

Table 4 Results when playing TTT against Human_Player1

 Opponent:Human_Player1

 Win Draw Lose

TTT 35 13 2

 An evolutionary tic-tac-toe player 185

Table 5 Results when playing TTT against Human_Player2

 Opponent:Human_Player2

 Win Draw Lose

TTT 27 18 5

Table 6 Results when playing TTT against Human_Player3

 Opponent:Human_Player3

 Win Draw Lose

TTT 20 20 10

Table 7 Results when playing TTT against Human_Player4

 Opponent:Human_Player4

 Win Draw Lose

TTT 14 14 22

Table 8 Results when playing TTT against Human_Player5

 Opponent:Human_Player5

 Win Draw Lose

TTT 0 39 11

As TTT is better than a nearly perfect tic-tac-toe player and
also better three of the selected human players and most
importantly is of comparable performance with a perfect
players (online and human) and a strong human player then
it seems quite appropriate to use the evolutionary approach
to construct a strong tic-tac-toe players.

7 Conclusions

This paper has used an evolutionary algorithm to construct a
strong tic-tac-toe player, called TTT. The hypothesis of the
paper was to evolve reasonably good tic-tac-toe players in a
short time without injecting any human expert knowledge
rather than the basic rule for the game. TTT was evolved in
two days, and the proposed algorithm shows promising
results when tested against various tic-tac-toe players, which
clearly achieve the hypothesis.

Based on the results in Tables 3–6, TTT found to be
superior to some of the selected players. Also the result in
Tables 2, 7 and 8 showed that TTT is of comparable
performance to strong players.

Based on the results it would seem appropriate to use
evolutionary algorithms to evolve reasonably good tic-tac-
toe players in a short time.

References

Bhatt, A., Varshney, P. and Deb, K. (2008) ‘In search of no-loss
strategies for the game of tic-tac-toe using a customized
genetic algorithm’, GECCO 2008, pp.889–896.

Chellapilla, K. and Fogel, D.B. (1999a) ‘Evolution, neural
networks, games, and intelligence’, Proceedings of the IEEE,
Vol. 87, pp.1471–1496.

Chellapilla, K. and Fogel, D.B. (1999b) ‘Evolving neural networks
to play checkers without relying on expert knowledge’, IEEE
Transactions on Neural Networks, Vol. 10, pp.1382–1391.

Chellapilla, K. and Fogel, D.B. (2000) ‘Anaconda defeats hoyle
6-0: a case study competing an evolved checkers program
against commercially available software’, Congress on
Evolutionary Computation, La Jolla Marriot Hotel, La Jolla,
California, USA, pp.857–863.

Chellapilla, K. and Fogel, D.B. (2001) ‘Evolving an expert checkers
playing program without using human expertise’, IEEE
Transactions on Evolutionary Computation, Vol. 5, pp.422–428.

Fogel, D.B. (2002) Blondie24 Playing at the Edge of AI, Academic
Press, USA.

Fogel, D.B. and Chellapilla, K. (2002) ‘Verifying anaconda’s expert
rating by competing against Chinook: experiments in co-evolving
a neural checkers player’, Neurocomputing, Vol. 42, pp.69–86.

Fogel, D.B., Hays, T.J., Hahn, S.L. and Quon, J. (2004) ‘A self-
learning evolutionary chess program’, Proceeding of IEEE,
Vol. 92, pp.1947–1954.

Fogel, D.B., Hays, T.J., Hahn, S.L. and Quon, J. (2005) ‘Further
evolution of a self-learning chess program’, Proceedings of
the IEEE 2005 Symposium on Computational Intelligence and
Games (CIG05), Essex, UK, pp.73–77.

Fogel, D.B., Hays, T.J., Hahn, S.L. and Quon, J. (2006) ‘The
Blondie25 Chess Program Competes Against Fritz 8.0 and a
Human Chess Master’, Proceedings of the IEEE 2006
Symposium on Computational Intelligence and Games
(CIG06), Reno, USA, pp.230–235.

Hochmuth, G. (2003) On the Genetic Evolution of a perfect Tic-
Tac-Toe Strategy, Stanford University Book Store, pp.75–82.

Michalski, R.S., Carbonell, J.G. and Mitchell T.M. (1983)
Machine Learning: An Artificial Intelligence Approach, Tioga
Publishing Company, Palo Alto, California.

Soedarmadji, E. (2005) ‘Decentralized decision making in the game of
tic-tac-toe’, Proceedings of the 2005 IEEE Symposium on
Computational Intelligence and Games, pp.34–38.

