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Abstract: In this paper, artificial neural networks are used as function evaluators in order to 
evolve game playing strategies for the game of tic-tac-toe. The best evolved player is tested 
against an online perfect tic-tac-toe player, and also against a nearly perfect player which allows 
10% random moves and finally against five selected human players. Those players are with 
different playing abilities. The results are promising, suggesting many other research directions. 
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1 Introduction 

The game of tic-tac-toe is a commonly played game. Many 
who play the game develop some strategies on their own which 
usually do not let the player lose the game. However, in a 
significant proportion of the games played, the game ends with 
a draw. In the past, researchers have studied computing 
methods to generate efficient strategies for not having to lose 
the game even once. Hochmuth (2003) demonstrated how  
a genetic algorithm (GA) can be used to evolve a perfect  
tic-tac-toe strategy, which never loses a game it plays.  
He concluded that there are 827 unique game states that are 
encountered during game play and concentrated on finding  
a single no-loss strategy. The study reported a single no-loss 
strategy, but did not provide the description of that strategy  
to know its properties. Soedarmadji (2005) suggested a 
decentralised decision-making procedure to find a competent 
strategy which forces a draw or a win depending on the 
proficiency of the opponent player. Although such a goal 
should result in a no-loss game-playing strategy, Bhatt et al. 
(2008) observed that the resulting strategy reported in the study 
loses in at least three different scenarios. In the work of Bhatt et 
al. (2008), the goal was to revisit the use of GAs in finding not 
one but as many no-loss strategies as possible. For this purpose, 
a representation scheme similar to that in Hochmuth (2003) 
was used and designed as new ways of evaluating a solution 
through matrix processing in MATLAB, a new initialisation 

scheme, customised GA operators with a controlled elite 
preservation scheme and two-tier GA procedure. Interestingly, 
the study is able to find more than 72,000 no-loss strategies for 
playing the game of tic-tac-toe, which were not reported earlier. 
Furthermore, the paper analysed the set of 72,657 no-loss 
solutions to arrive at a number of efficient strategies which 
produce excellent win-to-draw ratio, a matter which has not 
also been paid much attention in the past. The results of this 
study are interesting and may motivate similar such studies for 
other board games as well.  

Our experiments demonstrate that the evolutionary 
algorithms can be used to evolve a reasonably good tic-tac-toe 
players in a short time without injecting human experts 
knowledge. 

The rest of the paper is organised as follows: in Section 2 
the nature of the game of tic-tac-toe together with related 
work is presented. Section 3 gives background about the 
evolutionary algorithms. The statistical tests are discussed in 
Section 4. Section 5 shows the experimental set-up. Section 6 
presents the results and a conclusion is presented in Section 7. 

2 Tic-tac-toe 

This section gives a brief description of tic-tac-toe game, 
and then summarises previous approaches to learning to 
play it. Tic-tac-toe, also known as noughts and crosses, is 
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played on a 33 board between two players, black and white 
(black moves first). Each player has five pieces, which are 
placed on empty squares. Pieces are fixed in their positions. 
The player who succeeds in placing three respective marks 
in a horizontal, vertical, or diagonal row wins the game. 
Figure 1 shows a tic-tac-toe board. 

Figure 1 Tic-tac-toe board 

 

In this paper, our goal is to evolve a reasonably good tic-tac-toe 
player in a short time without injecting any human expert 
knowledge rather than the basic rules of the game. The 
results of this study are interesting and may motivate similar 
such studies for other board games as well. 

3 Background 

Evolutionary algorithms draw their inspiration from the real 
life behaviour of how humans learn and how they 
continuously evolve throughout their life time. These 
algorithms form part of the machine learning research 
domain. For more than a decade, researchers have attempted 
to get machines to learn some given task by embedding 
knowledge into the machine, integrating the machine with a 
database(s) that contains human knowledge or providing a 
learning algorithm to enable it to learn by itself. 

Based on Michalski et al. (1983), there are two basic 
forms of learning, these being knowledge acquisition and 
skill refinement. In knowledge acquisition, the person learns 
some new information and has the ability to apply that 
information in an effective manner. In skill refinement, with 
some basic information at the start of the learning process, 
the person repeats a certain activity in order to continually 
improve their skill level. Humans learn by a combination of 
these two activities. 

In Fogel’s work (Chellapilla and Fogel, 1999a; 
Chellapilla and Fogel, 1999b; Chellapilla and Fogel, 2000; 
Chellapilla and Fogel, 2001; Fogel, 2002; Fogel and 
Chellapilla, 2002; Fogel et al., 2004; Fogel et al., 2005; 
Fogel et al., 2006), no information was given to the 
machine. The machine learnt to play a game by itself 
through its experience, using co-evolutionary learning. 
Fogel combined evolution strategies with neural networks 
and used a minimax search tree as a look ahead mechanism 
to find potentially good moves for the game of checkers 
(Chellapilla and Fogel, 1999a; Chellapilla and Fogel, 
1999b; Chellapilla and Fogel, 2000; Chellapilla and Fogel, 
2001; Fogel, 2002; Fogel and Chellapilla, 2002) and chess  

(Fogel et al., 2004; Fogel et al., 2005; Fogel et al., 2006). 
Blondie24 (an automated checkers player) can play at the 
human expert level. The work on chess (Blondie25) is still 
ongoing, but initial results are promising. 

4 Statistical test  

A student t-test with the following settings: unequal 
variances, alpha (α) = 0.05, and one-tail test, will be used in 
order to determine whether two players are statistically the 
same. It is worth mentioning that any two players are 
statistically the same if the value (called p value) obtained 
from the t-test is less than alpha. 

5 Experimental set-up 

For the purpose of investigating our hypothesis (producing a 
reasonably good tic-tac-toe player in a short time without 
injecting any human expert knowledge), the following 
evolutionary algorithm is used: 

1 Initialise a random population of 20 neural networks 
(players) sampled uniformly [–0.5,0.5] for the weights.  

2 Each neural network is fully connected and consists of 
nine input nodes, each one represents a square from the 
tic-tac-toe board, two hidden layers consist of five and 
three nodes respectively, and finally one output node. 
The output (in the range [–1,1]), is calculated using the 
hyperbolic tangent, of the neural network represents 
how strong is the tic-tac-toe board. 

3 Each player has its associated self-adaptive parameter, 
initialised to 0.05. 

4 Play each player against all other players using round 
robin tournament. 

5 For each game, the player receives a score of +1 for a 
win, 0 for draw and –1 for a loss. 

6 Games are played until either side wins, or until nine 
moves are made by both sides, in which case a draw is 
declared. 

7 After completing all games, the 10 strategies that have 
the highest scores are selected as parents and retained 
for the next generation. Those parents are then mutated 
to create another 10 offspring using the following 
equations: 

si(j) = si(j)exp(tNj (0,1)), j = 1, ..., Nw 

wi(j) = wi(j) + si(j)Nj(0,1), j = 1, ..., Nw 

 where Nw is the number of weights and biases in the 

neural network 
1

2 w

t
N




, and Nj(0,1) is a standard 

Gaussian random variable resembled for every j. 

8 Repeat steps 4 to 7 for 2000 generations 
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The best player from the above algorithm, which is obtained 
over 2000 generations, is called TTT. In order to make sure 
that the TTT is not a ‘fluke’ of optimisation, we decided to 
construct 20 players, comparing them by using round robin 
tournament and test if they are statistically the same by 
using student t-test (assuming unequal variances, α = 0.05, 
and one-tail test) for their total score (each win got three 
points, a draw got one point and a loss got zero points). The 
null hypothesis is that two players are the same if the p value 
obtained from the t-test is greater than alpha. Bearing in 
mind that all the players are end products (always playing 
with the same strategy). Table 1 shows the results.  

Table 1 Number of scored points for all the players 

Player Points 

TTT(10) 51 

TTT(15) 51 

TTT(6) 50 

TTT(14) 50 

TTT(17) 50 

TTT(4) 49 

TTT(12) 49 

TTT(1) 48 

TTT(7) 48 

TTT(16) 48 

TTT(20) 48 

TTT(8) 47 

TTT(11) 47 

TTT(18) 47 

TTT(2) 46 

TTT(5) 46 

TTT(19) 46 

TTT(3) 45 

TTT(9) 45 

TTT(13) 45 

Based on Table 1, there is no statistical difference between 
the players as the p value (p-value = 1) for the one tail t-test 
is greater than alpha. So as all the players are statistically 
the same, we decided to choose the player with the most 
number of points to be the baseline player, TTT. 

6 Results 

In order to test the outcome of the evolutionary tic-tac-toe 
player, TTT is set to play 50 games against an online 
program, which can be found at http://www.agame.com/ 
game/tic-tac-toe.html. As the online program is designed to 
avoid lose (perfect player), a high number of draws will be 
considered as a success for the TTT player. Also TTT is set 
to play 50 games against a nearly perfect tic-tac-toe player 
(it is a perfect player but allowed to make 10% random 
moves). The results are shown in Tables 2 and 3. Finally the  

performance of TTT is tested against five selected human 
players. Those human players are with different abilities 
(they are sorted in ascending order according to their 
strength) and each player played 50 games against TTT. The 
results are shown in Tables 4 through 8.  

All the experiments were run using the same computer 
(1.33 GHz Intel Atom processor and 2GB Ram). All the 
experiments to evolve the players were run 2000 generations 
took about two days.  

The results in Table 2 show that TTT drew 43 games, 
out of 50, against a perfect tic-tac-toe player, which reflects 
a success for the evolved TTT player, bearing in mind that 
TTT is trained for two days only. Table 3 shows that TTT is 
better than a nearly perfect player, as the results show that 
TTT won 28 games and lose only two games, out of the  
50 played games, which reflect a success for the evolved 
TTT player.  

Table 2 Results when playing TTT against online program 

 Opponent: Online Program 

 Win Draw Lose 

TTT 0 43 7 

Table 3 Results when playing TTT against a nearly perfect 
player 

 Opponent: Nearly Perfect Player 

 Win Draw Lose 

TTT 28 20 2 

The results in Table 4 show that TTT is better than the first 
selected human player, as the results show that TTT won 35 
games and lose only two, out of 50 played games, which 
clearly indicates a success for our hypothesis. Table 5 shows 
that TTT won 27 games and lose only 5 games, out of the 
50 played games, against the second selected human player, 
which reflect another success for the evolved TTT player. 
According to the results in Table 6, TTT is better than the 
third selected human player as TTT won 20 games and lose 10, 
out of the 50 played games, while the results in Table 7 
show another success for TTT, as TTT won 14 games  
and drew 14 games, out of the 50 played games, against a 
strong human player. Finally Table 8 shows that TTT drew 
39 games, out of the 50 played games, against the fifth 
selected human player. The fifth player is played 50 games 
against the perfect online tic-tac-toe player in which all the  
games end in draw, which clearly indicates that the fifth 
selected human player is a perfect player. Those results 
reflect the success for the evolved TTT player as getting  
39 draws against a perfect player is clearly considered as  
a success. 

Table 4 Results when playing TTT against Human_Player1 

 Opponent:Human_Player1 

 Win Draw Lose 

TTT 35 13 2 
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Table 5 Results when playing TTT against Human_Player2 

 Opponent:Human_Player2 

 Win Draw Lose 

TTT 27 18 5 

Table 6 Results when playing TTT against Human_Player3 

 Opponent:Human_Player3 

 Win Draw Lose 

TTT 20 20 10 

Table 7 Results when playing TTT against Human_Player4 

 Opponent:Human_Player4 

 Win Draw Lose 

TTT 14 14 22 

Table 8 Results when playing TTT against Human_Player5 

 Opponent:Human_Player5 

 Win Draw Lose 

TTT 0 39 11 

As TTT is better than a nearly perfect tic-tac-toe player and 
also better three of the selected human players and most 
importantly is of comparable performance with a perfect 
players (online and human) and a strong human player then 
it seems quite appropriate to use the evolutionary approach 
to construct a strong tic-tac-toe players. 

7 Conclusions 

This paper has used an evolutionary algorithm to construct a 
strong tic-tac-toe player, called TTT. The hypothesis of the 
paper was to evolve reasonably good tic-tac-toe players in a 
short time without injecting any human expert knowledge 
rather than the basic rule for the game. TTT was evolved in 
two days, and the proposed algorithm shows promising 
results when tested against various tic-tac-toe players, which 
clearly achieve the hypothesis.  

Based on the results in Tables 3–6, TTT found to be 
superior to some of the selected players. Also the result in 
Tables 2, 7 and 8 showed that TTT is of comparable 
performance to strong players.  

 
 
 
 
 
 
 
 
 
 
 

Based on the results it would seem appropriate to use 
evolutionary algorithms to evolve  reasonably good tic-tac-
toe players in a short time. 
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