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Abstract. The design of course timetables for academic institutions is a very difficult job due to the huge number of possible
feasible timetables with respect to the problem size. This process contains lots of constraints that must be taken into account
and a large search space to be explored, even if the size of the problem input is not significantly large. Different heuristic
approaches have been proposed in the literature in order to solve this kind of problem. One of the efficient solution methods
for this problem is tabu search. Different neighborhood structures based on different types of move have been defined in
studies using tabu search. In this paper, different neighborhood structures on the operation of tabu search are examined. The
performance of different neighborhood structures is tested over eleven benchmark datasets. The obtained results of every
neighborhood structures are compared with each other. Results obtained showed the disparity between each neighborhood
structures and another in terms of penalty cost.
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INTRODUCTION

The overall objective of the timetabling problem "is to assign a set of entities (such as tasks, public events,
vehicles, or people) to limited number of resources over time, in such a way as to meet a set of pre-defined schedule
requirements" [1]. In the university timetabling problem, "schedule requirements" are grouped into two generic
constraints categories: 'hard' and 'soft' constraints. Satisfying hard constraints are necessary to produce a (feasible)
timetable whilst soft constrains are desired but not absolutely essential. Soft constraints can be violated, as they are
not essential but rather desirable. However, the more they are met, the more the solution gains optimality [2].

There are several ways suggested in several literatures in order to solve the problem of timetabling, each one
used a certain way according to scientific specialization such as: Operations research, Artificial intelligence and
computational intelligence .Various techniques have been applied to tackle university course timetabling problems
i.e. Tabu Search [3], Ant Colony Optimization [4], Evolutionary Algorithm [5], Hybrid-Heuristic Algorithm [6],
Simulated Annealing [7] and Hyper Heuristic approach [8].

The work done by Al_Tarawneh and Ayob [3], Aladag & Hocaoglu [9], Abdelkarim et al. [10], Nguyen et al.
[11], Lü and Hao [12] and Tan and Thi [13] on Tabu Search algorithm is summarized below:

Al_Tarawneh and Ayob [3] apply a Tabu Search and multi-neighborhood structure to solve University Course
Timetable at the faculty of engineering, University Kebangsan Malaysia, focusing on the length of lectures. Aladag
and Hocaoglu [9] proposed a Tabu Search algorithm that applied to a timetabling problem of the Statistics
Department of Hacettepe University. This work's given formulation does not contain conflicts in lessons of sections
that was regarded as a soft constraint. Abdelkarim et al. [10] used tabu Search procedure for course timetabling at an
institution in a Tunisian University. Nguyen et al. [11] applied Tabu Search algorithm to a real-world university
timetabling problem in Vietnam. The algorithm is tested on nine real-world instances. Lü and Hao [12] present an
Adaptive Tabu Search Algorithm (ATS). The proposed ATS algorithm integrates several features such as an original
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double Kempe chains neighborhood structure, a penalty-guided perturbation operator and an adaptive search
mechanism. Tan and Thi [13] proposed the Bees algorithm to solve a real-world university timetabling problem in
Vietnam.

There are other meta-heuristic approaches that have been used to solve course timetabling problem such as
Shaker and Abdullah [14] used a hybrid of great deluge algorithm with kempe chain neighborhood structure to solve
the problem of university course timetable. Solĺs et al. [15] applied a simulated annealing algorithm to get feasible
solutions. Abdullah et al. [16] presented a new Meta heuristic that combines an electromagnetic-like mechanism
(EM) and the great deluge algorithm (GD. Karami and Hasanzadeh [17] proposed a hybrid genetic algorithm (HGA)
to improve local exploitation by using hill climbing algorithm. Jat and Yang [18] presents a memetic algorithm that
integrates two local search methods into the genetic algorithm. Ayob and Jaradat [19] apply two hybrids Ant Colony
Systems to solve the university course timetabling problem.

One of the most efficient algorithms for the solution of the problem of course timetabling is Tabu Search
algorithm. Tabu Search technique is a meta-heuristic developed and independently in [20-24], has proved to be very
efficient to solve many combinatorial problems and especially educational timetabling problems. The method was
developed to overcome the previous local search methods that lead to local optima like hill climbing and descent
methods. The originality of the procedure is the use of short-term memory in order to prevent the return to inverse
moves (cycling) and long term memory in order to diversify and intensify the search space [10]. One of the most
important factors which affect the efficiency of the algorithm is a defined neighborhood structure pertained to the
nature of the problem [20].

In this paper, we examine different neighborhood structures based on types of move called algorithm. We apply
five algorithms, each algorithm consist of many neighborhood structures. According to obtained results, multiple
comparisons among all neighborhood structures are statistically done.

PROBLEM DESCRIPTION

The problem involves the assignment of course to timeslots and rooms subject to the set of hard and soft
constraints. Hard constraints must be satisfied to get feasible solution then this solution is by reducing as much as
possible the number of soft constraints to acquire a good solution that can compete with the other solutions in the
relevant literature.

In this study, we examined our algorithm over the problem cases proposed in [22]; consequently the following
hard constraints have been introduced: (1) It is highly impossible to assign the same student to more than one course
simultaneously. (2) The room ought to fulfill the attributes demanded by the course. (3) It is essential that, number
of students enrolled the course must be lesser than or equal to the room capacity. (4) It is highly impossible to allow
more than one courses to be allocated to the same time-slot in each room.

The following soft constraints that are equally penalized have also been presented in [22]: (1) A student gets a
course timetabled in the final time-slot of the day. (2) A student gets more than 2 continuous courses. (3) A student
has a one course on a day.
The aim is to fulfill the hard constraints (feasible timetable) and to reduce the breach of the soft constraints.

In this work, we consider post-enrollment course timetabling problems that proposed in [22] datasets are divided
into three categories: small, medium and large. We deal with 11 instances: 5 small, 5 medium and 1 large (more
details are in Experimental Results).

THE ALGORITHM

It is believed that due to hard constraints forced on the university course timetabling problem, the feasible region
is highly scattered and sparse. So, the problem may fall in the local optima. To overcome this, a Tabu Search
algorithm  i.e. a memory-based meta-heuristic, which tries to escape from get bounds to local optima is applied [25,
26]. During this phase a set of neighborhood structures are applied to reduce the violation of soft constraints. These
neighborhood structures are:

1. Nb1: Randomly choose two times-slots and exchange it (Fig.1).
2. Nb2: Choose a single time-slot randomly and change it with any time from (0-44) that can generate the

lowest penalty cost (Fig.2).
3. Nb3: Select a one course randomly and swap it with another course for the same room (Fig.3).
4. Nb4: Randomly choose two courses from the same room (the room is arbitrarily chosen) and exchange time-

slots (Fig.4).
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Step 2.2: Adaptation (Adaptive Tabu List)

In our work, the ATS lies in the adaptation of tabu list, which depend on the penalty cost and number of
iterations. The initial solutions (B-Sol) enter to the tabu search two neighborhood structures (Nb1 and Nb2) are
applied for many iterations to improve the penalty cost, as shown in Fig.5.

Step3: Stopping Criterion:

The termination criterion in this phase depends on the number of repetitions or the accomplishment of ideal
value. The number of repetitions is set to be 450000 and was determined based on many experiments on different
number of iterations.

EXPERIMENTAL RESULTS
Our algorithm is implemented using Visual Besic and tested on a PC running Windows 7 with Intel Core i7-

2600K and 16GB RAM. In order to gauge the performance of all neighborhood structures, timetables are generated
by least saturation degree algorithm to generate the initial solutions that will be improved later.

To evaluate the efficiency of our work, we tested the experiments in [22] data sets i.e (5 small, 5 medium and 1
large instances) which are available at http://iridia.ulb.ac.be/~msampels/tt.data/.

The experiments of course timetabling problem presented in this paper have been examined on the benchmark
course timetabling problems, which have to allocate (100-400) courses into a timetable with (45) time-slots,
equivalent to five days of nine hours each, while fulfilling the  limitations of room attributes and  capacity.

In this test, we have assessed the search prospective of our algorithm using a stopping criterion.  For this
purpose, as we said the algorithm was run for 450000 iterations with different set of moves. The best results out of
11 runs are presented. Table (1) shows the comparison of our algorithms.

TABLE 1. Penalty cost results of all algorithms
Dataset Alg1 Alg2 Alg3 Alg4 ATS

S1 0 9 10 0 0
S2 0 5 5 0 0
S3 0 4 5 0 0
S4 0 1 1 0 0
S5 0 10 12 0 0
M1 105 150 170 97 95
M2 100 111 119 91 90
M3 75 89 102 65 63
M4 96 110 109 95 94
M5 59 81 100 50 50
L 435 473 483 405 405

The table above explains the use of different neighborhood structures with (original and adaptive) tabu search.
The results indicate that ATS (decrement and increment tabu list) gives better solutions in four instances
(M1,M2,M3 and M4) comparing with all other algorithms. The results show that ATS and algorithm 4 are of equal
performances on the remaining instances (M5 and Large). Fig. 6 through 11, show the differentiation between these
algorithms in terms of penalty cost. Those figures proved that ATS has the best obtained results in all instances;
Except for instances (M5 and L) at which both ATS and algorithm 4 are the same.

Fig. 6-11, show the frequency charts of the neighborhood structures that have been used for datasets (M1, M2,
M3, M4, M5 and L). The x-axis represents the algorithms used with the neighborhood structures employed
throughout the search, while the y-axis represents the values of penalty cost. It is clear that in most of the medium
and large instances, neighborhood structures move1 (Nb1) and move2 (Nb2) are the most popular structures used
and gives best solutions (Alg1,Alg4 and ATS), especially if they are used together. It is also clear that some
neighborhood structures do not contribute to a good quality solution as in (Alg2 and Alg3), which used (Nb3) and
(Nb4).
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The outcomes illustrated in figures depict lesser distribution of solution points for M3 and M5 instances for
Alg1, Alg4 and Alg5 (ATS). It is of our opinion that, the neighborhood structures (Nb1 and Nb2) employed together
to these datasets are capable of forcing the search algorithm to broaden its pursuit of the solution space, by shifting
from one neighborhood structure to the other, despite the fact that there might be much less and more scarcely
dispersed solution points in the solutions space, considering that a lot of courses are conflicting with each other.

Based on these experiments, we consider that, the dimensions of the search space might not be reliant on the size
of problem, because the distribution of solution points significantly varies from one to another, although the issues
are from the same group of datasets with similar parameter values.

CONCLUSIONS AND FUTURE WORKS

Four neighborhood structures based on simple and swap moves were used in this paper. These moves affect the
Tabu Algorithm in different aspects. The simple move causes more intensification effect since it alters just one time.
On the other hand, the swap move causes more diversification effect since it interchanges two courses or two times-
slots. The course timetabling problem is solved by using these all structures. Also, initial solutions are generated for
the problem. Then, the results are statistically examined .

The performance of these neighborhood structures was compared against each other, the results obtained proved
that the best timetables are obtained using (Nb1 and Nb2).

Furthermore, future studies should consider including additional limitations (i.e. soft constraints), and  aim  to
validate this algorithm on the International Timetabling Competition datasets (ITC-2007), and as well as on real
world timetabling problems.
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