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Abstract. The direct and inverse algebraic polynomials approximation theorems in weighted
spaces of unbounded functions are proved by using modulus of smoothness. Also, we obtain
sharp Jackson ( direct ) inequality of algebraic approximation of unbounded functions in terms
modulus of smoothness . In addition, constructive characterization of modulus of smoothness
are considered.

1. Introduction
Approximation problems concerning algebraic polynomials was recently studied in various spaces of
algebraic polynomials for example , in the papers [6] , [9] , [12] , [14] , [15] and [17] .

Approximation problems for functions of one variable were also studied by many mathematicians.
Some of these results can be found in [10], [11], [16] and [18] . For more general doubling weighted
direct and converse algebraic approximation problems was investigated in [2] ,[8] and [13]. For a
general discussion of weighted polynomial approximation was can refer to the [1] and [7].

Some direct and converse approximation by relational algebraic polynomials of some weighted
bounded functions spaces defined on sufficiently modulus of smooth are investigates in [3] and [4] .
In the present work we consider the improved direct and inverse approximation theorems by algebraic
polynomials by using modulus of smoothness in the weighted space L, ,(X) ,1<p < .

For formulation of the problem we need some further notations properties.

LetX = [0,1] and L,(x),1 < p < oo be the space of all bounded functions with norm equipped :
1
14

If1L, = f FGOPdx | < oo (1.1)
X

Let a be a weight function defined by :

a:X—- R  andL,,(x) the space of all unbounded functions with norm equipped :
1
p

T f FGO.a(olPdx | <o (12)
X

Fork=1,2, ..... the modulus of smoothness of the function
f € Ly q(X) is defined by :
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— k
W (f,8)pa = &?S%{”Ahf(x)”pﬂ , 6>0} (1.3)
where
k- k :
B f(0) = Z( D () fa+ i) (1.4)

LetP,(n = 0,1, .....) be the set of algebraic polynomial of degree at most less than or equal n and let
En(f)pa bethe degree of best approximation of f € L, ,(X) by the polynomial
pn In P, given by :

E,(f )p,a = prllggn”f - pn”p,a (1.5)

There are many results on approximation of functions belong to L, ,(X) spaces,1<p <.
Especially , the classical Jackson theorem ( direct theorem ) .

1
En(f )pa < cwp (f ,1—l> , n=12,..... (1.6)
p,a
and its weak converse
n
1 c
o (f2) S Y e+ DB e (1.7)
pae S

2. Auxiliary results
In this section, we will mention some of the lemmas that we will need to proving the theorems of the
main results, As well as we will prove some properties of the modulus of smoothness .

Lemma2.1l: [5]
Let{y;}bea sequence of the real numbers be satisfy

lyil < X, Zf -1V = Yig1| < K forall i,k EN,K >0
If 1<p<o, BEK, and f € Ly p(X) , thenthere isa function F € L, p(X) such that
I1Fllpp < chII.‘FIIp,g

Lemma22:[5]
Let neN,1<p <o and feLpa(X),then:

(Zmuw)

Lemma23:Letf € L,,(X),1<p<ow,k€N,5§>0,Then
wk(fna)p,a =0

iux

1
© 2
(zmuv)
u=1

b,a

Proof : we have

(£ 18 )pa = sup > {llaf Ol

= sup { [[Zo-1) (’f)f<.+zh>|| }
since || T o(—1)* (k)f( +in|,
implies {7 £CDI],

Hence sup {||A f( )” }
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wk(f S)pa =

Lemma2.4:Letf €Ly,(X),1<p<o,k€N,§>0,Then
wi(f,6)pa 20 as § >0
Proof :
lets ==
n

ox(f,80pa= w(f7) = sup {IIA FOll )

j

_Isl|1p {laxakroll , )

= sup {la*[rCr - Dl

IhI<

Ifn—>oothen——>0

= sup {”Ak ) —£C. )]” }— sup {”Ak ' ]”p,a }

|h|_ |h I<—

= sup [0l = 0.
Inlsy

Lemma2.5 Lletf,g€Lya(X),1<p<o0,k€N,6>0,Then wi(f+9g,0)pa <
wk(f'a)p,a-l_ wk(g'a)p,a
Proof: wi(f +9.,8)pa = sup {185 + DOl |
= sup{llA fCI+ akgO )
k k
< sup I3 (O, 0 + 1859, }

_ sup {||A 7. )|| }+ sup {||A g(. )” }

= wk(f'(s)p,a‘l' wk(g'S)p,a

Lemma2.6:Letf €L,,(X),1<p<o,k€N,5,c>0,Thenwy(f,cd)py <
Ck wk(ffa)p,(l'

Proof : we(f,e8)pa = |r§|12125 {”A;{l f( ')”p,a}

- s, {ll(cc?)"D"f( ol }

=k sup {lls% DxrC. )| }
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_ Lk N1
c* sup {185 £, . }

= ck wk(f:(g)p,a

Lemma 2.7 :Letf € L, o(X),1<p <o,k EN ,Then wy(f,81 )pa <
wi(f,62 )pq forevery 6, < 6,,6;,6, >0

Proof :

wk(f,51 )p,a = Ssup {“A;{lf()”pa }

|R|<8

< l:ggz {”Aﬁf(-)”pﬂ } since §; < 68,

= wk(f'62 )p,a’ :

Lemma2.8:Letf,f €L,,(X),1<p<ow,k€N,§>0,Then wi(f,8)pq <
g wr-1(f,8 )p‘a where f is the first derivative of a function f
Proof :  We have the difference Af f(x) = AF1 (A} f(x))
= AU f(x+H) = f(x — H)]
||A§f(-)||p'a = || a7 [FC+H) = f(.—H)] ||M
=|| Ak [FCAHH) = FC) +£() = f(.—H)] ||p,a
= Ak~ LFC+HH) = F(D] = AETM[F(.—H) —f(-)]||p,a

h h
= Ag-lff(.ﬂ)dL—A’;;lf f(.—L)dL
0 0

p,x

h
< [la [f Con = £ G-,
n
. 6 .
< fwk_l(f,é)p'adL < awa(f.8),,

0

3. Main results

Let X denote the one-dimensional [ 0, 1 ] we denote by

Ly« (X),1 < p < o the space of all unbounded functions f of one variable on [0, 1 ] in each
variable and satisfy

lfllpe < oo where:

e =1 (I 1FG.aPdx) 1 <p <o

esssup|f(x)| , p=oo
In the following give direct and converse approximation theorems for functions of one variable, which
are our main results .

Theorem3.1:letf € L, ,(T) ,1<p < and 0 <a <1 then the Jackson type inequality :
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1
En,k(f)p,a SC(Uk(f;‘) , n=12,.....
n/pa

Theorem3.2:letf € L,,(X), 1<p<o ,n€N, r e R* and
A = max{2,p} . then there exist positive constant ¢ dependenton r and p such that
1

o (e B ()t < o (12)

n

Theorem3.3:letf €L, o(T) ,1<p<wand 0<a<1 ,
then :

1 (k) . —
woe (7)< S Ziol+ DM ECf e

n

4. Proofs of main results
4.1 Proof of theorem 3.1 ;

Lets = ni and Let f € L, ,(X) , 1 < p < o and the operator of algebraic polynomial defined by :

2n
1
Vo(f %) =n—+1’Z S (f)(x) , n€N
=n
We see thatV,, € J,,, forn e N
“f - Vn(f)”p,a < CEn(f)p,a

because Ey(Fpa = inf {If — Pullpa »Pn € Pu}
and we have |[V,(Nllpe < cllfllpea
EnieDpa = inf {If = Ve(Pllpa )
’
< 1 = Pl = | [ 1@ = hH@N a0 Pax
X

1

< sup f IFG0) = V(D GO a()Pdx
X

<cop{If /Ol }=conlf 00pa= con(f 1),

4.2 Proof of theorem 3.2 :

Since reRY, 1<A1<oo, neN weassume that k € N such that
2k <n < 2k+1

By lemma 2.2 , we have

N

i
k+1 201 o,

1
(Z b B (f)W)A < (> > Lo B e
u=1

u=1y=2i-1
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1
1 1
= A A
k+1 22ulr A k+1 22ulr 281
< s EA < C mx
= n2Ar T2tTi-1 (f)p,a = nP
u=1 u=1 [n|=24"1 p.a
1
A \7

u=1 n=u
p,a
Puttingl<p<2,1=2

By using Minkowski’s inequality , we have

2
1 Pip
n uZ/lr—l 2 /k+1 Zu/'lr o 2 \
S s <] 3 (S

u=1 u=1 n=v
b,a
4
k+12uvr 2
b=
pa
k uvr 2uvr(k+1) had 2 2 \
2
sc Z nur |Au| + nur Z |A77|
u=1 n=k+1
p,a
b p
k 2uvr 2 ® 2 2
2
sof( S ) | e 3 1ed
u=1 n=k+1
b,a p,a
Using lemma 2.2 we can estimate G
oo 2 oo
2
G, = Z A, | <c Z o i
n=k+1 n=2k pat
p.a ’
1
<c Ezk—l(f)p,a <c wr(f'a)p,a
On the other hand
k 22ur 2 k 22ur
— 2
6= | D5 1l < D5 1l
u=1 u=1 D

2u—1

p,a

22ur
Z Z |cqpnl
u=1|p|=2u-1 P

Now using lemma 2.2 twice , we get
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C 22r ® c 227 r
2o leasl| =S5 (=) s
=1 v p.a
c er {r} 1
= (I — Gl) N a)r_{r}f <c wr(f,g)p,a
n p,a

Therefore, the theorem followed
If p>2, A=p,then

[

(Bl )
1

Pip

ka Z o Zm k W}

1

upr
right hand < ¢ ( 1";“;21””

T

k+1 oo 2

2upr 1
<c 2 Zm g <o (fi-pa

4.3 : Proof of theorem 3.3 :
Let f € L, o(X) for every natural number k there exist a constant c(k) depending on k such that :

n
1 c(k) . _
woe(fr2) =52 A+ DR e
n p.a n ¢
=0
Let pr € P, be a best algebraic approximation of unbounded function f and b, b + kh € X
We have 0 < AK £(b) a(b) then:

S f (b +ih)

< [lakro |, =

b,a

k k
k k
Y (G) 17 tim) =pi b+ i)+ Y () 1pic (b +ih)]
i=0 i=0 D
Sk
< sup |k piCo+ i+ (D7) 17 @+ i) = pitb+ )]
i=0 Dt

k
k
< wi( pi,b,6) + Z(l) I £ = Dl
i=0
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< Z(’f) E( D

5. Conclusion

We can be approximated of unbounded functions by using algebraic polynomial in weighted space, also
obtain sharp Jackson ( direct ) inequality of algebraic approximation of unbounded functions in terms
modulus of smoothness.
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