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 سمير اسماعيل علي: الطالب اسم

 الحاسبات علوم قسم - المعلومات لوجياووتكن الحاسوب كلية

المعدلة على أساس طريقة  ملتويةتطبيق الشبكة العصبية ال: الرسالة عنوان

 تحسين سرب الجسيمات لاسترجاع الصور
 

 فأن العراقي المعدل ١٩٧١ لسنة ٣ رقم المؤلف حق حمایة لقانون طبقا

 ھي و  اقرارھا بعد الاطروحة او  للرسالة تغییر او  حذف اي منع حق للمؤلف

 ان لأحد یحق فلا. علیھا الاعتداء یجوز لا والتي وحده بالمؤلف الخاصة الحقوق

 بذلك، همؤلف یقر لم مؤلف نشر اعادة او  نشره عن همؤلف احجم مصنف نشر یقرر

 .قانونا یملكھا لا سلطة استعمله لان  مشروع غیره عمل اعتبر بذلك قام فأذا
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Student name: Sameer I. Ali Al-Janabi 

Thesis title: Applying Convolutional Neural Network Modified 

Based on Particle Swarm Optimisation Method for Image Retrieval 

 

Abstract: 

Analysis of image contents has become one of the important subjects in 

modern life. In order to recognize the images in efficient way, several techniques 

have appeared and periodically enhanced by the developers. Image Retrieval (IR) 

becomes one of the main problems that face the computer society inside the 

revolution of technology.  

To increase the effectiveness of computing similarities among images, 

hashing approaches have become the focusing of many programmers. These 

approaches convert images to strings of float numbers hash code. Indeed, deep 

learning (DL) in the past few years has been considered to be the backbone of image 

analysis using a convolutional neural network (CNN).  

This work considers experimentation to find the best configuration of the 

sequential model for classifying images, beginning with four fully connected layers 

and ending with two layers. The best performance has been obtained in two layers 

the first layer consists of 128 nodes and the second layer is 32 nodes, where the 

accuracy reached up to 0.9012. This enables the design of high-performance image 

classifiers that can be applied several applications such as autonomous car driving 

systems.  

Designing image classifiers has been achieved using CNN and the data 

extracted from CIFAR-10 dataset using inception model, these data are called 

transfer values (TRVs). Also, the Particle Swarm Optimization (PSO) algorithm is 

used to reduce the TRVs by generating templates. Each template has set of zeros and 

ones and the dataset is reduced according to this template. Finally, the TRVs are 

used to build models with high performance. 

In this respect, the focusing of this thesis is to reduce the TRVs in order to 

obtain high performance image classifier models. Indeed, the PSO algorithm has 

been enhanced using crossover technique from genetic algorithm to obtain image 
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classifiers with high accuracy. This result reduces the complexity of models in terms 

of number of parameters used and the execution time.  

The conducted tests showed the performance of the proposed systems, 

because these systems need less time for training and classification, also the 

accuracy still near to the original accuracy because the dataset has small number of 

features comparing to the number of TRVs. 

 

Keywords: Image Retrieval (IR), Deep Learning (DL), Convolutional Neural 

Network (CNN), Hashing Techniques, CIFAR-10 dataset, Transfer 

Values, Particle Swarm Optimization. 

Sameer I. Ali Al-Janabi 

2020    

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 



 

vii 

 

Acknowledgements 
 

All praises to Allah Almighty, who enabled me 

to complete this work successfully. 

I wish to express my deep respect and thank to 

my supervisors Prof. Dr. Sufyan T. Faraj Al-Janabi and 

Prof. Dr. Belal Ismael Alkateeb for their appreciable 

advice, important comments and support during 

the research. 

Special thanks to “all my teachers in the College 

of Computer Science and Information Technology"  

for everything. 

I am grateful to the staff of the College of 

Computer Science and Information Technology  

 

My thanks for all… 

 

 

 

 



 

viii 

 

Dedication 
 

This thesis is dedicated to: 

 

My parents 

   My wife 

My supervisors 

My teachers 

My brothers 

My sisters 

My relatives 

and my friends. 

 

 
Sameer I. Ali Al-Janabi 

2020 
 

 



 

ix 

 

Contents 

1 Chapter One: General Introduction ..................................................................1 

1.1 Introduction .................................................................................................. 1 
1.2 Classification of Image Retrieval Techniques ............................................. 2 
1.3 IR techniques based on CNN with hash encoding ....................................... 3 
1.4 Related Work ............................................................................................... 5 

1.4.1 Conventional Hashing .........................................................................5 

1.4.2 Deep Hashing ......................................................................................6 

1.5 Problem Statement ....................................................................................... 7 
1.6 Aim of Thesis .............................................................................................. 7 
1.7 Contributions ............................................................................................... 8 
1.8 Thesis Structure ........................................................................................... 8 

2 Chapter Two: Theoretical Background ............................................................9 

2.1 Introduction .................................................................................................. 9 
2.2 Deep Learning.............................................................................................. 9 
2.3 CNN ........................................................................................................... 10 
2.4 Particle Swarm Optimization (PSO) .......................................................... 11 
2.5 Supervised Learning Techniques ............................................................... 12 

2.5.1 One-Stage Supervised Deep Hashing (SDHP) .................................12 

2.5.2 Nearest Neighbour Search ................................................................14 

2.5.3 Content-Based Image Retrieval (CBIR) ...........................................17 

2.5.4 Neural Network based Hash Function Method for Authentication 

and Retrieval of Color Images ..........................................................19 

2.5.5 Other Supervised Learning Techniques ............................................20 

2.6 Semi-Supervised Techniques ..................................................................... 26 
2.6.1 Semi-Supervised Hashing for Scalable Image Retrieval ..................27 

2.6.2 Semi-supervised Kernel Hyperplane Learning (SKHL) ...................27 

2.6.3 Semi-Supervised composite Multi-view Discrete Hash (SSMDH) 

Model ................................................................................................28 

2.6.4 Semi-Supervised Deep Hashing (SSDH) Method ............................28 

2.6.5 The Approach of Semi-Supervised Metric Learning-based Anchor 

Graph Hashing (MLAGH) ................................................................29 

2.6.6 Comparison of the Semi-Supervised Methods .................................29 

2.7 Unsupervised Learning Techniques ........................................................... 29 
2.7.1 Cascaded Principal Component Analysis (PCA) ..............................30 

2.7.2 Quaternion Orthogonal Matching Pursuit (Q-OMP) ........................30 

2.7.3 Siamese-Twin Random Projection Neural Network (ST-RPNN) ....31 



 

x 

 

2.7.4 Converting Unsupervised Hashing to Supervised Hashing using 

Pseudo Labels of Images ..................................................................32 

2.7.5 Comparison of Unsupervised Methods .............................................32 

2.8 Summary .................................................................................................... 32 
3 Chapter Three: The Proposed Image Classification System ..........................34 

3.1 Introduction ................................................................................................ 34 
3.2 CIFAR-10 Dataset ..................................................................................... 35 
3.3 CNN ........................................................................................................... 36 
3.4 Transfer Learning ...................................................................................... 37 
3.5 Inception Model ......................................................................................... 37 
3.6 Generating TRVs ....................................................................................... 39 
3.7 Building Classifier Part .............................................................................. 40 
3.8 Particle Swarm Optimization (PSO) with Enhancement ........................... 41 

3.8.1 Sorting Solutions from Worst to Best ...............................................44 

3.8.2 Performing Crossover Operation ......................................................44 

3.9 Approach of Creating Images Classifier and Classifying new Images ...... 45 
3.10 Summary .................................................................................................... 46 

4 Chapter Four: Results and Discussion ...........................................................47 

4.1 Introduction ................................................................................................ 47 
4.2 Configuration of Classifier Part Experiments ............................................ 47 
4.3 Two Layers Experiments ........................................................................... 50 
4.4 Applying PSO with two cases on TRVs Experiments ............................... 59 
4.5 Classifying Real Data Experiments ........................................................... 64 

5 Chapter Five: Conclusions and Future Works ...............................................67 

5.1 Introduction ................................................................................................ 67 
5.2 Conclusions ................................................................................................ 67 
5.3 Future Works ............................................................................................. 68 

6 References ......................................................................................................69 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

 

 

 

List of Tables 

 
Table 4.1: Settings and Results of Network Consists of Two - Four Layers. ........48 
Table 4.2: Two Layers Model (128-128). ..............................................................50 
Table 4.3: Two Layers Model (64-64). ..................................................................51 
Table 4.4: Two Layers Model (32-32). ..................................................................52 

Table 4.5: Two Layers Model (16-16). ..................................................................53 
Table 4.6: Two Layers Model (128-64). ................................................................54 

Table 4.7: Two Layers Model (128-32). ................................................................55 
Table 4.8: Two Layers Model (128-16). ................................................................56 
Table 4.9: Two Layers Model (64-32). ..................................................................57 
Table 4.10: Two Layers Model (64-16). ................................................................58 
Table 4.11: Two Layers Model (32-16). ................................................................59 

Table 4.12: Two Layers Model (128-32) using Full TRVs. ..................................60 

Table 4.13: Two Layers Model (128-32) using PSO Template with Min TRVs. .61 
Table 4.14: Two Layers Model (128-32) Using Enhanced PSO Template with 

Max Accuracy. .......................................................................................................62 

Table 4.15: Comparing the Proposed Approach with SDPH and SDPH+ 

Approaches Using MAP. .......................................................................................63 
Table 4.16: Classifying Real Images from CIFAR-10 Dataset and Google ..........65 

 

 
 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 



 

xii 

 

 

 

 

List of Figures 

 
Figure 1.1: Main Classification of Neural Network Based Hash Encoding for 

Image Retrieval Techniques. ....................................................................................2 
Figure 2.1: Typical CNN architecture [91]. ...........................................................10 
Figure 2.2: IM with TRVS [54]. ............................................................................11 

Figure 2.3: One-Stage Supervised Hashing method Architecture [6]....................15 
Figure 2.4: Simplified Industrial CBIR Architecture [70]. ....................................18 

Figure 2.5: Architecture of the Siamese NN [75]. .................................................21 
Figure 2.6: Illustration of Instance-Aware IR [76]. ...............................................21 
Figure 2.7: Proposed RN-BoF Model [77]. ...........................................................22 
Figure 2.8: Supervised Semantic-Preserving Deep Hashing (SSPDH) [78]. ........23 
Figure 2.9: The Bit-Scalable Deep Hashing Learning Framework [47]. ...............24 

Figure 2.10: The Main Idea of Deep Hashing Method for Compact Binary Codes 

Learning [79]. .........................................................................................................25 

Figure 2.11: The Discrete Hamming Distance [80]. ..............................................26 
Figure 3.1: Main Architecture of the Proposed Image Classifier. .........................35 

Figure 3.2: Generating TRVs of CIFAR-10 Dataset  Using IM. ...........................39 
Figure 3.3: Architecture of Reducing Dataset According to PSO Template. ........43 

Figure 3.4: Reducing the Values of Image Using the Template of PSO. ..............43 
Figure 3.5: Crossover Operation. ...........................................................................44 

Figure 3.6: Approach of Creating Image Classifier and Classifying New Image. 45 
Figure 4.1: Relationship between Accuracy and Loss in Images Classifiers ........49 
Figure 4.2: Comparing the Proposed Approach with SDPH and SDPH+ 

Approaches Using MAP. .......................................................................................64 
Figure 4.3: Sample Images with Succeed Predicted in Classification Model........65 

Figure 4.4: Sample Images with Fail Predicted in Classification Model ...............66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///D:/Master_Studying/Project/Theoritical/1%20Thesis/WORD/Thesis_F.docx%23_Toc30265479
file:///D:/Master_Studying/Project/Theoritical/1%20Thesis/WORD/Thesis_F.docx%23_Toc30265485
file:///D:/Master_Studying/Project/Theoritical/1%20Thesis/WORD/Thesis_F.docx%23_Toc30265487


 

xiii 

 

 

 

Abbreviations 

 
ANN Artificial Neural Network 

BOF Bag-of-Features 

BT Bootstrap Aggregation Trees or Bagging Trees 

CBIR Content-Based Image Retrieval 

CNN Convolutional Neural Network 

CNNH Convolutional Neural Network-Based Hashing 

DCH Deep Convolutional Hashing 

DL Deep Learning 

DNNH Deep Neural Network Hashing 

FastH Fast Supervised Hashing 

FSNS fast sparse technique for neurons selection  

IM Inception Model 

IR Image Retrieval 

JSH Jointly Sparse Regression  

KSH Supervised Hashing with Kernels 

MAP Mean Average Precision 

MKL Multiple Kernel Learning 

MLAGH Metric Learning-based Anchor Graph Hashing 

NNs Neural Networks 

PCA Principal Component Analysis 

PCA-H Principal Component Analysis Hash 

PSO Particle Swarm Optimization 

QaDWH Query-adaptive Deep Weighted Hashing  

Q-OMP Quaternion Orthogonal Matching Pursuit 

RBF Radial Basis Function 

RBM Restricted Boltzmann Machine 

ReLU Rectified Linear Unit 

SDH Supervised Discrete Hashing 

SDPH Supervised Deep Hashing 



 

xiv 

 

SDPH+ Supervised Deep Hashing Plus 

SGD stochastic gradient descent 

SKHL Semi-supervised Kernel Hyperplane Learning 

SSDH Semi-Supervised Deep Hashing 

SSPDH Supervised Semantics-Preserving Deep Hashing 

SSMDH Semi-Supervised composite Multi-view Discrete Hash 

ST-RPNN Siamese-Twin Random Projection Neural Network 

TRVs Transfer Values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter One 

Introduction 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter One General Introduction   

1  

1 Chapter One: General Introduction 

1.1 Introduction 

Computer vision has recently turned out to be essential technology because 

of its wide-going applications in various areas including diverse and smart 

monitoring, health and medicine, sports and entertainment, robotics, drones, and 

self-driving cars. Visual recognition errands, for example, image classification, 

localization, and detection are the center building blocks of a significant number of 

these applications. Ongoing improvements in Convolutional Neural Networks 

(CNNs) have prompted the remarkable execution in these state-of-the-art visual 

recognition tasks and systems [1], [2]. On the other hand, the advances in Deep 

Learning (DL) over the most recent years have made special infiltration in a few 

zones, especially in computer vision, in which machine insight has gone past human 

execution. The deep architecture joins the low-level features to abstract high-level 

characteristics with nonlinear transform. This results in the required power and 

ability to take in the semantic representation from images [3]. For example, deep 

reinforcement learning has been utilized in self-driving vehicles to solve in choices 

by utilizing criticism from numerous sorts of sensors around the vehicle [4].  

Another strategy that is utilized in the image retrieval framework is a hash 

function, or compression function, which means the output is being shorter than the 

input. Hash functions are already utilized in many applications including numerous 

cryptographic tasks [5]. There are three fundamental aspects of the cryptographic 

hash functions that are used in the security field: preimage resistance, second 

preimage resistance, and collision resistance [6].  

The use of hashing in image retrieval techniques is after analyzing image 

and finding the values of features to design image classifier. 
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1.2 Classification of Image Retrieval Techniques 

There are several techniques used in the system of Image Retrieval (IR). 

Those methods may be classified according to the learning method into three 

categories: Supervised, unsupervised, and semi-supervised techniques, as shown in  

Figure 1.1.  

 
Figure 1.1: Main Classification of Neural Network Based Hash Encoding 

for Image Retrieval Techniques. 

 

 

The emphasis of this thesis is mainly on supervised techniques due to their 

importance and wide-spreading use in many applications. Where this technique 

uses labelled data for learning models which make the learning method faster. 

The semi-supervised category used both methods (supervised and 

unsupervised) in models. 

Unsupervised techniques use no labeled data where the model train while 

working in real world as in Chess game. 

In general, there are some challenging limitations of most IR techniques. 

These include the following [7]: 

• Prediction semantic features from primitive features in the image or video. 

• Reaching to the relationship between semantic features and primitive 

features.  

• Indexing the contents of multimedia by reducing the needing to the human 

interaction.  

• Enabling the system to understand and interpret the user request 

semantically. 
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Furthermore, it is possible to recognize several advantages and 

disadvantages of neural network based hash encoding, as summarized below: 

 

Advantages:  

 

1- Security in hash function generation [8]. 

2- Speed of hash function generation [8]. 

3- Extracting patterns and detecting behavior that are complex for noticing by 

humans or another computer technique [9]. 

 

 

Disadvantages 

 

1- The neural network needs for training to work. 

2- High processing time also is needed for large size neural networks 

[10]. 

1.3 IR techniques based on CNN with hash encoding 

Over the past decade, there has been significant research effort dedicated to 

the development of intelligent driver assistance systems and autonomous vehicles, 

which is intended to enhance safety by monitoring the on-road environment [11]. 

Image content analysis as an important environment sensing modality has 

immensely progressed in recent years. One of the fundamental problems in image 

content analysis to efficiently recognize the environment is retrieving relevant 

contents from a large different scene database [12], which encourages approximate 

nearest neighbor search prosperous [13].  

To reduce the computational cost in calculating similarities, hashing 

techniques have attracted broad attentions in the Big Media research area due to the 

efficiency of compact binary codes [14], [15]. It aims to construct a series of hash 

functions to map data points from the original space into compact binary codes and 

preserve the data structure in the original space. Hashing is a powerful technique for 

nearest neighbor search with hamming distance computation [16]–[18], because bit-

wise XOR operation is performed to calculate the individual similarity, which is 

advantageous for improving computational efficiency. In addition, the compact 

https://simple.wikipedia.org/wiki/Neural_network
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binary codes are also beneficial for storage efficiency compared to real-valued 

representations.  

Existing hashing techniques can be classified into two categories: data-

independent [19]–[23] and data dependent [24]–[28]. For the first category, random 

projections are employed to map data points into a feature space, then binarization 

are performed. For the second category, various statistical learning techniques are 

utilized to learn hash functions. In the pipelines of most existing hashing methods, 

input image is firstly represented by a vector of hand-crafted visual descriptors [29], 

[30] to capture the image semantics against image noise and redundant information 

[31]. Secondly, the projection and quantization steps are employed to encode the 

vector into a binary code.  

The retrieval performance of conventional hashing methods is limited, 

mainly resulting from two aspects: on the one hand, the fixed hand-crafted features 

represent the visual similarities of images rather than the semantic similarities [32]. 

On the other hand, feature representation and projection are mostly studied as two 

separated problems, which leads to the suboptimal binary codes generated, as the 

hand-crafted feature representation is not optimally compatible with the binary 

codes. Recent revolution in Deep Learning [33] [34] shows the impressive feature 

representation power of (CNN) [35]–[37], which has been demonstrated by the 

progress in many visual tasks, such as image classification  [35], [38], [39], object 

detection [40], face recognition [41] and many others [42], [43].  

The accomplishments are attributed to the ability of CNN, which can learn 

the rich mid-level image representation to capture the semantic information [44]. 

Hashing techniques also benefit from the improvement of CNN to obtain high-

quality binary codes with the semantic features of images. Recently, several CNN-

based hashing methods have been proposed, such as CNNH [45], DNNH [6] and 

others [46]–[50], which have testified the satisfactory performance of binary codes 

obtained by CNN-based hashing. With the development of CNN, it is necessary to 

study new algorithms to learn more effective binary codes with less bits and make 

full use of supervised information to capture more representative features. 
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1.4 Related Work 

The most important related work of this thesis can be divided into two sub-

sections: the first one for Conventional Hashing while the second one is for Deep 

Hashing. 

1.4.1 Conventional Hashing 

Hashing technique is becoming an important part for approximate nearest 

neighbor search. The first type of these methods generates hash functions randomly 

that is not based on any training data. The method proposed by A. Gionis et al. [19] 

in 1999, that called Locality-Sensitive Hashing (LSH), which is considered as one 

of good method in this category, because it uses random linear projections for 

mapping data into binary codes. It has been proven that it is necessary to increase 

code length to reduce the Hamming distance between two binary codes which satisfy 

better performance. 

The second type of these methods uses training data to learn similarity 

preserving hash functions, that also can be divided into unsupervised and supervised 

methods, based on supervised information. Spectral Hashing (SH) designed by Y. 

Weiss et al. [24] in 2009 is an example of un supervised methods, which get 

balanced binary codes by spectral graph partitioning solving problem. 

Another method was proposed by Wang et al. called PCA-Hash (PCA-H) 

[25] in 2010, where this method is a data-dependent projection learning such that 

every hash function is built to sequentially correct errors made from the past one. 

Also, Gong and Lazebnik [26] designed an Iterative Quantization (ITQ) method in 

2011, by simultaneously maximizing the variance of each bit, and minimizing the 

quantization error of mapping data to the vertices of a binary hypercube.  

Supervised methods are designed to learn hash functions and getting 

semantic similarity. SDPH approach is an important approach in supervised 

approaches[4].  

 Also supervised hashing has better accuracy comparing to unsupervised 

methods in several applications which made supervised techniques focusing of the 

researchers [5]. In this respect,  several architectures had been proposed, such as 

Supervised Hashing with Kernels (KSH) which was designed in 2012 by Liu et al. 
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[51]. This architecture is a kernel-based method. The idea of this method is learning 

binary codes by reduction hamming distance between similar pairs and increasing 

the distance between dissimilar pairs.  

Another method called Supervised Discrete Hashing (SDH) [27] proposed 

by Fumin S. et al. in 2015, This method takes the advantages of label information to 

get the binary codes by combining hash codes generation and training of the 

classifier. Also the method called Column Sampling based Discrete Supervised 

Hashing (COSDISH) proposed by W.-C. Kang et al. in 2016 [28] is a discrete 

supervised hashing approach which can impact all points of the training data to solve 

FastH (Fast Supervised Hash) problem [52] that cannot use all training points 

because of large time complexity. 

1.4.2 Deep Hashing 

DL is a set of techniques that used to design and learn artificial intelligent 

systems and extract important features of images in efficient way. Recently CNN 

have been utilized in IR field. Krizhevsky et al. in 2012 [35] used the seventh layer 

features in the classification model, which has satisfy high performance on 

ImageNet.  

Semantic hashing model is considered the first model that used DL for 

hashing. However, this model utilizes Restricted Boltzmann Machine (RBM) in 

binary codes learning which is not suitable for real applications.  

With the boosting studies of CNN for image classification, CNN-based 

hashing is researched recently. Xia et al. [45] propose a supervised hashing method 

CNNH  in 2014 to learn compact binary codes which takes CNN to learn a set of 

hash functions for the first time, and demonstrate the possibility of CNN applying to 

hash. However, CNNH is a two-stage method, a matrix-decomposition algorithm 

applied for learning binary codes in the preprocessing stage. It is unfavorable when 

the data size is large.  

After that effective and more deep networks are designed by K. Simonyan 

and A. Zisserman in 2014 [53] and S. R. Christian Szegedy et al. in 2015 [38]. 

Moreover, the learned image feature cannot be used to learn better binary 

codes due to the separated stages. Subsequently, Lai et al.  in 2015 [6]improve 

CNNH by proposing a one-stage CNN-based hashing method DNNH for 
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simultaneous feature learning and hashing coding, which enforces the image 

representation and hash coding to improve each other in a joint learning process. It 

presents better performance on several benchmarks. However, many hyper-

parameters need to be adjusted in this model for better performance. The gap is to 

reduce the time of processing to make the models of classifier more efficient. 

1.5 Problem Statement 

Recently with the wide use of intelligent systems applied in several 

applications in our life, IR systems became an important category of such systems. 

The working method of IR system is composed of DL techniques using CNN and 

images datasets to learn this system to behave as human and take suitable decision.  

There are several requirements to make this system successful: firstly, 

extracting important Transfer Values (TRVs) from images; secondly, learn the 

system by using images datasets to classify new images that is face it in real world. 

Thus, powerful computers are needed to executes these systems. On the other hand, 

when using such systems in the real world, they should be operated on devices that 

might have limited resources in terms of RAM (Random Access Memory) and CPU 

(Central Processing Unit).  For example, in autonomous car driving system there is 

a generation of big data resulting from movement of car and taken images that should 

be processed in order to make a quick decision based on the analyzing the contents 

of these images. 

To address these problems, IR systems should be designed such that to be 

of high performance and can also operate in limited resources devices. Indeed, the 

computation complexity of images retrieval systems hence must be reduced in terms 

of various parameters used. So, enhanced PSO algorithm is used to generate 

templates for reducing TRVs in datasets and new images for classifying. 

1.6 Aim of Thesis 

The main objectives of this work are as follows: 

• Designing images classifiers with high performance used for classifying 

images in efficient way and can be applied several applications such as autonomous 

car driving systems.  
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1.7 Contributions 

• Making experiments to test best configuration of the sequential model for 

classifying images, beginning with four layers and ending with two layers, the best 

performance was obtained in two layers the first layer consists of 128 nodes and the 

second layer is 32 nodes, the accuracy reached to 0.9012. 

• Using the Particle Swarm Optimization (PSO) algorithm to reduce (TRVs) - 

Output of the Inception Model (IM) [54]- and use these values to build and train 

models of classification in order to get a better performance. The common work in 

this field is to reduce the features of images but because the features of CIFAR-10 

dataset [55]. The focusing of this thesis is on TRVs to reduce it and obtain high 

performance images classifier models. 

• Enhance the PSO algorithm using crossover technique from genetic 

algorithm to obtain high accuracy. This result reduces the computational complexity 

of models in terms of number of parameters used and the execution time. 

 

1.8 Thesis Structure  

The next chapters of this thesis are organized as follows: 

Chapter Two provides the background of IR systems that use CNN based hash 

encoding. These can be classified into three categories: Supervised, unsupervised, 

and semi-supervised techniques according to each technique's learning method. 

Chapter Three contains a full description of the proposed system in terms of the 

algorithms and measures used to implement the approaches of IR system and 

achieve the desired goal. 

Chapter Four presents the results that are obtained through experimentation with 

the proposed approaches. Indeed, those results are discussed. 

Chapter Five presents the main conclusions of this research in addition to some 

suggestions for future works. 
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2 Chapter Two: Theoretical Background 

2.1 Introduction 

An IR system is a computer system for browsing, searching and retrieving 

images from a large database of digital images. A lot of IR common approaches use 

methods for adding metadata such as captioning, keywords, title or descriptions to 

the images so that retrieval can be executed over the annotation words. Manual 

image annotation is needing a lot of time to be suitable for IR. To address this, there 

has been a large amount of research done on automatic image annotation. 

Additionally, increasing of social web applications and the semantic web have led 

to the development of several web-based image annotation tools. 

 Several techniques have appeared in this field. However, the most common 

of these techniques are using neural network-based hash encoding, which can be 

categorized into three main classes: Supervised, unsupervised, and semi-supervised 

techniques according to each technique's learning method. The most important 

related works appeared in the literature are reviewed and constructive comparisons 

have been done to show the strengths and limitations of various techniques. 

2.2 Deep Learning 

Deep learning is a machine learning research area that is based on a particular 

type of learning mechanism. It is characterized by the effort to create a learning 

model at several levels, in which the most profound levels take as input the outputs 

of previous levels, transforming them and always abstracting more. This insight on 

the levels of learning is inspired by the way the brain processes information and 

learns, responding to external effects [56]. There are two important parameters used 

in experiments: accuracy and loss. 

Accuracy is one metric for evaluating classification models. 

Informally, accuracy is the fraction of predictions our model got right. Formally, 

accuracy has the following definition 

Equation 2.1: Calculating Accuracy[57]: 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬

𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬
   

 

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Photo_caption
https://en.wikipedia.org/wiki/Keyword_(internet_search)
https://en.wikipedia.org/wiki/Automatic_image_annotation
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Semantic_web
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the loss function is one of the most important steps to ensure the model will 

work in the intended manner. The loss function can give a lot of practical flexibility 

to your neural networks and it will define how exactly the output of the network is 

connected with the rest of the network. The loss value can be calculated as shown 

below: 

Equation 2.2: Calculating Loss [58] 

 

𝒍𝒐𝒔𝒔 = 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒗𝒂𝒍𝒖𝒆 − 𝒕𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆             

2.3 CNN 

 (CNNs) in essence are neural networks that employ the convolution 

operation (instead of a fully connected layer) as one of its layers [59]. CNNs are an 

incredibly successful technology that has been applied to problems wherein the 

input data on which predictions are to be made has a known grid like topology like 

a time series (which is a 1-D grid) or an image (which is a 2-D grid) [60]. 

 CNN have completely dominated the machine vision space nowadays. A 

CNN consists of an input layer, output layer, as well as multiple three hidden layers. 

The hidden layers of a CNN typically consist of convolutional layers, pooling 

layers, fully connected layers and normalization layers (Rectified Linear Unit- 

ReLU). Additional layers can be used for more complex models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CNN architecture has shown excellent performance in many Computer 

Vision and Machine Learning problems. CNN trains and predicts in an abstract 

level, with the details left out for later sections. This CNN model is used extensively 

in modern Machine Learning applications due to its ongoing record-breaking 

Figure 2.1: Typical CNN architecture [91]. 
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effectiveness. Linear algebra is the basis for how these CNNs work. Matrix vector 

multiplication is at the heart of how data and weights are represented. Each of the 

layers contains a different set of characteristics for an image set. The CNN is the 

core of IM working as shown in Figure 2.2  

 
Figure 2.2: IM with TRVS [54]. 

 

2.4 Particle Swarm Optimization (PSO) 

PSO is a technique used for selecting the best solution from set of solutions 

(swarm) according to value called fitness, where this value may be maximum or 

minimum based on the type of the problem [61]–[65]. Each solution has two factors: 

position and velocity. The position represents how the values of zeros and ones are 

distributed in the solution. The position of each solution can be updated according 

to velocity value which can be calculated using Equation 2.3. where, if the value 

of velocity is greater than 0.5 then the position of the solution will change as follow: 

if the value in the template is zero then it will be one and vice versa. From the other 

hand, if the value of velocity is less than 0.5 then the position of the solution will 

not change. 

 

Equation 2.3: Updating velocity of the solution[62]. 

 

𝑉(𝑛𝑒𝑤) =  (𝑊 ∗ 𝑉(𝑜𝑙𝑑)) + (𝐶1 ∗ 𝑅1) ∗ (𝑝𝑏𝑒𝑠𝑡 − 𝑃(𝑜𝑙𝑑)  + (𝑐2 ∗
𝑟2) ∗  (𝑔𝑏𝑒𝑠𝑡 −  𝑃(𝑜𝑙𝑑)  
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Where V(new) is the new velocity of the solution t, w is random number 

between (0.2,0.9), r1, r2 are random number between (0.0,1.0), P[t] is the position 

of the solution, c1 and c2=2.0, pbest is the the solution with best fitness in the 

iteration and gbest is the solution with the best fitness in all the swarm. 

2.5 Supervised Learning Techniques 

The approaches of supervised traffic classification must have a pre-labelled 

dataset for training. A classifier is trained in the feature space via the training dataset 

and will be applied for classifying new network traffic. Numerous researches were 

performed for solving a variety of traffic classification issues with the use of 

supervised approaches [1]. In this section, the common architectures for supervised 

learning methods of IR will be described with examples for each architecture.   

2.5.1 One-Stage Supervised Deep Hashing (SDHP) 

Qi Li et al. suggested a technique that includes developing a deep supervised 

discrete hashing approach which is modelled on the basis of the hypothesis that the 

learned binary codes must be optimal for classification. Each of the classification 

information and the pairwise label information are utilized for learning the hashing 

codes within one stream model [3].  

This was achieved by constraining the results of the past layer to be directly 

binary codes, and that has been seldom researched in the deep hashing approach. 

Due to the fact that hash codes have discrete nature, an alternating minimizing 

approach is utilized for optimizing the objective function. This might be quite a 

useful approach for applications of image or video search because it is 

computationally inexpensive and storage efficient.  

The Mean Average Precision (MAP) outputs of SDH+CNN and 

FastH+CNN on CIFAR-10 dataset are 0.553 and 0.604, respectively. The average 

MAP output of this approach on CIFAR10 dataset is 0.787, and that performs better 

than previous conventional techniques of hashing with deeply learned features. 

Indeed, the suggested approach accomplishes a comparable efficiency to the optimal 



Chapter Two Theoretical Background    
 

13  

conventional approaches of hashing on NUS-WIDE dataset under the first 

experimental setting. 

Another method proposed by Dongbao Yang et al. called a one-stage 

supervised hash approach for learning high-quality binary codes. Those researchers 

executed a deep CNN and enforced the learned codes for satisfying the following 

points: (a) the binary codes must be distributed uniformly; (b) images that are similar 

must be encoded to similar binary codes, and the other way around; (c) quantization 

loss must be minimized. Experimental comparisons between this approach and 

previous algorithms had been conducted on NUS-WIDE and CIFAR-I0 datasets [4]. 

 The MAP of this approach reached to 87.67% and 77.48% on CIFAR-I0 and 

NUS-WIDE datasets respectively with 48-bit. Thus, this method improved the 

search accuracy. The contribution of this work mainly focused on four aspects: At 

first, the GoogleNet architecture gives to the developers the ability to put their own 

equations in the classification layer because of its highly efficient feature 

representation power. Secondly, a pairwise loss function has been devised to 

maintain the semantic similarity of the original data. Thirdly, enforcing the binary 

codes uniformly spread for carrying more information. Fourth, the loss of quantizing 

from Euclidean to Hamming space has been diminished. 

Also, Chenggang Yan et al. developed the previous architecture for learning 

high-quality binary codes, and in the same framework, the method was extended 

into what they called SDHP+ for improving the discriminative power of binary 

codes. Implementation of this approach used a deep CNN, and the learned codes 

were enforced for satisfying the following criteria: Similar binary codes must result 

from similar images, and vice versa, minimizing the loss of quantization from 

Euclidean to Hamming spaces, and the learned codes must be distributed in a 

uniform manner. The application of this approach was for the efficient recognition 

of the on-road environment based on the analysis of the contents of the images from 

the large-scale scene database [5].  

Experimental comparisons of this method with some previous hashing 

algorithms had been performed on NUS-WIDE and CIFAR-10. The MAP of SDHP 

reached 87.67% and 77.48% with 48 b (binary code), respectively, and the MAP of 

SDHP+ reaches 91.16%, 81.08% with 12 b, 48 b on CIFAR10 and NUS-WIDE, 
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respectively. It can be concluded the fact that the latter approach described in 

[5]outperformed the others because the enhancement in this method called (SDPH+) 

had improved the search accuracy. 

2.5.2 Nearest Neighbour Search 

For the majority of the available hashing approaches, an image is initially 

encoded in a form of a vector of hand-engineering visual characteristics, which is 

followed by one more step of separate projection or quantizing which produces 

binary codes. 

Hanjiang Lai et al. [6] proposed a single-stage supervised hash approach for 

retrieving images that generated bitwise hash codes for images by a thoroughly 

designed deep model. The suggested deep architecture used a triplet ranking loss 

designed in order to keep relative similarities. In this approach, the input images 

were converted to unified representations of image through a shared subnetwork of 

stacked convolution layers. After that, those intermediate image representations 

were encoded to hash codes via “divide-and-encode” modules, as shown in Figure 

2.3 

Empirical evaluations in IR showed the fact that the suggested approach had 

achieved better performance gains compared to some previous supervised or 

unsupervised hashing approaches. The method achieved better search accuracies 

(accuracy within Hamming distance 2, MAP, accuracy with varying size of top 

returned samples, and precision-recall) than the ones that are considered baseline 

approaches utilizing conventional hand-crafted visual features.  

For instance, in comparison with the optimal competitor KSH, the MAP 

results of the suggested approach refer to a relative increasing of 58.8%-90.6 %, 

61.3%-82.2 %, and 21.2%-22.7% on SVHN, CIFAR10, and NUS-WIDE datasets, 

respectively. 
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Figure 2.3: One-Stage Supervised Hashing method Architecture [6]. 

Manish Sapkota et al. designed a Deep Convolutional Hashing (DCH) 

approach which may be trained “point-wise” for a simultaneous learning of each of 

binary and semantic representations of histo-pathological images. Particularly, the 

researchers proposed a CNN which introduced a latent binary encoding (LBE) layer 

for low dimensional embedding of features for learning binary codes. This method 

included designing a joint optimizing objective function which encourages the 

network for learning discriminative representations from the label data, and 

diminish the gap between the desired binary values and the real-valued low 

dimensional embedded features [66].  

The binary encoding for new images could be obtained through forward 

propagation via the NN and the quantization of the result of the LBE layer. Results 

of experimentations on a large-scale histo-pathological image dataset demonstrated 

the efficiency of the suggested approach. This architecture provided a fast image 

query and retrieval of related cases, this way could be helpful for specialists in the 

evidence-based research of the diseases for diagnosing. In addition to that, they 

could research the retrieved similar instances for understanding the biological and 

morphological properties of an illness.  

A better ranking performance has been noticed for DCH with MAP that 

ranges between 0.94 and 0.96 utilizing various numbers of bits, and performing 

batter that the other considered approaches by 2%-4%. However, the results can be 

further enhanced by enhancing the loss of quantization with a more sufficient 
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optimization formulation. In addition to that, this work had the assumption that 

image labels have no noise, in other words, data annotation has been consistent. 

Label noise would negatively influence the learning of the suggested model and 

after that in the final diagnose of the disease. This is why, the research can be 

enhanced by developing noise-insensitive learning algorithms for training the 

network in addition to the statistical evaluation of the robustness of the suggested 

approach on the diagnosis of the disease. 

Approximate nearest neighbour search could be an effective approach for 

large-scale retrieval of images. Jun-Yi Li and Jian-hua Li developed a sufficient DL 

framework approach for generating binary hash codes for time efficient IR based 

on CNN. The adopted concept was that it is possible learning binary codes with the 

use of a hidden layer for presenting the latent concepts that dominate the class labels 

in which the data labels can be used. In addition to that, CNN may be utilized for 

learning image representations [67].  

Other supervised approaches need pair-wised binary code learning inputs. 

Nevertheless, this approach may be utilized for learning image representations and 

hash codes in a point-by-point way, for this reason, it is appropriate for large-scale 

datasets. Experimental results have shown the fact that this method is more efficient 

than a number of other hashing approaches on the MNIST and CIFAR10 datasets. 

The work can be extended by investigating its efficiency and scalability on a dataset 

of a larger scale.  

The experimental results which indicated that this approach can enhance 

some earlier best retrieval results with 30% and 1% retrieval accuracy on the 

CIFAR-10 and MNIST datasets respectively with only a simple alteration of the 

deep CNN. This method provided 83.75% precision (which has been obtained by 

the last layer) on the task of 116 classes of clothing classification. 

Another structure proposed by Siying Zhu et al. had merge the process of 

generating binary codes within deep NNs for sufficient retrieval of images. The 

suggested model included two main blocks. The stacked convolution layers of 

Network-In-Network with global average pooling for the calculation of the 

sufficient representation of images and the embedded latent layer with binary 

activation functions learn binary hash codes in a simultaneous manner [68]. 
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Experiments have shown that the suggested approach has gained 

improvements over a number of earlier hashing approaches on two well-known DL 

datasets, which are MNIST and CIFAR-10. These researchers had implemented 

their suggested structure on the NN toolkit Caffe1. In all of the experiments, the 

networks have been trained via stochastic gradient descent with a learning rate of 

0.01 and weight decay of 0.0005. The training iterations were 10,000 for each one 

of the datasets. The experimental results showed that the precision of the approach 

while using 48 bits is 0.98 and 0.587 on MNIST and CIFAR10 respectively. 

Another joint binary code learning approach has been suggested by Xuelong 

Li et al. for combining image feature to latent semantic feature with as little 

encoding loss as possible. This was known as Latent Semantic Minimal Hashing. 

The latent semantic feature has been learned according to matrix decomposition for 

refining the initial feature, this way it makes the learned feature more 

discriminative. In addition to that, a minimum encoding loss has been combined 

with the process of latent semantic feature learning in a simultaneous way, in order 

to ensure that the obtained binary codes are also discriminative [69]. 

 Extensive experiments on numerous common large databases have shown 

that the suggested method performed more efficiently compared to numerous other 

approaches of hashing. The conclusion is that this latter approach that has been 

described in [69] is, in general, more efficient compared to the rest of the 

approaches of this sub-section due to the fact that its retrieval precision has reached 

up to 0.98%. 

2.5.3 Content-Based Image Retrieval (CBIR) 

Huafeng Wang et al. have suggested an architecture based on content-based 

IR systems (CBIRs) which consists of three parts: feature extraction, processing 

and indexing, as shown in Figure 2.4. Via selecting the intermediate model layers 

like feature representation, and pre-processing the data with some important 

approaches, the CBIR task based on CNN could noticeably be enhanced. Retrieval 

performance was between 34.40% and 53.41% [70]. 
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Figure 2.4: Simplified Industrial CBIR Architecture [70]. 

 

A second method designed by Yang Li et al. called a deep feature hash codes 

model for CBIRs, where they initially extracted features of the image by a 

pretrained CNN model. Then, they used various hashing approaches for binary 

feature extraction. Lastly, they used the optimal binary encoding features for 

building a CBIRs [71].  

The experimental results demonstrated that with decreasing feature 

dimension, the approach did not decrease the accuracy of retrieval and could as well 

improve the precision of retrieval in some of the cases. The precision of retrieval of 

256 bits binary characteristics might exceed the conventional approach of 256 

dimensional (4096 bits) features.  

As soon as the feature bits were 16 times lower, the space of the storage had 

decreased 16 times and the performance of retrieval has increased. Which is why, 

this approach could sufficiently enhance the speed and accuracy of CBIRs. The 

efficiency of retrieval was in the range from 50.08 to 77.55. The work can be 

additionally improved with the addition of the approach of matrix learning in this 

framework and enhance the prcision of the CBIR retrieval. 
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A third method is large-scale remote sensing (RS) retrieval of images that 

had become a valuable research problem in geo-sciences. This method was 

proposed by Peng Li and Peng Ren [72]. It is compatible with the fast evolution of 

the technologies of satellite and aerial vehicle. Methods of Hashing-based searching 

have been commonly utilized in the tasks of content-based retrieval of images.  

On the other hand, the majority of hash approaches make a trade-off 

between the precision of retrieval accuracy and the effectiveness of learning, and 

therefore can hardly meet the exact RS data analysis requirements. For the sake of 

addressing those drawbacks, they have proposed an approach for partial 

randomness in order to learn hash functions, which has been called as partial 

randomness hashing (PRH). Particularly, for the construction of hash functions, a 

part of model parameter values have been arbitrarily produced and the rest of them 

have been trained on the basis of the RS images.  

Experiments on two large public RS image datasets had proven the fact that 

this PRH approach had outperformed several other related algorithms according to 

each of precision of retrieval and effectiveness of learning. Retrieval performance 

was between 0.4138 and 0.5202 using MAP. Finally, comparing these three 

methods to each other, one generally may conclude that the second method [71] is 

superior to the other methods  because it produced the best retrieval performance 

that reached to 77.55. 

2.5.4 Neural Network based Hash Function Method for 

Authentication and Retrieval of Color Images  

In this approach, two interesting methods were noticed. The first method 

was proposed by Yakup Kutlu and Abdullah Yayik [73]. The main idea of this 

method was re-sizing input colour image to a constant size, after that, generating 

hash values with the use of NN one-way feature and nonlinear approaches, for three 

dimensions respectively. This work proposed a NN-based hash function 

architecture for colour image authentication. The presented system presented binary 

and hexadecimal sensitivity of hash value. The binary sensitivity was nearly 50% 

that satisfies diffusion of the hash value. Also, almost 100% hexadecimal sensitivity 

obtained meaning that the algorithm has very high ability of robustness. The binary 

sensevity reached 51.36% 
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The second method designed by Yang Li and Zhuang Miao [74], which 

included combining non-linear reduction of dimension and hashing approach for 

effective retrieval of images. They firstly extracted 4096-dimension characteristics 

via a pretrained CNN model. After that, they have used t-Distributed Stochastic 

Neighbour Embedding (t-SNE) for the reduction of the deep characteristics to 1024-

dimension. Lastly, they have utilized Sparse Projection (SP) for building 256 bits 

binary encoding characteristics for retrieving images. They assessed the efficiency 

of their approach with the Oxford-5k, Paris-6k and Holidays datasets. Experiments 

on those three datasets showed that the performance is reached to 81.35 using MAP. 

The retrieval performance of this latter method was higher than the previous one as 

it reached to 81.35. 

2.5.5  Other Supervised Learning Techniques 

In this subsection, some other interesting techniques for supervised learning 

will be describe. 

A. Siamese Architecture 
This approach was proposed by Abin Jose et al. for learning binary codes 

for fast retrieval of images. A Siamese model was used with 2 parallel feed-forward 

branches but with a shared weight for generating binary codes. The training data 

has been split to similar and different pairs. The NN attempts learning the weights 

in a way that it decreases the distance between similar pairs of images and increases 

the distance between pairs of images which are not similar. The binary codes have 

been formed via squashing the output of the NN through a sigmoid function of 

activation, as shown in Figure 2.5 [75].  

The training with sigmoid hash constrained the result of every node in the 

final fully connected layer into either 1 or 0. The input has been fed to the NN in 

the form of image pairs. The result of the fully connected layer has been transmitted 

to the sigmoid function. The distance between the result feature vectors has been 

computed inside the function of loss. Retrieval performance reached to 67.19 on 

CIFAR-10. 
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Figure 2.5: Architecture of the Siamese NN [75]. 

 

B. Deep-Networks based Hashing for Multi-label Images 
Another approach designed by Hanjiang Lai et al. focused on deep-

networks-based hashing for images that have multi-label; every one of these images 

may contain objects of multiple categories, as shown in Figure 2.6. Also, in the 

most common hashing methods, the representation of each image consists of one 

piece of hash code, which is called semantic hashing. The performance of this 

approach reached to 0.8830 using MAP [76]. 

 

Figure 2.6: Illustration of Instance-Aware IR [76]. 
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C. The Model of Bag-of-Features (BoFs) & A Symmetry-

Aware Spatial Segmentation Approach 

Nikolaos Passalis and Anastasios Tefas [77] proposed the bag-of-features 

(BoFs) approach which consists of 3 layers: A radial basis function (RBF) layer, 

fully connected layer, and accumulation layer, as shown in Figure 2.7.  

This module allows for split the size of the representation from the number 

of utilized code-words and also for a more sufficient formulation the scattering of 

features with the use of an independent trainable for every one of the RBF neurons.  

The final network, referred to as the "retrieval oriented neural BoF” (RN-

BoF) was trained by the use of the regular backpropagation and takes into 

consideration the quick extraction of conservative picture representations. The RN-

BoF approach was capable of accelerating the speed of retrieval and encoding of 

objects, minimizing the size of obtained representation, and increasing the accuracy 

of retrieving.  

Another technique called "A symmetry-aware spatial segmentation" was 

also proposed for minimizing the storage needing and time of encoding which make 

this approach capable of scaling large datasets in an efficient way.  

The performance of this latter approach reached to 97.87 % using MAP. 

This work can be further enhanced by combining the RN-BoF model with extreme 

learning techniques for reducing the time of training. 

 

 

 

 

 

 

 

 

D. Supervised Semantics-Preserving Deep Hashing (SSPDH) 
Huei-Fang Yang et al. designed an approach called effective supervised 

deep hash approach, where the constructing of the binary hash codes was from 

labelled data for image search which is of large-scale. Those researchers assumed 

Figure 2.7: Proposed RN-BoF Model [77].  
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the fact that the semantic labels are administrated via multiple interior specifications 

with every specification On or Off, and that the classification depends on those 

specifications [78].  

Constructing hash functions was done as a latent layer in a deep NN. The 

binary codes were trained by reducing an objective function which has been defined 

over classification error and other wanted hash codes characteristics, as shown in 

Figure 2.8.  

With this model, SSPDH achieved a good attribute where a single learning 

model contains both classification and retrieval parts [78]. The performance of this 

approach reached to 91.45 % and 99.39% on MNIST and CIFAR10 datasets 

respectively using MAP. 

 

 

Figure 2.8: Supervised Semantic-Preserving Deep Hashing (SSPDH) [78]. 

 

E. Bit-Scalable Hashing Approach 
Another supervised learning architecture was proposed by Ruimao Zhang et 

al. [47], where the raw images used to directly create compact and bit-scalable 

hashing codes, as shown in Figure 2.9. Firstly, the triplet samples should be 

generated by organising the training images into a batch, and every sample includes 

3 images where two of those images are in the same category while the third one is 

different. Then in these samples, the margin between the identical pairs and 

mismatch pairs should be maximized in the Hamming space.  
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The images of similar components must have similar codes, also in the 

resulting hashing code, each bit should be weighted individually. The performance 

of this approach reached to 63.26 %, 98.09% and 64.14 on MNIST, CIFAR10 and 

NUS-WIDE datasets respectively using MAP. This framework can be further 

enhanced via leveraging more semantics (for instance, numerous attributes) of 

images and/or introducing feedback learning in the framework such as to make it 

more powerful in practice. 

 

F. Deep Hashing (DH) Method for Learning Compact Binary 

Codes for Scalable Image Search 
This architecture was designed by Jiwen Lu et al. [79]. It is differed from 

most other learning techniques that it has multiple linear projection of mapping each 

image into binary feature vector, as shown in Figure 2.10: The Main Idea of Deep 

Hashing Method for Compact Binary Codes Learning [79]. 

 

 

 Those researchers built up a deep NN to look for numerous hierarchical 

nonlinear transformations for learning the binary codes, with the goal that the non-

linear correlation of tests may be all around misused.  

They pointed out two main headings for future work: The first one is to 

stretch out this approach to deal with adaptable video search. And the second one 

is to stretch out this approach to deal with the cross-modular search for scalable 

Figure 2.9: The Bit-Scalable Deep Hashing Learning Framework [47]. 
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multimedia search. The Hamming ranking of this approach using MAP reached to 

0.72 on CIFAR10 dataset. 

  

Figure 2.10: The Main Idea of Deep Hashing Method for Compact Binary 

Codes Learning [79]. 

 

 

G. The Method of Query-adaptive Deep Weighted Hashing 

(QaDWH) 
The query-adaptive deep weighted hashing (QaDWH) approach was 

proposed by Jian Zhang and Yuxin Peng [80]. This approach is capable of 

performing fine-grained ranking for various queries by weighted Hamming distance 

(See Figure 2.11). Here the researchers used an example of 6-bits hashing codes. 

Supposing that the query image has a hash code of 000000, there are six images 

within Hamming radius 1 with query image, however, they are different in various 

bits.  

Conventional Hamming distance is not capable of performing fine-grained 

ranking amongst them. The proposed approach consists of two parts: First, 

designing a new deep hash network, consisting of 2 streams: the hashing stream 

learns the compact hashing codes and corresponding class wise hash bit weights in 

a simultaneous manner, whereas the classification stream maintains the semantic 

info and enhances the efficiency of the hash.  

After that, designing a sufficient method of query-adaptive retrieval of 

images that initially rapidly creates the query-adaptive hashing weights based on 

the class-wise weights and the projected semantic probability of the query, and after 

that performs sufficient IR via weighted Hamming distance. As a future work, the 

researchers suggested extending the deep weighted hashing approach to a multi-

table framework of deep hash, where various weights have been learned for various 
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functions of hashing map. The Hamming ranking of this approach using MAP 

reached to 0.884 on CIFAR-10 dataset. 

 

 

 

 

 

 

 

 Figure 2.11: The Discrete Hamming Distance [80]. 
 

H. Jointly Sparse Regression (JSH) Model 
The purpose of this IR model was minimizing the loss of locality 

information and get jointly sparse hash approach. The presented approach by Zhihui 

Lai et al. integrated joint scarcity, locality and process of rotation together in a 

smooth construction [81].  

The presented JSH could learn the best jointly sparse matrix of projection 

for low-dimensional feature extracting and selecting. With the orthogonal 

constraints in the form of a rotational operation between the binary codes and the 

low-dimensional characteristics, the suggested model could additionally reduce the 

loss of information and get the binary solutions in a direct manner The Hamming 

ranking of this approach using MAP reached to 0.1913 on CIFAR-10 dataset.  

Comparing the eight latter techniques mentioned in this subsection, it can 

be noticed that the approach proposed by Nikolaos Passalis and Anastasios Tefas 

[77]  achieved the best IR ration of  97.87 %. 

2.6 Semi-Supervised Techniques 

Usually, is not easy to obtain labelled data most of the time. In the case of 

using the label data alone for training, the training dataset would be excessively 

small for entirely reflecting the characteristics of the traffic. New applications of 

network are continuously developed, which results in traffic data with no label. 
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Each one of the situations results in issues for the conventional supervised ML 

approaches.  

For addressing this issue, the semi-supervised ML approach has emerged, 

because of its capability of combining unsupervised and supervised learning. In 

semi-supervised learning, the training dataset includes each of samples that are 

labelled or unlabelled [1]. In this section, some of the most interesting semi-

supervised learning proposals are reviewed. 

2.6.1 Semi-Supervised Hashing for Scalable Image Retrieval 

J. Wang et al. have suggested a semi-supervised hashing method which was 

formulated in a form of a minimization of empirical error on the labeled data 

whereas increasing variance and independence of hash bits over the labeled and 

unlabeled data. The suggested approach was capable of handling both metric in 

addition to the semantic similarity. This method can be enhanced via relaxing the 

widely utilized constraints of orthogonality in a way that one is capable of achieving 

better results, particularly for larger number of bits [82]. 

2.6.2 Semi-supervised Kernel Hyperplane Learning (SKHL) 

Meina Kan et al. proposed a hashing approach that has been referred to as 

the SKHL for semantic image retrieving via the modeling of every hashing function 

as a non-linear kernel hyper-plane that has been constructed from an unlabeled 

dataset. In addition to that, a Fisher-like criterion has been suggested for learning 

the best kernel hyperplane and hashing function, with the use of only weakly labeled 

samples of training with side information [83]. 

For the sake of additionally integrating various feature types, they have 

incorporated multiple kernel learning (MKL) in the suggested SKHL (referred to 

as the SKHL-MKL), that led to a more sufficient hashing function. The work can 

be extended by studying how to update them jointly. It is also justifiable to apply 

this method for the retrieval of videos with the use of the video key frames as the 

input. 
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2.6.3 Semi-Supervised composite Multi-view Discrete Hash 

(SSMDH) Model 

At the time where the majority of researches on the subject of hash models 

have been focused on single-view data, lately the multiview methods with a 

majority of unsupervised multi-view hashing models were taken under 

consideration.  

In addition to the incorporation of a part of label data in the model, the 

suggested multi-view model that has been designed by Wei-Shi Zheng and C. 

Zhang [84] is different from the available multi-view hashing models in 3-fold: 1) 

a composite discrete hashing learning modelling which is capable of jointly 

minimizing the loss on multi-view characteristics in the case of utilizing relaxation 

on learning hash codes, 2) a composite locality preserving modelling for locally 

compact coding, 3) the exploration of statistically uncorrelated multi-view 

characteristics for the generation of hashing codes.  

A future extension of this work can be investigating if an entirely end-to-

end multi-view semi-supervised architecture would get considerably more 

enhancement.  

2.6.4 Semi-Supervised Deep Hashing (SSDH) Method 

This approach has been presented by Jian Zhang and Yuxin Peng [85] for 

performing better hash function learning via a simultaneous preservation of the 

semantic similarity and underlying data structures. The basic contributions were the 

following: 1) a semi-supervised loss for jointly minimizing the empirical error on 

labeled data, in addition to the embedding error on each of the unlabeled and labeled 

data that might maintain the semantic similarity and record the meaningful 

neighbors on the underlying data structures for sufficient hashing. 2) a SSDH 

network has been proposed for broadly exploiting each of the labeled and unlabeled 

data.  

The suggested deep NN performed learning of hashing code and learning of 

features in a simultaneous manner in a semi-supervised manner. As a future work, 

it is possible to discover a variety of semi-supervised embedding methods which 

might take more advantage of the unlabeled data, and more improved strategies of 
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graph construction may be used. Indeed, this framework can be extended to an 

unsupervised scenario, in which clustering methods are used for obtaining virtual 

image labels. 

2.6.5 The Approach of Semi-Supervised Metric Learning-based 

Anchor Graph Hashing (MLAGH)  

Another approach was presented by Haifeng Hu et al. [86]. This method 

may be split to 3 parts. 1) utilizing a transform matrix for the construction of the 

anchor-based graph of similarity of the training dataset. 2) proposing the objective 

function which is based on the triplet correlation, where the best transform matrix 

may be learnt with the use of the label smoothness and the margin hinge loss which 

is incurred by the triplet constraint.  

In addition to that, the approach of stochastic gradient descent (SGD) can 

leverage the gradient on every one of the triplets for updating the transform matrix. 

3) designing a penalty factor for accelerating the speed of execution for the SGD. 

2.6.6 Comparison of the Semi-Supervised Methods 

Comparing the semi-supervised learning based IR methods mentioned in the 

present section, a preference can be assigned to the second method (SKHL) [83]in 

general broad terms. This can be for the following reasons: First, every one of the 

hashing functions is modeled in a form of a nonlinear kernel hyper-plane that has 

been constructed from an unlabeled dataset. By the maximization of a Fisher-like 

criterion on a weakly labeled dataset only with side information, one can get a 

collection of hashing functions and optimal kernel hyper-planes. 

 In addition to that, every one of the hashing functions is independently 

updated in every one of the iterations. This approach is applicable as well for the 

retrieval of videos with the use of video key frames as the input. 

2.7 Unsupervised Learning Techniques 

Unsupervised approaches detect internal correlations in the unlabeled input 

data. One of the main unsupervised approaches is the clustering. Even though 

clustering requires no class labels, classifiers may be derived in the case where the 
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traffic clusters are corresponding to various applications of the network [1]. In this 

section, some of the most interesting unsupervised learning proposals are 

considered. 

2.7.1 Cascaded Principal Component Analysis (PCA)  

This architecture was proposed by Tsung-Han et al. The main segment is 

cascaded principal component analysis (PCA), the second one is binary hashing, 

and the last one is block-wise histograms. For comparing and to present a good 

understanding, the paper also introduced and studied two simple PCA-Net 

variations, which are: Rand-Net and LDA-Net [87].  

Experimentations on other public datasets also demonstrated the possibility 

of PCA-Net in serving as a simple yet very competitive base-line for classification 

of textures and recognition of objects. As soon as the parameters get fixed, the 

training of the PCA-Net is very simple and sufficient due to the fact that the filter 

learning in the PCA-Net involves no regularized parameters or requires numerical 

optimization solvers.  

In addition to that, the construction of the PCA-Net includes only a cascaded 

linear map, which is followed by a non-linear output phase. This level of simplicity 

presents an alternative, but at the same time refreshing potential on CNNs and might 

additionally simplify the mathematical justification and analysis of their efficiency. 

The bottleneck which might prevent PCA-Net from getting deeper (for instance to 

more than two stages) is the fact that the resultant feature dimension would 

exponentially maximize with the number of stages. Which can probably be fixed 

via the replacement of 2-D convolutional filters with tensor-like one as a future 

work.  

2.7.2 Quaternion Orthogonal Matching Pursuit (Q-OMP)   

V. Risojevic and Z. Babic [88]  proposed unsupervised learning of quaternion 

feature filters using quaternion representation for color images, in addition to 

feature encoding with the use of a Q-OMP. With the use of quaternion 

representation, there was a possibility of jointly encoding color information and 

intensity in an image. 
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 Local descriptors have been obtained with the use of soft thresholding and 

the calculation of the absolute values of scalar and 3 vector parts of the quaternion 

valued distributed code. Local descriptors have been pooled, normalized, and 

power-law transformed, thereby resulting in the output image representation.  

The suggested approach for quaternion feature learning has been capable of 

adapting to the properties of the available data, and being entirely unsupervised It 

has appeared as a suitable substitute to each of convolutional NNs and hand-crafted 

representations, particularly in application scenarios that include scarce-labeled 

training data. This approach might as well be extended to hierarchical classification 

structure. 

2.7.3 Siamese-Twin Random Projection Neural Network (ST-

RPNN)  

Mohamed Fahkr et al. designed ST-RPNN approach that comprises two 

similar random projection NNs with hard thresholding neurons in which the binary 

code is fed as the results for the neuron. The learning goal was producing similar 

binary codes for similar pairs of input image and dissimilar binary codes in the 

opposite case [89].  

The procedure of learning has been split to 2 stages. Initially, over-complete 

random projection has been utilized for producing a suitably long code, which has 

been followed by a fast sparse technique for neurons selection (FSNS). Bootstrap 

Aggregation Trees or Bagging Trees (BT) has been after that, utilized for making 

an enhanced compact code section. BT has as well been utilized as a fast retrieval 

tool which was used for ranking the database in terms of a query with no 

calculations of distance and with a considerably lower level of complexity 

compared to the method of Hamming distance. 
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2.7.4 Converting Unsupervised Hashing to Supervised Hashing 

using Pseudo Labels of Images  

  Haofeng Zhang et al. proposed an unsupervised model which had 

two main contributions: The first one is converting the unsupervised DH 

architecture to supervised via learning pseudo labels and the second one is the 

framework unifies probability maximizing, quantization error minimizing, and 

mutual information maximizing, in a way that the pseudo labels may maximally be 

preserved [90].  

2.7.5 Comparison of Unsupervised Methods 

Comparing the unsupervised learning based IR methods mentioned in this 

section, the first method [87] seems to be the best one in general terms. It is the 

simplest unsupervised convolutional DL network that called cascaded principal 

component analysis due to the fact that the filter learning in the PCA-Net involves 

no regularized parameters or requires numerical enhancement solvers.  

In addition to that, constructing the PCA-Net comprises only a cascaded 

linear map, which is followed by a non-linear output phase. Also, this architecture 

exceptionally straightforward DL network for classifying images which depends on 

extremely basic data processing parts. 

2.8 Summary 

In this chapter the most common techniques of IR are explained and 

classified into three categories based on the learning method: Supervised, Semi-

Supervised and Unsupervised techniques. The direction of thesis is with the first 

category (Supervised Learning Techniques). Because it uses the labeled data for 

training models of classification.  

The methods explained in section (2.5.1 above) are the significant work of 

this approach, In which IM and Sequential Model are used in images classification, 

where the labeled data represent the output of IM which is a pretrained model works 

as features extraction. This pretrained model trained on ImageNet dataset that 

contains 1000 category with 1.2 million images.   
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The sequential model represents the classification part of the whole 

architecture which consists of fully connected layers and learned using TRVS of 

IM to classify new images in another time.
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3 Chapter Three: The Proposed Image Classification System 

3.1 Introduction 

This thesis focuses on the design and implementation of DL-based image 

classification system with high performance, where CIFAR-10 dataset is used to 

train the models. The IM is the beginning of the classification work and the main 

aim of this model is converting dataset to TRVs that are suitable for training and 

testing classification models. The original classification part of IM is removed and 

the output of IM in this case is the TRVs of CIFAR-10 images. These TRVs are the 

input of the classification part (Fully connected layers) which has ten categories 

(number of categories in CIFAR-10 dataset) and the output is what the model 

predicts of any input image. The core of this work is the use of PSO to reduce TRVs 

size and building new models compatible with this size. Later on, when there is a 

new image to classify, it would be possible to use the same template of reducing 

TRVS to modify the new image. PSO is used in two cases: The first case is returning 

the minimum TRVS and the second one is returning the template of TRVS with 

high accuracy in addition to reducing TRVS. The crossover technique is applied 

inside PSO for getting new solutions some of them have high accuracy with high 

number of TRVs and others have lower accuracy with lower number of TRVs, 

where the selection of model based on the type of the application. 

 This chapter contains the following: explaining CIFAR-10 dataset and 

reasons of using it. Followed by the architecture of CNN. Also clarify the main 

parts of IM and how the TRVs have been resulted. After that explaining the method 

of building classifier part. Finally explaining the enhanced PSO with the whole 

architecture of classifying. These steps are shown in Figure 3.1. 
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Figure 3.1: Main Architecture of the Proposed Image Classifier. 

 

In the Figure 3.1 there are two parts of image classifier. The first part is TRVs 

extraction using IM and the second part is the proposed approach that use these 

TRVs and reducing it using enhanced PSO to build new classification model 

suitable for new dataset. 

3.2 CIFAR-10 Dataset 

The CIFAR-10 dataset is made up of 60000 color images, each image has 

dimensions of 32x32 pixel. The dataset is divided into ten classes: Airplane, 

Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship and Truck. Each class 

contains 6000 images. There are 50000 training images and 10000 test images. The 

dataset is divided into five training batches and one test batch, each with 10000 

images. The test batch contains exactly 1000 randomly-selected images from each 

class. The training batches contain the remaining images in random order, but some 
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training batches may contain more images from one class than another. Between 

them, the training batches contain exactly 5000 images from each class. The reason 

of using CIFAR-10 dataset is this dataset has a small number of images, also the 

size of images is too small(32*32) pixel.    

3.3 CNN 

To clarify how CNN deals with the image, here is an example, When using a 

face image as  input into a CNN, the network will learn some basic characteristics 

such as edges, bright spots, dark spots, shapes etc., in its initial layers. The next set 

of layers will consist of shapes and objects relating to the image which are 

recognizable such as: eyes, nose and mouth. The subsequent layer consists of 

aspects that look like actual faces, in other words, shapes and objects which the 

network can use to define a human face. CNN matches parts rather than the whole 

image, therefore breaking the image classification process down into smaller parts 

(features). 

A 3x3 grid is defined to represent the features extraction by the CNN for 

evaluation. The following process, known as filtering, involves lining the feature 

with the image patch. One-by-one, each pixel is multiplied by the corresponding 

feature pixel and once completed, all the values are summed and divided by the 

total number of pixels in the feature space. The final value for the feature is then 

placed into the feature patch. This process is repeated for the remaining feature 

patches followed by trying every possible match- repeated application of this filter, 

which is known as a convolution.  

The next layer of a CNN is referred to as “max pooling”, which involves 

shrinking the image stack. In order to pool an image, the window size must be 

defined, the stride must also be defined. The window is then filtered across the 

image in strides, with the max value being recorded for each window. Max pooling 

reduces the dimensionality of each feature map whilst retaining the most important 

information.  

The normalization layer of a CNN, also referred to as the process of ReLU, 

involves changing all negative values within the filtered image to zero. This step is 

then repeated on all the filtered images, the ReLU layer increases the non-linear 
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properties of the model. The subsequent step by the CNN is to stack the layers 

(convolution, pooling, ReLU), so that the output of one layer becomes the input of 

the next. Layers can be repeated resulting in a “deep stacking”.  

The final layer within the CNN architecture is called the fully connected layer 

also known as the classifier. Within this layer every value gets a vote on 

determining the image classification. Fully connected layers are often stacked 

together, with each intermediate layer voting on phantom “hidden” categories. The 

final layer of these layers called soft-max layer that give the classification category. 

In effect, each additional layer allows the network to learn even more sophisticated 

combinations of features towards better decision making.  

The values used for the convolution layer as well as the weights for the fully 

connected layers are obtained through backpropagation, which is done by the deep 

neural network. Backpropagation is whereby the neural network uses the error in 

the final answer to determine how much the network adjusts and changes. 

3.4 Transfer Learning 

The pre-trained IM is used for classifying images. It is actually capable of 

extracting useful information from an image. So, it can be instead train the Inception 

model using another dataset. But it takes several weeks using a very powerful and 

expensive computer to fully train the IM on a new dataset. It can be instead re-use 

the pre-trained inception model and merely replace the layer that does the final 

classification. This is called Transfer Learning.  

3.5 Inception Model 

The Inception-v3 model is an architecture of convolutional networks. The use 

of IM v3 because the dataset is small and no need for more processing. Also this 

model has more accurate than v2 and v1. It is one of the most accurate models in 

its field for image classification having been trained on the ImageNet dataset. 

Originally created by the Google Brain team, this model has been used for different 

tasks such as object detection as well as other domains through Transfer Learning 

as shown in Algorithm 3.1.  
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The Inception v3 model takes weeks to train on a monster computer with 

eight Tesla K40 GPUs and probably costing $30,000 so it is impossible to train it 

on an ordinary PC. We will instead download the pre-trained IM and use it to 

classify images. This model has nearly 25 million parameters and uses five billion 

multiply-add operations for classifying a single image. On a modern PC without a 

GPU this can be done in a fraction of a second per image. 

Algorithm 3.1: Steps of IM.  

 
Input: CIFAR-10 dataset 

 

Output: Transfer Values of CIFAR-10 dataset 

 

Step1: Define images input shape entering to IM 

 

Step2: define the number of Convolution Layers 

 

Step3: if using IM itself to classify image then: 

a- define the number of fully connected Layers and size of 

each layer  

b- define the size of soft-max layer (equal to number of 

categories in the dataset). 

 

Step4: define TRVs array 

 

Step5: For I=1 to number of convolution layers 

Execute Steps 6 to 8 

 

Step6: execute three convolution operations on the input image: 

A=Convolution (1*1), B= Convolution (3*3), C= Convolution 

(5*5) 

 

Step7: execute two max polling operations on B and C: 

B1=max polling(B) 

C1= max polling(C) 

 

Step8: TRVs=concatenate (TRVs, A, B1, C1) 

 

Step9: return (TRVs) 

 

 In Algorithm 3.1 above, the input to this algorithm is the image and the 

output is the TRVs of this image. The first step in this algorithm is defining the 

input shape of the image to be compatible with the IM. After that, there are two 

cases to use IM: the first case is classifying images using original fully connected 

layers of the IM, this can be done by sending the image to the IM and IM will return 

the class of this image. The second case is using IM to generate TRVs of a given 

image, these values later will use to build and train new classifier of a given dataset.  
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 Also, there are three types of convolution layers:(1*1), (3*3) and (5*5). The 

convolution layers (3*3) and (5*5) enter to the max-polling to select the best values 

in the layer. Then linking (1*1) convolution layer with max-polling layer of (3*3) 

and (5*5) layers to generate the TRVs of the image.   

3.6 Generating TRVs 

The first step of creating image classifier is to generate TRVs of CIFAR-10 

dataset using IM v3 as shown in Figure 3.2 below: 

 
 

Figure 3.2: Generating TRVs of CIFAR-10 Dataset  Using IM. 
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3.7 Building Classifier Part 

The input to this part is TRVs of reduced image and the output is the result 

of classifying image, where this part consists of a set of fully connected layers and 

soft-max layer that are trained and tested using the TRVs. These layers are used for 

final classification of new images as shown in Algorithm 3.2. The output length of 

soft-max layer consists of ten values which is equal to the number of CIFAR-10 

categories and the sequence of the soft-max output value represent the sequence of 

the category in CIFAR-10 categories from zero to nine. For example: if the soft-

max value has a sequence zero then the class of the input image is Airplane and so 

on.  

 

Algorithm 3.2: Building Classification Part using TRVs as input to Fully 

connected layers. 

 
Input: TRVs of CIFAR-10 dataset 

Output: The accuracy of the built model 

 

Step1: define a new sequential model. 

Step2: define the size of the input layer (at the beginning using 

full TRVS of IM-2048 TRVS-) 

Step3: define the dimension of each layer say(32-128). 

Step4: create the layers using dimensions in step3 and each lower 

layer dimension should be less than or equal to the dimension 

of the layer above it. 

Step5: define the dimension of output layer (equal to 10 that 

represent the number of categories CIFAR-10 dataset. 

Step6: define the optimizer used for reducing loss. 

Step7: train the model and validate it using training and testing 

values of CIFAR-10 dataset. 

Step8: evaluate the accuracy of the model. 

 In Algorithm 3.2, the input is TRVs of CIFAR-10 dataset and the output is 

the classifier model with its accuracy. Where this algorithm is used to test the best 

configuration of neural in term of number of layers and parameters, beginning with 

four layers and ending with one layer. The maximum dimension of layer is 2048 

nodes and the minimum one is 16 nodes. The best architecture was obtained with 
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two layers, where the first layer contains 128 nodes and the second layer contains 

32 nodes as will justify in Chapter four.  

3.8 Particle Swarm Optimization (PSO) with Enhancement 

In this thesis, two cases are used. The first case is select the solution with 

minimum TRVs to train and test model. The second case is select the solution 

maximum accuracy. PSO represented as a function to reply the solution of best 

fitness, where the input to this function is a swarm. The swarm is a set of solutions 

each one has random values of zeros and ones, where the value of one represents 

the existence of the corresponding transfer value in the dataset or in the new image, 

while the value of zero refers to the transfer values that will be excluded from the 

dataset and new image as shown in Figure 3.3. The algorithm below describes the 

steps of PSO. 

 

Algorithm 3.3: Steps of PSO algorithm with crossover Technique. 
 

Input: TRVs template. 

 

Output: best template of TRVs.  

 

Step1: generate random templates. 

 

Step2: Update velocity and position for each solution  

 

Step3: evaluate fitness for each solution 

 

Step4: select best solution according to the value of fitness. 

 

Step5: make the best solution the leader of the swarm. 

 

Step6: set the value of iterations 

 

Step7: For I=1 to the number of iterations 

Execute Steps (8 to 11) for each solution (Particle) 

Step8: update velocity, position 

Step9: calculate fitness for the particle 



Chapter Three Proposed Images Classification System   
 

 

42  
 

 

 

Step10: if the fitness of particle is better than the fitness of 

the leader then the leader = particle 

 

Step11: Running crossover function between the bad half and good 

half after sorting solutions from worst to best to get new 

solutions 

 

Step12: return the leader (Best solution in the swarm) 

 

In Algorithm 3.3, the input to this algorithm is a set of solutions each one 

represents the template of reducing the dataset and the image. The number of 

solutions used are 40 solutions because increasing of solutions need more time for 

running, also the number of features in the data set is small so there is no need for 

using high number of solutions. Now each solution has length of 2048 values 

generated randomly using zeros and ones which represent the position of the 

solution. The velocity and position can be calculated as mentioned in section 2.4. 

 

Now there is a template coming from PSO which has length of 2048 values 

(0 or 1). This template will be used in two steps: the first step is to reduce the dataset 

according to modify function, where the input to this function is the template from 

PSO and original dataset (in case of building model) or (image in case of classify 

new image), the output is a new dataset which is less than original dataset or image 

data which is less than the original image data. Then building model that has input 

shape equal to the size on new dataset. The second used is when there is a new 

image to classify, it should reduce the values of image according to the same 

template, so the image can be classified using this model, as illustrated in Figure 

3.3 and Figure 3.4 
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Figure 3.3: Architecture of Reducing Dataset According to PSO Template.  

 

 
Figure 3.4: Reducing the Values of Image Using the Template of PSO. 

 

PSO algorithm can be enhanced using the crossover technique and applying 

it on the swarm at the ending of each iteration in Algorithm 3.3, Two steps were 

added in order to achieve this enhancement. The first step is sorting the solutions in 

an ascending order from worst to best according to the value of model accuracy and 

the second step is performing crossover operation on the swarm resulted from the 

step1 as shown in sections 3.8.1 and 3.8.2. 
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PSO algorithm can be enhanced using the crossover technique and applying 

it on the swarm at the ending of each iteration in Algorithm 3.3: Steps of PSO 

algorithm with crossover Technique. 

3.8.1 Sorting Solutions from Worst to Best 

The swarm resulted from each iteration in (Algorithm 3.3: Steps of PSO 

algorithm with crossover Technique), will be sent to another function called sorting 

function. This function will arrange the solutions inside the swarm in ascending 

order based on the value of accuracy for each solution, then the crossover operation 

will be applied on the sorted swarm.  

3.8.2 Performing Crossover Operation  

The crossover technique is a one of genetic algorithm techniques, where the 

goal of this technique is to obtain good solutions from bad solutions by overlapping 

bad solutions with good solutions. There are several types of crossover: single-point 

crossover, two-point crossover and etc. In this work, single-point cross over was 

used between the solutions as shown in Figure 3.5. 

 

Figure 3.5: Crossover Operation. 
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3.9 Approach of Creating Images Classifier and Classifying new 

Images 

The approach of creating image classifier is made up of two parts: Part one 

includes the steps of creating classification model, while part two is consists of the 

steps of classifying new image that enter to the system as shown in Figure 3.6. 

 

 
 

Figure 3.6: Approach of Creating Image Classifier and Classifying New 

Image. 

 

As shown in the Figure 3.6, the part one on the left side contains the 

following: downloading CIFAR-10 dataset and IM, where IM is used for extracting 

TRVs of the dataset. From the other hand the enhanced PSO is working to generate 

the template of TRVs reduction. Now the modify function is working for generating 

reduced dataset to build new model that has input shape equal to the size of the 

reduced dataset. The final step in part one is to build classification model by calling 

the build function with two parameters: the first one is reduced dataset and the 

second one is the template. 

After building the classification model, now it is possible to classify a new 

image by implementing the steps of part two as follows: there are two things 
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resulted from part one and will be necessary in part two, the first thing is the 

template and the second thing is the final classification model. To classify a new 

image, firstly the image is entering to part two, then this image is converting to 

TRVs using IM. The modify function is used to reduced TRVs using the template 

and original TRVs of image. The resulted TRVs (TRVs of image after reduction), 

are the input to the final classification model. The output of this model represents 

the predicted class of the image which belonging to CIFAR-10 categories. 

3.10 Summary 

After explaining all parts of classification architecture, now it is possible to 

summarize how the whole approach is working. 

The first step is to generate TRVs as shown in Figure 3.2 using Algorithm 

3.1. Then before building classification model it has two cases to manipulate TRVs: 

the first case is using all TRVs (2048) to build classification model, this can be done 

by making all values in the template equal to one. The second case is using the 

template of enhanced PSO algorithm see Algorithm 3.3. The TRVs and the 

template are sent to modify function to generate new dataset from original dataset. 

Now the model can be built after preparing the data using Algorithm 3.3. The built 

model is now able to classify new images.  

For classifying a new image, the image at first is converted to array, then 

reducing the data of this array using the same template used in building the 

classification model by sending image array and template to modify function. The 

output of modify function is the image after reducing its TRVs according to the 

template. Finally use the model to predict the class of this image.  

 

 

 

 



  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Four 

Results and Discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Four Results and Discussion 

 
 

 

 

47 

 

4 Chapter Four: Results and Discussion 

4.1 Introduction 

Image classification is one of the core problems in computer vision field with 

a large variety of practical applications. Examples include object recognition for 

robotic manipulation, pedestrian or obstacle detection, autonomous car driving, 

personal identification systems in airports, marketing and aircraft navigation 

systems among others. In this chapter, the proposed system is tested in order to 

obtain and discuss the results in order to indicate the effectiveness of this 

system. There are four parts of experiments were done using CIFAR-10 dataset and 

getting the results:  the first part is the results of testing images classifier 

configuration, the second part represents the testing results of two layers (selected 

from the first part) on all possible number of nodes and selecting the best 

configuration, the third part represents the results of three experiments: the first one 

is testing the accuracy of image classifier using all TRVs to build the classifier, the 

second one is results of using minimum TRVs resulted from PSO and checking the 

accuracy of the image classifier and the third one is results of using maximum 

accuracy resulted from model built using TRVs coming from enhanced PSO. The 

final part of experiments represents using all models built in three experiments 

above to classify real images from CIFAR-10 dataset, images from google that has 

different categories other than that of CIFAR-10 dataset. 

4.2 Configuration of Classifier Part Experiments 

The configuration of fully connected layers in term of number of layers and 

nodes, was tested on several models beginning with four layers and ending with 

two layers. There is no using to one layer because one layer is not suitable for large 

datasets that have a big number of features. The maximum dimension of each layer 

is 2048 nodes and the minimum one is 16 nodes. In Table 4.1, each row in these 

tables represents the complete model configurations and results obtained from this 

model, while the columns of these tables represent the following: the first column 

is model no., which represent the sequence of the model in the experiment, the 

second column represents the number of fully connected layers in the model, which 
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is between one to four layers, while the third column represents the number of nodes 

in each layer and is between (16-2048). The fourth column contains the loss value 

of training, where this value equal to the difference between true label and predicted 

label of the image inside training, which should be minimize as possible.  

The five column represents the accuracy of the model and it is equal to the 

number of true predicted values divide on the number of all images entering to the 

model while training multiply by 100. The last column represents the time 

consumed for training using the following parameters: batch size equal to 32, which 

represents the number of images that send to the model in each time.  

 

Table 4.1: Settings and Results of Network Consists of Two - Four Layers. 

 

Model 

No. 
No. of Layers No. of Nodes Loss Accuracy 

Time 

(Second) 

1.  2 2048-2048 0.3551 0.8992 326 

2.  2 1024-1024 0.3512 0.8989 174 

3.  2 512-512 0.3346 0.8965 119 

4.  2 256-256 0.3488 0.892 62 

5.  2 128-128 0.345 0.8934 52 

6.  2 64-64 0.3541 0.8949 52 

7.  2 32-32 0.3411 0.8917 50 

8.  2 16-16 0.3747 0.8823 51 

9.  2 2048-1024 0.3468 0.9026 288 

10.  2 1024-512 0.3563 0.8957 189 

11.  2 512-256 0.3478 0.894 114 

12.  2 256-128 0.3461 0.894 62 

13.  2 128-64 0.3671 0.8928 52 

14.  2 64-32 0.3563 0.8927 52 

15.  2 32-16 0.3478 0.8868 50 

16.  3 2048-2048-2048 0.3403 0.8945 384 

17.  3 1024-1024-1024 0.366 0.8953 164 

18.  3 512-512-512 0.3629 0.8958 81 

19.  3 256-256-256 0.3446 0.8916 61 

20.  3 128-128-128 0.3395 0.8924 51 

21.  3 64-64-64 0.3382 0.8886 51 

22.  3 32-32-32 0.3438 0.8848 51 

23.  3 16-16-16 0.3636 0.8875 51 
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24.  3 2048-1024-512 0.3591 0.8963 299 

25.  3 1024-512-256 0.3624 0.8937 194 

26.  3 512-256-128 0.3495 0.8924 128 

27.  3 256-128-64 0.3385 0.8943 79 

28.  3 128-64-32 0.3486 0.8946 55 

29.  3 64-32-16 0.3447 0.8929 57 

30.  4 
2048-2048-2048-

2048 
0.3488 0.8897 554 

31.  4 
1024-1024-1024-

1024 
0.357 0.8897 240 

32.  4 512-512-512-512 0.3925 0.889 178 

33.  4 256-256-256-256 0.3794 0.887 91 

34.  4 128-128-128-128 0.3551 0.8919 69 

35.  4 64-64-64-64 0.3249 0.9 65 

36.  4 32-32-32-32 0.3597 0.8818 64 

37.  4 16-16-16-16 0.3657 0.885 78 

38.  4 2048-1024-512-256 0.3447 0.8929 321 

39.  4 1024-512-256-128 0.3413 0.896 216 

40.  4 512-256-128-64 0.3348 0.8948 158 

41.  4 256-128-64-32 0.3658 0.892 97 

42.  4 128-64-32-16 0.3418 0.8955 70 

 

In the Table 4.1, the selected architecture is the architecture that has two 

layers for several reasons:  the best accuracy was in the two layers. Also, the time 

consumed to build neural with a smaller number of layers and smaller number of 

nodes is less than it to build neural with more layers and more nodes in each layer. 

Another reason is the complexity of the models is less with a smaller number of 

layers and nodes. 

 
 

Figure 4.1: Relationship between Accuracy and Loss in Images Classifiers 
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4.3 Two Layers Experiments 

After selecting the two layers setting from experiments illustrated in Section 

4.2, this setting was further tested on all possible number of nodes using CIFAR10 

dataset to train and test the models as shown below: 

In the Table 4.2, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 128 and 128 nodes for the first and the 

second layer respectively. The second column contains the number of layers which 

are two layers. The third column represents the sequence of each training round. 

The fourth, fifth and sixth columns represents the loss, accuracy and time of each 

model respectively (as mentioned in section 4.2). While the seventh, eighth and 

ninth columns represents the average of loss, accuracy and time for ten training 

rounds respectively, where the loss average is equal to 0.33787, the accuracy 

average is equal to 0.89559 and the time average is equal to 51.1 seconds. The last 

two columns represent the worst and best accuracy for ten training rounds in which 

the worst accuracy is equal to 0.8922 and the best accuracy is equal to 0.9003. 

 

Table 4.2: Two Layers Model (128-128). 

 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

128-128 2 

Train 1 0.3427 0.8927 51 

0.33787 0.89559 51.1 Train 2 0.3408 0.8972 51 

Train 3 0.3572 0.8927 51 

Train 4 0.3262 0.8999 50 
Worst 

Accuracy 

Best  

Accuracy 
Train 5 0.329 0.8932 51 

Train 6 0.3248 0.9003 53 

Train 7 0.3514 0.8942 51 

0.8922 0.9003 
Train 8 0.326 0.897 51 

Train 9 0.3393 0.8922 51 

Train 10 0.3413 0.8965 51 

 

In the Table 4.2, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. 
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In the Table 4.3, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 64 and 64 nodes for the first and the second 

layer respectively. The second column contains the number of layers which are two 

layers. The third column represents the sequence of each training round. The fourth, 

fifth and sixth columns represents the loss, accuracy and time of each model 

respectively (as mentioned in section 4.2). While the seventh, eighth and ninth 

columns represents the average of loss, accuracy and time for ten training rounds 

respectively, where the loss average is equal to 0.34016, the accuracy average is 

equal to 0.8941 and the time average is equal to 51.4 seconds. The last two columns 

represent the worst and best accuracy for ten training rounds in which the worst 

accuracy is equal to 0.8881 and the best accuracy is equal to 0.8996. 

 

Table 4.3: Two Layers Model (64-64). 

 

 

In the Table 4.3, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. 

In the Table 4.4, the rows in this table shown the ten training rounds results 

of the model. The columns of this table are as follow: the first column represents 

the number of nodes in each layer which are 32 and 32 nodes for the first and the 

second layer respectively. The second column contains the number of layers which 

are two layers. The third column represents the sequence of each training round. 

The fourth, fifth and sixth columns represents the loss, accuracy and time of each 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

64-64 2 

Train 1 0.3428 0.8915 44 

0.34016 0.8941 51.4 Train 2 0.3397 0.8909 43 

Train 3 0.3539 0.8881 52 

Train 4 0.3395 0.8954 51 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3395 0.8987 51 

Train 6 0.3391 0.8953 52 

Train 7 0.3337 0.8996 57 

0.8881 0.8996 
Train 8 0.3521 0.891 53 

Train 9 0.3267 0.8984 55 

Train 10 0.3346 0.8921 56 
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model respectively (as mentioned in section 4.2). While the seventh, eighth and 

ninth columns represents the average of loss, accuracy and time for ten training 

rounds respectively, where the loss average is equal to 0.34189, the accuracy 

average is equal to 0.89035 and the time average is equal to 50.4 seconds. The last 

two columns represent the worst and best accuracy for ten training rounds in which 

the worst accuracy is equal to 0.885 and the best accuracy is equal to 0.895. 

 

 

Table 4.4: Two Layers Model (32-32). 

 

In the Table 4.4, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. 

 

In the Table 4.5, the rows in this table shows ten training rounds of the 

model. The columns of this table are as follow: the first column shows the number 

of nodes in each layer which are 16 and 16 nodes for the first and the second layer 

respectively. The second column contains the number of layers which are two 

layers. The third column represents the sequence of each training round. The fourth, 

fifth and sixth columns represents the loss, accuracy and time of each model 

respectively (as mentioned in section 4.2). While the seventh, eighth and ninth 

columns represents the average of loss, accuracy and time for ten training rounds 

respectively, where the loss average is equal to 0.39474, the accuracy average is 

equal to 0.87457 and the time average is equal to 80.8 seconds. The last two 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

32-32 2 

Train 1 0.3359 0.8878 43 

0.34189 0.89035 50.4 Train 2 0.35 0.8894 52 

Train 3 0.3283 0.8937 51 

Train 4 0.3505 0.885 49 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3424 0.8905 50 

Train 6 0.3526 0.8871 50 

Train 7 0.3383 0.893 51 

0.885 0.895 
Train 8 0.3282 0.8927 52 

Train 9 0.3348 0.895 55 

Train 10 0.3579 0.8893 51 
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columns represent the worst and best accuracy for ten training rounds in which the 

worst accuracy is equal to 0.8565 and the best accuracy is equal to 0.8871. 

Table 4.5: Two Layers Model (16-16). 

 

 

In Table 4.5, it can be noticed that the accuracy is decreased comparing to 

the results in tables 4.2 – 4.4 and tables 4.6 – 4.11 of this experiments. The reason 

is that the size of the layers cannot cover the important features in the images, or 

the features are expanded on the size more than 16 nodes.  

In the Table 4.6, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 128 and 64 nodes for the first and the 

second layer respectively. The second column contains the number of layers which 

are two layers. The third column represents the sequence of each training round. 

The fourth, fifth and sixth columns represents the loss, accuracy and time of each 

model respectively (as mentioned in section 4.2). While the seventh, eighth and 

ninth columns represents the average of loss, accuracy and time for ten training 

rounds respectively, where the loss average is equal to 0.33716, the accuracy 

average is equal to 0.89597 and the time average is equal to 51.1 seconds. The last 

two columns represent the worst and best accuracy for ten training rounds in which 

the worst accuracy is equal to 0.8923 and the best accuracy is equal to 0.9004. 

 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

16-16 2 

Train 1 0.3565 0.8871 51 

0.39474 0.87457 80.8 Train 2 0.378 0.8813 131 

Train 3 0.3563 0.8829 129 

Train 4 0.3881 0.8771 56 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3602 0.8796 51 

Train 6 0.3892 0.8799 51 

Train 7 0.4748 0.8571 61 

0.8565 0.8871 
Train 8 0.3819 0.8746 51 

Train 9 0.4529 0.8565 55 

Train 10 0.4095 0.8696 172 
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Table 4.6: Two Layers Model (128-64). 

 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

128-64 2 

Train 1 0.3275 0.8943 53 

0.33716 0.89597 51.1 Train 2 0.3377 0.8939 50 

Train 3 0.3411 0.8976 51 

Train 4 0.3373 0.8992 51 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3595 0.8923 51 

Train 6 0.3451 0.8934 51 

Train 7 0.3385 0.8969 51 

0.8923 0.9004 
Train 8 0.3404 0.8981 51 

Train 9 0.3234 0.8936 51 

Train 10 0.3211 0.9004 51 

 

In the Table 4.6, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. 

In the table 4.7, the rows in this table represents ten training rounds of the model. 

The columns of this table are as follow: the first column represents the number of 

nodes in each layer which are 128 and 32 nodes for the first and the second layer 

respectively. The second column contains the number of layers which are two 

layers. The third column represents the sequence of each training round. The fourth, 

fifth and sixth columns represents the loss, accuracy and time of each model 

respectively (as mentioned in section 4.2). While the seventh, eighth and ninth 

columns represents the average of loss, accuracy and time for ten training rounds 

respectively, where the loss average is equal to 0.33473, the accuracy average is 

equal to 0.89586 and the time average is equal to 60.1 seconds. The last two 

columns represent the worst and best accuracy for ten training rounds in which the 

worst accuracy is equal to 0.8899 and the best accuracy is equal to 0.9012. 
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Table 4.7: Two Layers Model (128-32). 

 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

128-32 2 

Train 1 0.3464 0.891 52 

0.33473 0.89586 60.1 Train 2 0.3411 0.8938 64 

Train 3 0.3378 0.8942 58 

Train 4 0.3554 0.8899 55 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3189 0.8984 56 

Train 6 0.3288 0.8961 61 

Train 7 0.3344 0.8978 52 

0.8899 0.9012 
Train 8 0.3169 0.9012 63 

Train 9 0.3344 0.8996 68 

Train 10 0.3332 0.8966 72 

 

In the table 4.7, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. 

In the Table 4.8, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 128 and 16 nodes for the first and the 

second layer respectively. The second column contains the number of layers which 

are two layers. The third column represents the sequence of each training round. 

The fourth, fifth and sixth columns represents the loss, accuracy and time of each 

model respectively (as mentioned in section 4.2). While the seventh, eighth and 

ninth columns represents the average of loss, accuracy and time for ten training 

rounds respectively, where the loss average is equal to 0.33007, the accuracy 

average is equal to 0.89626 and the time average is equal to 53.9 seconds. The last 

two columns represent the worst and best accuracy for ten training rounds in which 

the worst accuracy is equal to 0.8916 and the best accuracy is equal to 0.9004. 
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Table 4.8: Two Layers Model (128-16). 

 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

128-16 2 

Train 1 0.3286 0.8967 52 

0.33007 0.89626 53.9 Train 2 0.3549 0.8916 50 

Train 3 0.3269 0.8986 53 

Train 4 0.3308 0.8956 56 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3231 0.8957 58 

Train 6 0.3189 0.8985 57 

Train 7 0.3171 0.9004 52 

0.8916 0.9004 
Train 8 0.3402 0.8949 56 

Train 9 0.3324 0.8941 53 

Train 10 0.3278 0.8965 52 

 

 

In the Table 4.8, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. 

In the Table 4.9, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 64 and 32 nodes for the first and the second 

layer respectively. The second column contains the number of layers which are two 

layers. The third column represents the sequence of each training round. The fourth, 

fifth and sixth columns represents the loss, accuracy and time of each model 

respectively (as mentioned in section 4.2). While the seventh, eighth and ninth 

columns represents the average of loss, accuracy and time for ten training rounds 

respectively, where the loss average is equal to 0.33503, the accuracy average is 

equal to 0.89252 and the time average is equal to 61.1 seconds. The last two 

columns represent the worst and best accuracy for ten training rounds in which the 

worst accuracy is equal to 0.8844 and the best accuracy is equal to 0.8971. 
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Table 4.9: Two Layers Model (64-32). 

 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

64-32 2 

Train 1 0.3383 0.8934 60 

0.33503 0.89252 61.1 Train 2 0.3292 0.895 51 

Train 3 0.3231 0.8907 59 

Train 4 0.3541 0.8877 53 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3327 0.8955 62 

Train 6 0.3342 0.8917 67 

Train 7 0.3323 0.893 61 

0.8844 0.8971 
Train 8 0.3184 0.8967 67 

Train 9 0.3247 0.8971 66 

Train 10 0.3633 0.8844 65 

 

In the Table 4.9, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. 

In the Table 4.10, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 64 and 16 nodes for the first and the second 

layer respectively. The second column contains the number of layers which are two 

layers. The third column represents the sequence of each training round. The fourth, 

fifth and sixth columns represents the loss, accuracy and time of each model 

respectively (as mentioned in section 4.2). While the seventh, eighth and ninth 

columns represents the average of loss, accuracy and time for ten training rounds 

respectively, where the loss average is equal to 0.33056, the accuracy average is 

equal to 0.89412 and the time average is equal to 67 seconds. The last two columns 

represent the worst and best accuracy for ten training rounds in which the worst 

accuracy is equal to 0.8913 and the best accuracy is equal to 0.8971. 
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Table 4.10: Two Layers Model (64-16). 

 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

64-16 2 

Train 1 0.3191 0.8927 64 

0.33056 0.89412 67 Train 2 0.3288 0.8971 69 

Train 3 0.3309 0.8948 69 

Train 4 0.3325 0.8967 65 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3379 0.8913 76 

Train 6 0.3497 0.8918 71 

Train 7 0.3197 0.8939 69 

0.8913 0.8971 
Train 8 0.3311 0.8939 59 

Train 9 0.3249 0.8944 57 

Train 10 0.331 0.8946 71 

 

In the Table 4.10, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. 

In the table 4.11, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 32 and 16 nodes for the first and the second 

layer respectively. The second column contains the number of layers which are two 

layers. The third column represents the sequence of each training round. The fourth, 

fifth and sixth columns represents the loss, accuracy and time of each model 

respectively (as mentioned in section 4.2). While the seventh, eighth and ninth 

columns represents the average of loss, accuracy and time for ten training rounds 

respectively, where the loss average is equal to 0.34298, the accuracy average is 

equal to 0.88982 and the time average is equal to 69.6 seconds. The last two 

columns represent the worst and best accuracy for ten training rounds in which the 

worst accuracy is equal to 0.8832 and the best accuracy is equal to 0.8941. 

 

 

 

 

 

 

 

 

 



Chapter Four Results and Discussion 

 
 

 

 

59 

 

Table 4.11: Two Layers Model (32-16). 

 

No. of 

Nodes 

No. of 

Layers 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

32-16 2 

Train 1 0.3618 0.8832 81 

0.34298 0.88982 69.6 Train 2 0.3356 0.8913 66 

Train 3 0.3456 0.8908 67 

Train 4 0.3478 0.8896 96 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3499 0.89 84 

Train 6 0.3464 0.8877 72 

Train 7 0.3455 0.8907 69 

0.8832 0.8941 
Train 8 0.3322 0.8924 53 

Train 9 0.3286 0.8941 54 

Train 10 0.3364 0.8884 54 

 

It can be seen that the values of accuracy and time are convergent and this indicates 

the presence of stability in the network. 

In tables 4.2 - 4.11, it can be noticed that when the sizes of layers are less than 

32 the average of the accuracy is decreased because this size cannot cover all 

possible features. On the other hand, when the TRVs are reduced, the complexity 

of the models will be less in term of total parameters and time. 

The results showed that the best configurations in two layers was as follows: 

the first layer consists of 128 nodes and the second layer is made up of 32 nodes, 

because the model has highest accuracy using these configurations. So, there is no 

need to select the layers with high number of nodes because, selecting layers with 

a smaller number of nodes reduces the complexity of models in term number of 

parameters. 

4.4 Applying PSO with two cases on TRVs Experiments 

After testing all configuration of classifier part (Fully Connected Layers), it 

has been found that the best configuration is the two fully connected layers, where 

the first layer has 128 nodes and the second layer has 32 nodes. This configuration 

has been selected to build the proposed classifiers with less TRVs using PSO in two 

cases: The first case is PSO with minimum features and the second case is enhanced 
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PSO with maximum accuracy. Indeed, these cases have been compared with the 

model of using full TRVs. 

 

In the Table 4.12, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 128 and 32 nodes for the first and the 

second layer respectively. The second column contains the number of layers which 

are two layers. The third column represents the number of TRVs used to build and 

train the images classifier, in this case using full TRVs (2048 values).  

The fourth column is the total parameters used to build the model, in this 

case its equal to 266730 parameters. The fifth, sixth, seventh and eighth columns 

represents the sequence, loss, accuracy and time of the model respectively for each 

training round.  

While the ninth, tenth and eleventh columns represents the average of loss, 

average of accuracy and average of time for ten training rounds respectively, where 

the loss average is equal to 0.33473, the accuracy average is equal to 0.89586 and the 

time average is equal to 60.1 seconds. The last two columns represent the worst and 

best accuracy for ten training rounds in which the worst accuracy is equal to 0.8899 

and the best accuracy is equal to 0.9012. 

 

Table 4.12: Two Layers Model (128-32) using Full TRVs. 

 

No. of 

Nodes 

No. of 

Layers 

No. 

of 

TRVs 

Total 

Parameters 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

128-

32 
2 2048 266730 

Train 1 0.3464 0.891 52 

0.33473 0.89586 60.1 Train 2 0.3411 0.8938 64 

Train 3 0.3378 0.8942 58 

Train 4 0.3554 0.8899 55 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3189 0.8984 56 

Train 6 0.3288 0.8961 61 

Train 7 0.3344 0.8978 52 

0.8899 0.9012 
Train 8 0.3169 0.9012 63 

Train 9 0.3344 0.8996 68 

Train 10 0.3332 0.8966 72 
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In the Table 4.12, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. 

In the Table 4.13, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 128 and 32 nodes for the first and the 

second layer respectively. The second column contains the number of layers which 

are two layers. The third column represents the number of TRVs used to build and 

train the images classifier, in this case using reduced TRVs according to the 

template coming from PSO with minimum TRVs. in this case (1030 values).  

The fourth column is the total parameters used to build the model, in this 

case its equal to 136426 parameters. The fifth, sixth, seventh and eighth columns 

represents the sequence, loss, accuracy and time of the model respectively for each 

training round.  

While the ninth, tenth and eleventh columns represents the average of loss, 

average of accuracy and average of time for ten training rounds respectively, where 

the loss average is equal to 0.33969, the accuracy average is equal to 0.89234 and the 

time average is equal to 50.7 seconds. The last two columns represent the worst and 

best accuracy for ten training rounds in which the worst accuracy is equal to 0.8872 

and the best accuracy is equal to 0.8957. 

 

Table 4.13: Two Layers Model (128-32) using PSO Template with Min TRVs. 

 

No. of 

Nodes 

No. of 

Layers 

No. 

of 

TRVs 

Total 

Parameters  

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

128-

32 
2 1030 136426 

Train 1 0.3462 0.8918 51 

0.33969 0.89234 50.7 Train 2 0.3568 0.8872 54 

Train 3 0.329 0.8942 50 

Train 4 0.3421 0.8946 56 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3422 0.8914 53 

Train 6 0.3399 0.8911 48 

Train 7 0.3302 0.8957 46 

0.8872 0.8957 
Train 8 0.3392 0.8912 49 

Train 9 0.3432 0.8912 50 

Train 10 0.3281 0.895 50 

 

In the Table 4.13, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. Also, the total 
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parameters are decreased when the number of TRVs decreased. The reason is that 

when the TRVs decreased the neural need a smaller number of nodes which reduce 

the complexity. 

 

In the Table 4.14, the rows in this table represents ten training rounds of the 

model. The columns of this table are as follow: the first column represents the 

number of nodes in each layer which are 128 and 32 nodes for the first and the 

second layer respectively. The second column contains the number of layers which 

are two layers. The third column represents the number of TRVs used to build and 

train the images classifier, in this case using reduced TRVs according to the 

template coming from enhanced PSO with maximum accuracy, in this case the 

TRVs is equal to 1383 values.  

The fourth column is the total parameters used to build the model, in this 

case its equal to 181,610 parameters. The fifth, sixth, seventh and eighth columns 

represents the sequence, loss, accuracy and time of the model respectively for each 

training round.  

While the ninth, tenth and eleventh columns represents the average of loss, 

average of accuracy and average of time for ten training rounds respectively, where 

the loss average is equal to 0.33692, the accuracy average is equal to 0.89328 and the 

time average is equal to 55.2 seconds. The last two columns represent the worst and 

best accuracy for ten training rounds in which the worst accuracy is equal to 0.8864 

and the best accuracy is equal to 0.8975. 

Table 4.14: Two Layers Model (128-32) Using Enhanced PSO Template with 

Max Accuracy. 

 

No. of 

Nodes 

No. of 

Layers 

No. 

of 

TRVs 

Total 

Parameters 

Training 

No. 
Loss Accuracy Time 

Average 

Loss 

Average 

Accuracy 

Average 

Time 

(Second) 

128-

32 
2 1383 181,610 

Train 1 0.3452 0.8907 57 

0.33692 0.89328 55.2 Train 2 0.3322 0.896 53 

Train 3 0.3368 0.8915 51 

Train 4 0.3337 0.894 55 
Worst 

Accuracy 

Best 

Accuracy 
Train 5 0.3333 0.896 56 

Train 6 0.3307 0.8975 51 

Train 7 0.3299 0.8942 59 

0.8864 0.8975 
Train 8 0.333 0.8962 55 

Train 9 0.344 0.8903 56 

Train 10 0.3504 0.8864 59 
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In the Table 4.14, It can be seen that the values of accuracy and time are 

convergent and this indicates the presence of stability in the network. Also, the total 

parameters are decreased when the number of TRVs decreased. The reason is that 

when the TRVs decreased the neural need a smaller number of nodes which reduce 

the complexity. 

 

The results in tables 4.12 - 4.14 showed that when reducing TRVs to build 

image classifier and classify new image the accuracy of the models is still high 

because the number of features used in the dataset is small comparing to number of 

TRVs, so reducing of TRVs will not affect the accuracy of models.  

Also, the benefit of reducing TRVs is to minimize the complexity of 

processing in term of number of parameters used, number of TRVs used and time 

of training and classifying, where in the Table 4.12 the accuracy average is 0.89586 

which is very close to the accuracy average after reducing TRVs as shown in Table 

4.13 and Table 4.14, where in Table 4.13 the accuracy average was 0.89234 and in 

Table 4.14 the accuracy average was 0.89328. Also, the number of parameters 

used, time average and TRVs used are less in Table 4.13 and Table 4.14 comparing 

with Table 4.12, so the performance of the models after reducing TRVs is higher 

than it using full TRVs in term time of training. Finally, the Table 4.15 shows a 

comparison of the proposed approach with two approaches (SDPH, SDPH+) using 

MAP. 

Table 4.15: Comparing the Proposed Approach with SDPH and SDPH+ 

Approaches Using MAP. 

 

 Approach Accuracy using MAP 

1 SDPH [4] 0.8767 

2 The Proposed approach 0.89328 

3 SDPH+ [5] 0.9116 
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Figure 4.2: Comparing the Proposed Approach with SDPH and SDPH+ 

Approaches Using MAP. 

4.5 Classifying Real Data Experiments 

After completing all tests of the models, these models have been used to classify 

three types of images: 

1- Selecting 100 images from the beginning of CIFAR-10 dataset itself. 

2- Selecting 100 images downloaded from google that has same categories of 

the dataset. 

3- Selecting 100 images downloaded from google that has different categories 

other than that of CIFAR-10. 

 

The results of classifying images from CIFAR-10 dataset and Google are as 

shown in Table 4.16, where the rows of this table represent the three types of the 

tested models: model of using full TRVs, model of using reduced TRVs resulted 

from PSO with minimum TRVs and model of using reduced TRVs resulted from 

enhanced PSO with maximum accuracy, while the columns represent the following: 

two cases true and false predictions of 100 images selected from the beginning of 

CIFAR-10 dataset and 100 images downloaded from google.    
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Table 4.16: Classifying Real Images from CIFAR-10 Dataset and Google 

 

Model Type 
Images from CIFAR-10 

Dataset 
Images from Google 

  
Correct 

Predication 

Incorrect 

Predication 

Correct 

Predication 

Incorrect 

Predication 

All TRVs used 93 7 98 2 

PSO with Minimum TRVs  92 8 98 2 

PSO with Maximum 

Accuracy 
92 8 97 3 

 

  

Table 4.16, the ratio of true predictions of CFAR-10 images is less than it 

when classifying images from google because the resolution of CIFAR-10 images 

is very low comparing with google images that has high resolution. From the other 

hand, after reducing TRVs the true predictions still high because the feature of 

CIFAR-10 dataset is very little comparing to the number of TRVs. 

The third case of this experiment is classifying 100 images downloaded 

from google that has different categories other than that of CIFAR-10. The model 

in some cases gives category from CIFAR-10 categories that is near to the type of 

the given image as shown Figure 4.3. 

 

 

Figure 4.3: Sample Images with Succeed Predicted in Classification Model 

 

In Figure 4.3, the model predicted that the image of lion as dog because it 

has the body that is nearest to dog in the original categories. Also, the fox image is 

predicted as cat because of the size and shape of fox is similar to cat.  
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From the other hand, the model sometimes fails to predict the image, so it 

gives random prediction to the image based on the maximum value of the neural 

network soft-max layer as shown in Figure 4.4. 

 

Figure 4.4: Sample Images with Fail Predicted in Classification Model 

 

In figure Figure 4.4, the model fails to predict these images, because, there 

is no images that are close to these images in the dataset as shown in the prediction 

ratio, where it is too small, so there is no image near the given images. 
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5 Chapter Five: Conclusions and Future Works 

5.1 Introduction 

After designing image classifier that has high performance and making 

experiments for testing the results, there are some conclusions and future works that 

are mentioned in this chapter. 

5.2 Conclusions 

The most important conclusions of this thesis are: 

1- Pre-trained models have high power in extracting TRVs because these 

models trained using big datasets and powerful computers and when 

extracting the data of dataset using normal CNN the accuracy is too low 

comparing to TRVs extracting using IM. 

2- Reducing TRVs of dataset that has small number of features keeps the 

models of classifying with high accuracy as shown in Table 4.13 and Table 

4.14 . 

3- Using small number of TRVs makes classifier model has high performance 

in term of accuracy, number of used parameters and consumed time for 

training models. 

4- Reducing TRVs before building the models increases the performance of 

building models and classifying new images because, it reduces the number 

of parameters used and time as shown in Table 4.12, Table 4.13 and Table 

4.14. 

5-  Increasing number of fully connected layers and number of nodes in each 

layer lead to increasing the delay, without too much affecting the accuracy, 

in the models in term of training and classifying as explained in section 4.4 

and section 4.5. 
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5.3 Future Works 

There is a list of future works that can be applied in several directions. some 

of them are: 

1- The developed system can be useful in application in class registration 

systems as well as being used as a biometric password. There is also the 

possibility to investigate different implementations of the system on a 

webserver. This would potentially allow users to use their face to verify their 

identity from any device and location in the world relating to the Internet of 

Things (IoT) as most devices are in one way or another connected online or 

moving towards.  

2- There is still room to improve the accuracy results through implementation 

with the Inception-v4 model, increased epochs size and testing on larger 

datasets providing you have the time and resources.  

3- Another possibility would be combining CNN with Long-Short Term 

Memory (LSTM). This may be multifaceted, but in theory should help 

achieving better results and efficiency. 

4- Adding preprocessing step that remove the background of the picture and 

extracting the features of object only that make the accuracy of classifying 

better. 
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 الخلاصة

 

التعرف على   لغرضأحد الموضوعات المھمة في الحیاة الحدیثة. أصبح تحلیل محتویات الصورة  

عملیة استرجاع . برمجینالصور بطریقة فعالة ، ظھرت عدة تقنیات وتم تحسینھا بشكل دوري من قبل الم

 .واحدة من المشاكل الرئیسیة التي تواجه مجتمع الكمبیوتر داخل ثورة التكنولوجیا تصبحالصورا 

قلیلة الماضیة بمثابة العمود الفقري في السنوات ال یعتبر التعلم العمیق نظام استرجاع الصورلزیادة فعالیة 

 .عصبیةال شبكة اللتحلیل الصور باستخدام 

بدءًا من أربع طبقات یركز ھذا العمل على تصمیم نظام استرجاع للصور باستخدام عدة تجارب   

تتكون الطبقة   النظام المتكون من طبقتین حیث باستخدامتم الحصول على أفضل أداء  ، وقدبطبقتین انتھاءً و

یتیح ذلك حیث . 0.9012عقدة ، حیث وصلت الدقة إلى  32 تتكون منالطبقة الثانیة وعقدة  128ولى من الأ

 .تصمیم مصنفّات صور عالیة الأداء یمكن تطبیقھا على العدید من التطبیقات مثل أنظمة قیادة السیارة المستقلة

و مجموعة من یعتمد نظام تصنیف الصور على جزأین رئیسین وھما: الشبكة العصبیة  

 (.CIFAR-10 datasetالصورمخزنة بطریقة منتظمة )

من أجل الحصول على   القیم المستخلصة من مجموعة الصور تركیز ھذه الأطروحة على تقلیل 

حیث تم استخدام احدى خوارزمیات الذكاء الاصطناعي من اجل القیام عالیة الأداء لتصنیف الصور.  أنظمة

 .بعملیة التقلیل

 أداء الأنظمة المقترحة ، حیث تم استخدام ھذه الأنظمة لتصنیف صور من قوة أظھرت التجارب  

( ( CIFAR-10كذلك استخدام صور محملة من الانترنتو.  
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وتكنولوجيا المعلوماتكلية علوم الحاسوب   

 قسم علوم الحاسبات

 

 ملتویة تطبیق الشبكة العصبیة ال

المعدلة على أساس طریقة تحسین 

 سرب الجسیمات لاسترجاع الصور
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