
  

Republic of Iraq  

Ministry of Higher Education and Scientific Research  

University of Anbar     

College of Computer Science and Information Technology 

Department of Computer Science 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dr. Ali Makki Sagheer  Dr. Omar Abdulrahman Dawood      

1441 A.H.                                                                        2019 A.D. 
 

 

 

 

 

 

Secret Sharing Key 

Management Based on Magic 

Cube 
A thesis 

Submitted to the Department of Computer Science College of 
Computer Science and Information Technology-University of 

Anbar in partial fulfillment of the Requirements for the Degree 
of Master in Computer Science 

By 

Rafid Sayhood AbdulAziz 

 

Supervised by 
 

 

 



II 
 

 

 

 ف   سورة يوس                                                                         

   ( 76) من الآيه                                                                          

 

 



III 
 

 

Supervisor Certificate  

We certify that the preparation of this thesis entitled “Secret Sharing Key 

Management Based on Magic Cube” by “Rafid Sayhood Abdul-Aziz” 

was written under our supervision at the Department of Computer Science 

– College of Computer Science and Information Technology – University 

of Anbar, as a partial fulfillment of the requirements for the degree of 

master in Computer Science. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signature: 

Name: Dr. Omar Abdulrahman Dawood 

Title: Supervisor 

Date:         /       / 2019 

Signature: 

Name: Prof. Dr. Ali Makki Sagheer 

Title: Supervisor 

Date:         /       / 2019 



IV 
 

Linguist Certificate 

 

I certify that, I read this thesis entitled (Secret Sharing Key 

Management Based on Magic Cube) and I found it linguistically 

adequate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Signature: 

Name: Dr. Omar Munthir Al-Okashi 

(Linguist Authority) 

Date:         /       / 2019 



V 
 

Certification of the Examination Committee 

 
We the examination committee certify that we have read this thesis entitled “Secret 

Sharing Key Management Based on Magic Cube” and have examined the student 

“Rafid Sayhood Abdul-Aziz”, in its contents and what is related to it, and that in our 

opinion it is adequate to fulfill the requirement for the degree of Master of Science in 

computer science. 

 

 

 

 

 

 

 

 

 

 

 

Approved by the Dean of the College of Computer Science and 

Information Technology, University of Anbar. 

 

 

 

 

Signature: 

Name: Dr. Omar Abdulrahman Dawood 

Title: Supervisor 

Date:         /       / 2019 

Signature: 

Name: Assist. Prof. Dr. Ali Jbaeer Dawood 

Date:         /       / 2019 

Signature: 

Name: Dr. Foad Salem Mubarek 

Date:         /       / 2019 

Signature: 

Name: Prof. Dr. Ali Makki Sagheer 

Title: Supervisor 

Date:         /       / 2019 

Signature: 

Name: Prof. Dr. Ziyad Tariq Mustafa Al-Ta’i 

Date:         /       / 2019 

(Chairman) 

(Member) 

(Member) 

Signature: 

Name: Prof. Dr. Belal Al-Khateeb 

Title: Dean of the College 

Date:         /       / 2019 



VI 
 

Dedication 
 

 

 

I would like to dedicate this work 

 

To 

 

My generous Prophet … 

 

My dear parents and brothers … 

 

My beloved wife and my children … 

 

All my friends … 
 

Rafid Alhadithy 
 

 

 

 

 
 
 



VII 
 

Acknowledgements 
 
 

First of all, thanks to Allah for His guidance that enables me 
to complete my research. 

In submitting the thesis, I have completed an important 
part of my life, one in which I had the fortune to interact with 
several great people, who provided me with knowledge, insight, 
and perseverance. 

I would like to express my appreciation and gratitude to 
my supervisors Prof. Dr. Ali M. Sagheer (Dean of al-qalam 
University College) and Teacher. Dr. Omar A. Dawood (college 
of computer science and information technology, University of 
Anbar) for their continuous support, interest, patience and 
guidance throughout my Studies. 

I would like to present my thanks to Computer Science 
Department, University of Anbar where I completed my 
research. 

I would like to thank Prof. Dr. Ali. O. Mohesen, Assist. Prof. 
Dr. Refa’t S. Abdul-Jabbar, and Assist. Teacher. Montaser. I. 
Adwan (Mathematics department, college of education for pure 
sciences, university of Anbar), and all my friends for their 
interest and encouragement and I wish to them very happy life. 

Finally, I especially want to thank my parents and my 
family. Over the years they have continuous to support and 
motivate me in my studies. 

 

Rafid Alhadithy 

 

 

 
 



VIII 
 

Publication Paper Status 

1. Rafid S. Abdulaziz, Omar A. Dawood and Ali M. 

Sagheer “Developing a Secret Sharing Scheme 

Depending on Magic Cube and Linear Lagrange 

Interpolation Mathematical Basis”. 

Published in REVISTA - 

AUS Journal, Scopus Q4. 

2. Rafid S. Abdulaziz, Ali M. Sagheer and Omar A. 

Dawood “Conditional Secure Reconstruction of 

Embedded Secret Approach in Folded Magic Cube 

with Six Dimensions”. 

Published in REVISTA - 

AUS Journal, Scopus Q4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IX 
 

Abstract 

 
The protection of secret and sensitive data shared through internet network is 

one of the most important issues that faces internet users. Despite the advance 

technology emerged lots of solutions to secure secret data sharing, but still the data 

sharing matter through an open environment is the main challenge. The sharing secret 

methods play great role in the key management strategy for the sensitive data and the 

cryptographic keys in terms of generation, exchange and managing in a secure method. 

The secret sharing scheme built based on proven mathematical concepts that allows the 

dealer to distribute the secret keys among several participants securely. In this thesis 

four new mathematical algorithms were proposed which completely based on the 

magic cube’s principles and the Lagrange mathematical background. The first 

algorithm relied on generation an odd order folded magic cube that exploits the pivot 

element of the first magic square in magic cube to be the secret and then embedded in 

polynomial equation. The pivot element will support in transfer the magic cube 

properties to the participants to be able to reconstruct the original magic cube again. 

The Hermite interpolation mathematical method was used in the second algorithm 

which considers more complex than the Lagrange interpolation method. Because, it 

depends on the derivative of polynomial and Lagrange derivative in the process of 

constructing and reconstruction the secret by the dealer and the participants. The third 

algorithm assumes that the dimension order (N) of the magic cube is the secret key that 

will be embedded within the polynomial equation and sent to the trusted subscribers. 

The participants will be able to get the secret (cube dimensions) after using the 

Lagrange interpolation. The algorithm requires finding the start number and the 

difference value between the magic cube elements to reconstruct it again. The third 

algorithm can work with different types of magic cubes of (odd order, singly or doubly 

even order). The fourth proposed algorithm is newton’s divided difference numerical 

analysis mathematical method. The newton interpolation was applied on the second 

polynomial algorithm and showed good results compared with its predecessor in the 

process of protecting the secret keys. The process of integrating the secret sharing 

methods with the mathematical characteristics of magic cubes gave a great flexibility in 
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dealing with different numerical analysis methods. The proposed secret sharing 

methods have been tested and measured according to some important metrics like the 

elapsed time and the computational complexity factor. The implemented tests indicated 

a reasonable and accepted results for the secret computation.  All adopted numerical 

analysis methods provided good results during the process of sharing the secret and 

gave the necessary protection in trusting the sensitive information. The proposed 

methods produced distinct results and put the users in front of multi-options in 

choosing the appropriate way to transfer their confidential and sensitive information to 

the trusted subscribers in order to protect them from theft, loss or the risk of 

cryptanalysis. The proposed methods were programmed by Visual Studio 2016 C# 

programming language under Windows-10 Ultimate version of 64-bit operating system 

using processor core (TM) i7-77HQ CPU @ 2.80 GHz, Ram 16.0 GB, HD 1TB, and 

4GB VGA. 

 

 

Key Words: Secret Sharing, Magic Cube, Magic Square, Key Management Protocol, 

Lagrange Interpolation, Threshold Encryption, Shamir’s Secret Sharing, Secure 

Computation, Conditional Secure Secret, Secret Reconstruction Schemes. 
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Chapter One 

General Introduction 
 

1.1  Overview 

 

 The advanced technology in the digital world creates a large volume of the 

daily information exchanged within an open environment. This information may 

contain some sensitive data likewise: secret passwords, credential data, personal secret 

information, high importance information, institutional secret data records and so on. 

The secret sharing dilemma becomes a necessary demand for all sectors to prevent the 

modern approaches in the cryptanalysis attacks. Furthermore, when trusting single 

authority becomes unacceptable, the secret sharing and the threshold encryption will be 

a good choice. Numerous security systems protocols were proposed to satisfy the 

current needs for different applications[1]. There is an urgent need to safely store much 

secret information in order to avoid information theft, information leakage and 

information loss. The schemes of secret sharing are known as a process of distributing 

and managing the secret information among multi-parties securely. Therefore, the 

smaller subset parities which are less than the threshold number will be unable to 

retrieve the secret unless they satisfy the computational conditions. In 1979, Blakley[2]  

and Shamir[3]  freely presented the main idea of a (k, n) threshold secret sharing 

scheme. They submitted a novel scheme with an interesting idea that involves sharing 

the secret key with different parties. The retrieving of secret key will require multi-

party computations for trusted subsets of parties according to the specific threshold.  

Thus, the secret key can be regained with any k out of n shares. However, it cannot be 

gotten back with every group other than k shares. Moreover, any information about the 

secret cannot be acquired with every group of other than (k- participants). Accordingly, 

the original secret will be protected in spite of information shares leakage. In addition, 

those shares can be regained even if some of them are lost[4] .  

A magic square is a matrix square sketched as a checkerboard. This is filled with the 

numbers or alphabets in unique patterns. The arithmetic squares which are mostly 

interesting for mathematicians, consist of N2 boxes, called cells, with different integers. 

This square is called magic if the sum numbers are equal horizontally, vertically and 



Chapter One                                                                           General Introduction 

 

2 
 

diagonally. The square is said to be as nTh order when the integers are consecutive 

numbers from 1 to N2. The square is called nTh order, magic number, or the sum of 

every row is symbolized as S continually (the magic constant)[5, 6]. 

The magic cube is similar to the magic square in the feature of probability construction 

which expands significantly with dimension order. The bigger dimension will require a 

higher probability for searching space in guessing and estimation. Within the diagonal 

cube, the starting element starts from one corner which covers the upper layer 

dimensions to the lower left corner. This element represents the smallest normal magic 

cube of (3*3*3) dimensions with sequential numbers from 1 to 27. These numbers are 

organized in such a way that every three layers are composed of nine numbers. 

However, the (Magic Constant) for this magic cube is sum to 42. These layers are 

arranged magically to express the dimension or face for the (Magic Cube). 

The magic cubes are higher than playing games with similar numbers of the chessboard 

or Rubik cube. They are considerably relied on mathematical rules in their building, 

They are represented in a number of mathematical domains such as the number theory, 

matrices and combinatory etc [7]. 

 

1.2 Related Works 

There are many previously mentioned works and ideas relating to the subject 

matter of this thesis, Therefore, these contributions will be clarified in three parts, 

including the secret sharing, the magic square and the magic cube. 

1.2.1 Related Works about Secret Sharing 

Secret sharing is one of the most important key management protocols 

developed over the years. Researchers have developed secret sharing to be used in 

many areas of their own. Some works will be mentioned in this section. 

Vyas, in 2015 [8] pointed out protect sensitive information can be achieved by 

developing an algorithm to share and use secret sharing technique securely. This 

technique begins with a secret, then, particular secrets are derived from it to be 

distributed securely among the users. This method can be employed in an environment 

where the system is open to all users who have individual passwords. Accordingly, the 

findings of the experiment and verification proved that the results of the algorithm are 

satisfactory. 
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 Pundkar & Shekokar, in 2016 [9] have introduced a new method using 

Shamir’s secret sharing for images and videos in MCDB. The multimedia is protected 

in the multi-cloud database by Shamir’s secret sharing. In essence, companies provide 

personal data and information that may be sensitive and secret to the provider of the 

service. By using secret sharing schemes, data integrity can be secured. Compared to a 

single cloud security and cloud storage, multi-cloud systems have significantly reduce 

the protection risk. In this respect, they optimize scalability and performance. Thus, 

data integrity and confidentiality in multi-cloud systems are enhanced by using 

Shamir's secret sharing scheme.  

  Muthukumar & Nandhini, in 2016 [10] proposed the execution of two 

algorithms by comparing a secret sharing algorithm and information transmission 

algorithm; then the secret sharing algorithm was modified to propose a scheme for 

sharing medical data. The compared algorithms were deployed for securing medical 

data transfer in a cloud environment while their respective drawbacks were evaluated 

with different difficulties. The proposed modified secret sharing algorithm was put 

forward to solve the problems of the existing algorithms. This algorithm facilitated a 

secured distribution of medical data based on clients’ data request. This scheme 

addressed the existing challenges and can be deployed for dynamic database without 

having any impact on the users. The scheme is suited for highly sensitive data 

distribution in a multi-cloud environment; however, it is recommended to enhance the 

systems’ performance and increase its flexibility. 

Kaneko & Iwamura, in 2017 [11] suggested two Proactive Secret Sharing 

Schemes (P-SSSs) which are fit for an A-SSS. The study proved the capability of the 

schemes to substantially reduce communication compared to the traditional P-SSS. 

They further suggested three P-SSSs with varying features; where the 1st and 2nd 

schemes were ideal for A-SSS and ensured a reduced level of communication 

compared to Herzberg’s scheme. The 2nd scheme particularly ensured the same level of 

security as obtainable with Herzberg’s scheme. The 3rd scheme reinforced the security 

of Herzberg’s scheme by including the verification protocol for updated shares. 

Meanwhile, it uses the discrete algorithm, hence, it is not effective. 
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1.2.2 Related Works about Magic Square 

The use of magic squares in the protection of confidential information is still 

evolving. Because Magic Squares are used as an additional security layer in some 

algorithms to protect sensitive information, some related works will be mentioned. 

 

 Tomba, in 2012 [6] suggested a method for the use of the basic Latin square to 

construct (n x n) magic squares (where n = doubly even). To construct doubly even 

magic squares, the column related with the elements is fixed next to the pivot element, 

followed by the arrangement in a logical manner to generate a magic parametric 

constant T (known as Tomba’s constant) and sub-magic parametric constants (Ti). 

Lastly, the magic squares are derived by slightly adjusting the values of Ti. The magic 

squares generated by this technique are weak and for singly even cases. The 

construction process is demonstrated with appropriate illustrations. The technique is 

suitable for finding magic squares from basic Latin Squares of any order (n ≥ 1, for n, 

is doubly even). The process of this construction involves fixing the column related to 

the adjacent elements to the pivot element and assigning it as a diagonal element. The 

other elements are arranged orderly with slight alterations on the elements that 

correspond to the magic parametric and sub parametric constants.  

 Kheiri & Özcan, in 2013 [12] proposed a system for the construction of the 

constrained type of magic squares. The system consists of a set of effective selection 

hyper-heuristics and perturbative low-level heuristics. This system combined different 

hyper-heuristics with different selection methods. The move acceptance methods were 

used in the system as the search method to resolve the constraint magic square 

problem. Contrary to the preceding hyper-heuristics-related studies, the hyper-heuristic 

performance in this study was measured based on its execution time rather than the 

problem-specific solution quality. However, the outcome of the study confirmed the 

previous submissions by showing that even the non-learning selection hyper-heuristics 

can outperform the best-known heuristic solution on the average. 

 

 Farhan et al., in 2018 [13] have presented a new method of encrypting color 

digital images using magic square. The proposed method generates an encryption key 

by using magic square and encrypts images using the generated key. The encryption 

method changes the RGB (Red, Green, and Blue) values of each pixel of the plain-text 
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image using the generated key. The process starts by splitting the plain-text image into 

three arrays that hold RGB values. After encrypting each segment of 256 pixels of the 

RGB arrays, the encrypting key is permuted by using magic square. At the end, the 

encrypted image is generated by merging all three encrypted RGB arrays together. For 

the decryption of the cipher-image, the same process of encryption used but with the 

encrypted images as the input. The aim of this study is to generate a strong encryption 

key and use it to encrypt digital color images using a proposed symmetric cipher. The 

results of encrypting and decrypting images using the proposed encrypting method 

show that cipher-text image has a significant distribution of RGB components 

compared with the plain-text image regardless the encrypting process when the size of 

plain-text is very large. 

 

1.2.3 Related Works about Magic Cube 

 

Many researchers have invented many works that belong to magic squares and 

magic cubes in various fields. Some related works will be mentioned. 

 Jamel et al., in 2010 [14] have suggested a modern cryptographic algorithm 

which depends on the mixtures of hybrid magic cubes produced from two orthogonal 

Latin squares and a magic square. The produced cipher texts lack any predicted model 

which might be used to decode the initial message if using randomly two functions, i.e, 

choice of thirteen magic cubes and key choice from layers of hybrid. In such 

mathematical application, the data structure is built from hybrid layers while its related 

inverses become the encryption and decryption keys. These two random functions were 

presented to ensure that all the potential models which can be deployed by a 

cryptanalyst to solve the initial message are avoided. The outcome of this work can be 

further applied for the development of hybrid cubes of order 8, 16, 32 and 64 

depending on a combination of "magic cubes" order 4 which can produce the base for 

the modern cryptographic algorithm with multiple matric sizes. 

Feng et al., in 2011 [15] developed an improved Rubik's cube rotation and 

logistic sequence-based image scrambling algorithm which generates cubes by resizing 

the original image and partitioning the resized images into 6 blocks. These cubes are 

rotated in 25 steps using 30 different rotating approaches which are guided by a chaotic 
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system. These cubes are remapped after rotation to a chaotic image before using a 

Chebyshev chaotic system to produce the rotating methods for further scrambling of 

the chaotic image to achieve better results. Being that the rotation methods are 

completely produced by the chaotic system, it is not possible to retrieve the encrypted 

image unless the arguments of the chaotic system are the same. This algorithm 

provided a better scrambling degree compared to Arnold transform-based algorithm 

and Rubik's cube rotation-based algorithm. The system also achieved better logistic 

sequence and less correlation between adjacent pixels. It also has a relatively large key 

space and highly sensitive to the keys. 
 

 

 

Dawood et al., in 2015 [16] have proposed a distinct modern asymmetric 

(public key) frameworks that depend on the Diffie-hellman key exchange protocol and 

the magic square and cubes mathematical principles. These principles are employed as 

a substitute for the conventional Discrete Logarithm Problem (DLP) and the Integer 

Factorization problems (IFP). The suggested idea just employs the Diffie-hellman 

matrix to decide the constructive of magic cubes dimension through which the kind of 

magic square is determined in the construction method. In addition, the starting 

number, the difference value and the number of face or dimension that will produce the 

ciphering key to both exchanged parties will be designated. So, the suggested model is 

insightful and effective at different levels. Firstly, it introduces a smart way to design 

particular processes that make it easier for the new mathematical understanding to be 

related to the possibility of dimension for the construction of the magic square and 

cube. This may be attributed to the complexity and the magic cube space which 

increases significantly with the increasing dimension. The pivotal mathematical 

problem of a magic cube has been manipulated to play an important role in 

signing/verifying and encryption/decryption processes in two different ways. It 

provides a prominent and important speed. Moreover, it reduces costs and improves 

efficiency and security margin. 

 

Dawood et al., in 2016 [17] have proposed the folded magic square technique 

which is a new method for building magic cubes. This method generalizes the magic 

cube design with any order despite the magic square type (either odd singly or doubly 

even order). This method is quite simple as it depends fundamentally on the 



Chapter One                                                                           General Introduction 

 

7 
 

construction of magic square methods. In this sense, a designer needs to construct six 

magic squares successively or with any different number pairs in the square matrix. 

These magic squares individually represent the surface of the cube or the magic 

dimensions. To maintain the magic cube features, each square should be arranged in the 

correct order (such that the sum of the rows, columns, and diagonals in any direction is 

the same) to form the regular cube.    

 

1.3 Problem Statement 

 Several methods and algorithms have been emerged to trust the secret key 

management scheme. These methods are concerned with distribution the parts of the 

secret key to group of participants securely.  Each of these existing methods has its own 

limitations and benefits that protects the secret information in different mathematical 

ways. Providing protection for secret data can be very difficult challenge which faced 

by big companies. In this thesis new approaches of secret sharing methods have been 

developed based on some new mathematical ideas. The proposed methods provide 

ideal solution for the keys management mechanism of sharing the secret. The sharing 

process allows distributing certain secret data among several authorized persons 

securely according to concrete mathematical computation.  

 

1.4 The Aim of Thesis 

This thesis aims to suggest new secret sharing schemes using the Lagrange 

secret sharing and magic cubes notations for the purpose of maintaining the keys 

management steps among dealer and the trusted subscribers.  The core aim of the 

presented thesis is to apply a real security solution of key management process between 

the transmitter and the receivers’ parties. The essence of the study is to give the users 

multiple options with different polynomial sharing methods to exchange the secret in a 

secure way completely.  The exchange process depends on proved mathematical 

methods that do not allow any information leakage through reconstruction the secret 

between the dealer and the participants. 
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1.5 The Main Contribution 

The main contribution involves suggestion four secret sharing algorithms that 

are used to trust the transmitted sensitive information over the network. The most 

important contributions made in this thesis can be summarized in the following: 

The present algorithms proposed to integrate the mathematical characteristics of 

the magic cubes with the secret sharing scheme to secure the exchange for the secret 

and sensitive keys between the dealer and the trusted subscribers.  The secure key 

management has adopted multiple methods of mathematical numerical analysis 

(Lagrange, Hermite and divided difference interpolation) for the purpose of providing 

maximum protection for the secret key. The effectiveness and compatibility of all 

methods of numerical analysis proposed in the protection of cryptographic keys have 

been demonstrated and performed in the same way as the Shamir secret sharing (k, n) 

Threshold. The mathematical properties of the magic cubes have proven high 

computational complexity in protection the secret keys transferred between the 

participants, especially when combined with the secret sharing scheme to reduce the 

cheating rate (Send Wrong Shadows) that may appear on both ends (dealer or 

subscribers). In addition to, distributing of unlimited numbers of confidential 

information via the properties of magic cubes. Because, the mathematical 

characteristics possessed by these cubes enable to transmit large secrets through 

transmitting process. Unlike the Shamir secret sharing scheme through which only one 

key can be transferred to all reliable subscribers. 

 

1.6 Thesis Outline 

 The present thesis is organized in five chapters. In addition to this chapter, the 

overview of the other chapters is briefly illustrated as follows:  

Chapter Two is entitled by "Theoretical Background" 

It discusses the theoretical Background of the thesis. The theoretical Background 

include covering the basics of secret sharing schemes, magic squares and magic cubes 

principles. Secret sharing schemes are explained through: Shamir’s secret sharing 

scheme and Blackley secret sharing scheme. The magic squares construction types (odd 

order, singly and doubly even order) and the construction of magic cubes by (folded 

magic squares). 
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Chapter Three is entitled "Design and Implementation of the Proposed Secret 

Sharing Algorithms"    

It presents the design and implement of "secret sharing with magic cubes" techniques. 

The design of each technique is started with an overview and followed by the details of 

the design stages and ended with important algorithms.   

Chapter Four is entitled "Results and Analysis" 

It presents the results and analysis of the implemented techniques. The implementation 

is shown through figures and the implementation includes the experimental results and 

security analysis. 

Chapter Five is entitled "Conclusions and Suggestion for Future Works"      

It presents the conclusions and suggestions for future works. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter Two 

Theoretical Background 
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Chapter Two 

Theoretical Background 
 

2.1 Introduction  

The access operation to the important information in open environment must 

be restricted and under control. The authorized access can be achieved by 

cryptographic secret identifier that permits the reaching to the private information. 

Most modern cryptographic management systems manage the secret keys in a flexible 

form and high secure level. The main challenge is how to distribute the secret key 

among number of shareholders securely[18]. The Secret Sharing (SS) scheme is a 

protocol through which the secret information is distributed by a dealer to a number of 

(n) shareholders. The reconstruction of secret key can be implemented via group of 

participants according to threshold secret sharing. The threshold secret scheme 

determines the allowed number of participants for retrieving the secret key.  The 

threshold (n, t) scenario refers to n participants with t or more subscribers can retrieve 

the secret properly, as shown in figure (2.1).  Shamir’s [19] and Blakely [2] 

independently proposed the first Secret Sharing Scheme (SSS) threshold  that 

distributes the secret parts to several parities and then reconstruct it easily. These 

schemes are fully secure, which means there is no leakage information and the 

unauthorized group cannot find information about the secret. Shamir’s secret sharing 

threshold was widely researched and investigated deeply by the researchers with 

different categories of secret sharing schemes[20]. 

The authenticated dealer provides separate secret fragments to a number of participants 

in regarding to the planned threshold. A minimum of (t) or more participants may pool 

their shares and rebuild the secret. Since the number of shares with (t-1) or less will be 

unable to reassemble the secret parts with insufficient participants. The threshold 

computing technique has many workable applications with different utilizations such as 

launching a nuclear system, opening a bank vault or authenticating a transfer of 

electronic funds. Such sensitive applications require a common access by several 

authorized people to ensure that the decision is made in a consensual and collective 

manner. Several secret sharing schemes have been proposed across different scenarios 
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and strategies such as the integer ring that established a polynomial interpolation, the 

intersection of affine hyper planes, elliptic curves, bilinear maps, and the theorem of 

Chinese remainder[21, 22] .  

 

Figure 2.1 Secret Sharing Scenario 

2.2 Shamir’s Secret Sharing Scheme 

 

The secret sharing scheme describes the secret key distribution process by a 

dealer to a group of trusted subscribers. The processes going through this scheme will 

be explained in detail by two phases as it can be seen in[23] : 

 

➢ Setup process: 

For this (n, t)-scheme, where 2 ≤ n ≤ t, let U1, ..., Ut be the participants and let S 

∈ N be the secret information (where N denotes the set of integer numbers, including 

0). 

The scheme works with polynomials over the finite field FP, where p is some prime 

larger than both n and S. The dealer defines an (n−1) degree polynomial f(x) ∈Fp [x], 

with coefficients chosen randomly and uniformly, except that the constant term is taken 

to be S. Thus, f(x) = an-1 x
n-1 +···+ a1 x + a0, and a0 = S. The dealer then evaluates yr = 

f(r) for r = 1,...,t, and privately sends (r, yr) to participant Ur, for every r. 

➢ Reconstruction process: 

Supposing that for some {x1,...,xn}⊆{1,...,t}, that Ux1,...,Uxn wish to reconstruct 

S, they then pool their shares, giving each Uxi, 1 ≤ i ≤ n, the complete sequence 
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(x1,yx1),...,(xn, yxn) from which he obtains f(x) by the well-known Lagrange interpolation 

model, as shown in equation (2.1): 

                                                                    … (2.1) 

Lastly, Uxi evaluates f (0) = S. 

 

2.3 Blakley’s Secret Sharing Scheme 
 

 Just as Shamir developed his polynomials-based secret sharing scheme, Blakley 

introduced a different hyperplane/linear algebra-based method. Assume there are n 

people, and we intend to allow a group of k people to figure out the secret S ∈ Fp. 

Doing this will require us constructing n linear equations in k variables over FP. This 

can be done by fixing the not-necessarily-distinct elements c1, ..., ck ∈ FP, with c1 = S. 

Then, we can find n linear equations in k variables x1, ..., xk with coefficients in FP, such 

that each equation will be satisfied by setting xj = cj for 1 ≤ j ≤ k. To be more specific; 

we randomly select a11, a12, ..., ank, b1, ... , bn ∈ FP, subject to the condition that for 

every i,  ai1 c1 + ai2 c2 +···+ aik ck = bi . Then, we assign the i th equation to person i. 

However, this cannot be completely done randomly, but most of the choices are 

acceptable, at least when there is a large p. Few things must be ensured; first, it is not 

ideal to say that an equation is ai1 x1 = bi simply because the solution for x1 can be 

singlehandedly determined by person i. Similarly, it is necessary to ensure that the 

unique solution c1 for x1 is not determined by any coalition of k − 1 people. It should 

also be ensured that any set of k people can determine c1 .[24] 

 

2.4 Threshold Secret Sharing Schemes  
 

The only important component of the first Secret Sharing Schemes for the 

recovery of the secret is the number of the participants in the reconstruction phase. 

Hence, these schemes are often called threshold secret sharing schemes. Let n ≥ 2, 2≤ k 

≤ n. The access structure A = {A ∈ P ({1, 2, ... , n}) |  ≥ k } will be referred to as the 

(k, n) -threshold access structure .We obtain Amin= {A ∈ P ({1, 2, ... , n}) |  ≥ k}, Á= 

{A ∈ P({1, 2, . . . , n})  | |A| ≤ k − 1}, and Ámax= {A ∈ P({1, 2, . . . , n}) | |A| =k − 1}.  

In this, an Á secret sharing scheme will be shown as (k, n) threshold secret sharing 
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scheme. If P(x) = ak-1 x
k-1 + · · · + a1 x

1 + a0, the secret can also have the shares Ii1, . . . , 

Iik by solving the system of equations, as shown in equation (2.2): 

 

where has k unknowns (ak-1, …. , a1, a0) and it has a different solution because the 

determinant of as illestrate in equation (2.3): 

 

The point in the non-zero Vandermonde determinant can be view while the polynomial 

P(x) can be of a chosen degree of at most k − 1. Having only k−1 shares, the equations 

in Shamir’s equation are shown in equation (2.4): 

 

With the solutions to k−1 equations and k−1 unknowns (ak-1, …… , a1) being different 

for any a0. Thus, all the possible secret values are likely equal. 

The degree of the polynomial p(x) is taken as k-1 and when it is equivalent to ak-1 ≠ 0, 

the scheme is not perfect. Hence, any k − 1 user can determine an element b0 which is 

not the secret, i.e., b0 ≠ a0. The Lagrange interpolation formula can be used to 

determine a polynomial Q(x) = bk-2 x
k-2 + · · · + b1 x

1 + b0, such that Q (xij) = Iij = P (xij), 

for all 1 ≤ j ≤ k − 1, leading to the system, as shown in equation (2.5). 

 

Consider the contradiction that a0 = b0; from the above function, k −1 equations and k − 

1 unknowns (ak-1, ...... , a1) have different solution, viz ak-1 = 0, ak-2 = bk-2, . . . , a1 = b1 

… (2.2) 

… (2.3) 

… (2.4) 

… (2.5) 
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which contradicts that ak-1 ≠  0. Thus, an element b0 which is not the secret can be 

determined by any k − 1 users and their uncertainty regarding the secret does not 

eventually align with that of an outsider. 

Shamir [3] has proposed choosing xi = i, for all 1 ≤ i ≤ n. In this case, the secret can be 

reconstructed as for any group A with |A| = k [25], as shown in equation (2.6). 

                                                                           … (2.6) 

Example 1: 

Assume n = 5 and k = 3. Also consider the polynomial P(x) = 2x2 + 7x + 10 

over the field Z11. The secret is S = 10 with the following corresponding shares: 

P (1) = 2(1)2 + 7(1) + 10   => 19 mod 11   = 8 

P (2) = 2(2)2 + 7(2) + 10   =>32 mod 11   = 10  

P (3) = 2(3)2 + 7(3) + 10    =>49 mod 11   = 5  

P (4) = 2(4)2 + 7(4) + 10     =>70 mod 11 = 4  

P (5) = 2(5)2 + 7(5) + 10    =>95 mod 11   = 7 

Having the shares p (1), p (2), p (3), the secret can be reconstructed as, according to 

equation (2.6): 

             

 

Example 2: 

Shamir Secret Sharing with p = 31. Consider t = 3 as the threshold while 7 ∈ Z/31Z be 

the secret. Choosing the elements at random a1 = 19 and a2 = 21 in Z/31Z, and set f (x) = 

7 + 19x +21x2. Being a trusted party, many shares can now be generated and are 

distributed to the share-holders while the original polynomial f(x) will be destroyed.  
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(1, f (1)) = (1, 16)           (5, f (5)) = (5, 7)  

(2, f (2)) = (2, 5)             (6, f (6)) = (6, 9) 

 (3, f (3)) = (3, 5)            (7, f (7)) = (7, 22)  

(4, f (4)) = (4, 16)           (8, f (8)) = (8, 15)  

The secret can be recovered from the first three shares (1, 16), (2, 5), (3, 5), according 

to equation (2.6): 

 

By using different calculation for the shares (1, 16), (5, 7), and (7, 22), according to 

equation (2.6): 

 

Shamir has stated that there are some interesting features in his scheme:  

➢ The scheme is suitable when the size of each share is not more than the size of the 

secret.  

➢ The scheme is active, suggesting that if the threshold ‘k’ is constant, it is easy to 

remove some of the existing secrets while some novel secrets can be created 

without significantly affecting the other secrets. 

 

2.5 Shamir’s Threshold Secret Sharing Scheme 

 

Authorized sets in a threshold secret-sharing schemes are sets with a bigger size 

than some threshold, i.e., they achieved the t-out-of-n access structure At = {A ⊆ {p1, . 

. . , pn} : |A| ≥ t}, where 1 ≤ t ≤ n represents an integer. As mentioned in[3]  developed 

a simple but elegant threshold scheme in which the secrets and shares domain is the 

elements of a finite field Fq for some prime-power q > n. Let α1, . . . , αn ∈ Fq be n 

distinct non-zero elements common to all parties (e.g., if q > n is a prime, then, it can 

be assumed that αj = j). The dealer shares a secret k ∈ Fq by randomly and 

independently choosing t − 1 elements a1, . . . , at-1 from Fq with uniform distribution. 

Then, these chosen random elements and their secret define a polynomial P(x) = k + 
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. The share of pj is sj = P(αj ) (P is evaluated using the arithmetic of FP). The 

privacy and correctness of Shamir’s scheme are based on the Lagrange’s interpolation 

theorem where, for every every t distinct values x1, . . . , xt, every field F, and every t 

values y1, . . . , yt, there is a specific polynomial Q of degree at most t − 1 over F, such 

that Q(xj ) = yj for 1 ≤ j ≤ t. To demonstrate the correctness of Shamir’s scheme, it 

should be observed that each set B of size t has t points of polynomial P, hence, can use 

Lagrange’s interpolation to reconstruct it and compute k = P(0). Normally, a set B = 

{pi1, . . .  , pit } computes, as shown in equation (2.7): 

                                                                    … (2.7) 

Observe that Q (αil) = sil = P(αil ) for 1 ≤  ≤ t. This means that P and Q are polynomial 

of degree at most t − 1 that agree on t points; thus, P and Q are equal (based on the 

uniqueness in the interpolation theorem), and, particularly, Q(0) = P(0) = k. Therefore, 

k can be reconstructed by the parties in B by computing, as illustrate in equation (2.8): 

                                                            … (2.8) 

The reconstruction function for any given set B is a linear combination of the shares, 

i.e., as shown in equation (2.9): 

                                           … (2.9) 

Observe that β1, . . . , βt does not depend on the secret k but only depends on the set B. 

Contrarily, any unauthorized set T with t − 1 parties has t − 1 points of the polynomial, 

which in conjunction with each possible secret, determines the unique polynomial of 

degree at most t−1. As per the interpolation theorem, every T = {pi1 , . . . , pit-1} and 

every a ∈ Fq (at most t – 1) is associated with a unique polynomial Pa with a degree, 

such that Pa(0) = a and Pa(αil ) = sil for 1 ≤  ≤ t − 1. Therefore, as shown in equation 

(2.10): 

                                 Pr [Π (a, r)T =  1≤ ≤t−1] =                                   … (2.10)  

Being that this probability is equal for every ∈ Fq, the privacy follows[26] . 

Shamir’s scheme has found application in several threshold cryptographic protocols, 

such as key distribution/agreement protocols, multiparty computation protocols, digital 

signature protocols, and Byzantine agreement protocols[27] . 
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2.6 Adversary Model  

“A system without an adversary definition cannot possibly be insecure; it can 

only be astonishing”. “Astonishment is a much-underrated security vice” (Principle of 

Least Astonishment). From these statements, it can be explained that any system 

without an adversary hardly can be believed. To have a highly secure system, you need 

also to plan about the adversaries the system may face in the future. The adversary 

model consists of sets of assumptions, explicit and implicit, which have been made 

with regard to the adversary in any given situation. While there is a precedence for 

using such a definition of adversary modeling, it is not widely used in literature and 

there are some changing properties in this model which are related to the traditional 

secret sharing model [28].  

➢ Trusted dealer: A fully trusted dealer cannot be corrupted by an adversary.  

➢ Polarized participants: The participants can either be totally honest by following the 

rules or totally malicious after being captured by an adversary (they will begin to 

break the rules).  

An adversary in all Secret Sharing Schemes may wish to acquire the secret information 

by learning the information about shares. However, different types of Secret Sharing 

Schemes have a different goal based on their recoverability. The passive adversary can 

be only involved in share capturing in the traditional model; hence, they can only strive 

to secret reconstruction by withholding shares. For the different types of Secret Sharing 

schemes [2, 3], it is necessary to identify the main recoverability goals of an adversary. 

 

➢ Types of Adversary Model 

The adversary model consists of multiple types, each type of them does a 

different job than the other. These types can be summarized by the following steps 

[29]: 

   

1- Passive versus active adversary: Every player has a curiosity to know the other 

players’ secret, but players feel they are honest to them. At the same time, they have 

the curiosity to know the secret, which is an adversary. When players want to form 

the network or game, they will reconstruct a wrong secret while striving to get the 

secret of the players.  
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2- Static versus mobile adversary: A static adversary corrupts the players ahead of time 

while a mobile adversary corrupts the players while executing the protocol.  

3- Computational versus unconditional security: The network protocols are much 

secured and rely on basic presumptions (the hardness of factoring or discrete 

logarithm from the adversary has unlimited computational power). 

 

2.7 Some Attacks on Shamir’s Secret Sharing Scheme (SSSS) 
 

It is inevitable that some schemes are subject to cheaters, with the motivation of 

fooling honest participants and keeping the secret to themselves for whatever motive 

they have. Tompa & Woll [30] discussed how to share a secret with cheaters which 

makes it possible to cheat Shamir's Secret Sharing Scheme. In this study, the 

researchers stated that a person or a group is able to succeed in cheating SSSS when 

they are able to achieve the following goals[31] : 

➢ Type 1 attack: In this type of attack, the cheaters can either be honest shareholders 

who erroneously present their shares, or they could be dishonest shareholders who, 

without any form of collaboration, present their faked shares. In this attack, each 

faked share represents a random integer and is totally independent of the other 

shares. 

➢ Type 2 attack: In this type of attack, the cheaters are dishonest shareholders who 

aim to fool the shareholders by modifying their shares. Here, it is assumed that all 

shareholders synchronously release their shares, thus, the cheaters can only figure 

out their faked shares before secret reconstruction by collaborating among 

themselves. However, they cannot modify their shares after getting information 

about the shares of the honest shareholders (i.e. all the shares are believed to be 

revealed simultaneously). With this assumption, the cheaters can only successfully 

execute an attack to fool the honest shareholders when there is a larger/equal 

number of cheaters compared to the threshold value.  

➢ Type 3 attack: In this type of attack, the cheaters are dishonest shareholders who 

also aims to fool honest shareholders by modifying their shares. It is assumed in 

this type of attack that all the shareholders asynchronously release their shares and 

because the shareholders release their shares one the same time, the cheaters mainly 
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aim to release their own shares after all the honest shareholders have released their 

shares so that it can easily modify their shares. 

 

2.8 Mathematical Preliminaries of Numerical Analysis Definition 

Numerical analysis is a department of mathematics that prepare tools and 

methods to solve mathematical problems by numerical formulas. Various problems are 

encountered in any system that uses mathematical methods and cannot solve all these 

problems using only one mathematical method. Therefore, many types of numerical 

analysis methods are used in solving them. A number of them will be addressed next: 

 

2.8.1 Lagrange Interpolation Concept 

 

The mathematical preliminaries for the interpolation terminology can be 

described as a process of computation to find a value existing between two or more 

values. The polynomial equation which builds new data points with discrete range is 

called the polynomial interpolation. The recognized values are arbitrary and keep on 

changing unsystematically as shown in figure (2.2). Lagrange polynomial interpolation 

is adapted for generating the main points computationally, as shown in equation (2.11). 

                             =   , j = 0 ,…, n                                   …   (2.11) 

The Lagrange polynomial interpolation is employed to determine a value between pair 

known values. Specifically, Lagrange polynomial interpolation of (order 1) is 

documented in (equation 2.12). For the sake of reaching a value by the use of three 

values, Lagrange polynomial interpolation of (order 2) is used as stated in (equation 

2.13). On the other hand, to determine value by employing four established values, 

Lagrange polynomial interpolation of (order 3) is used as illustrated in (equation 

2.14)[32, 33]. 
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Figure 2.2. Polynomial interpolation Q(x) to appreciation values between x0, x1, & x2 

 

                          f1 (x) =  f(x0) +  f(x1)                                         …  (2.12) 

 

f1(x) =  f(x0) +  f(x1) + f(x2)                   … (2.13) 

 

f1(x) =  f(x0) +  f(x1) + 

 

             f(x2) +  f(x3)                              …  (2.14) 

 

2.8.2 Hermite Interpolation Concept 

The Hermite interpolation was developed as a variant of Lagrange’s 

interpolation. The Hermite polynomial of a function f is calculated using divided 

differences[34, 35] . 

Suppose that a function f(x) is defined on a closed interval [a, b]; given n + 1 data 

points , , , ···, , (a ≤  ≤ b,  ≠  for i ≠ j), and values, as shown in equation 

(2.15): 

          = f ( ),  = ( ), k = 0, 1, 2, ···, n.                                            … (2.15) 

We strive to establish a 2n + 1 dimensional polynomial P(x) such that P(x) will satisfy, 

as shown in equation (2.16): 

           P ( ) =  =                                   … (2.16) 
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The challenge of finding this polynomial P(x) presents a Hermite interpolation. It is 

evident here that a unique 2n + 1 dimensional polynomial P(x) can be achieved using 

the following equation, as shown in equation (2.17): 

                   P(x) =                                        … (2.17) 

Where two 2n + 1 dimensional polynomial (x), (x) satisfy 

 

 ( ) =   

 

( ) = 0    for any    i, j 

And 

( ) = 0     for any     i, j 

 

 ( ) =  

This is called Hermite interpolation. 

 

2.8.3 Newton’s Divided Difference Interpolation Formula 

 

Newton's Divided Difference is an approach towards finding an interpolation 

polynomial that suits a given set of data or points. Owing to the exclusivity of 

interpolation polynomials, Newton's Divided Difference, just like the Lagrange's 

method, can find the exact interpolation polynomial. This task is accomplished using 

the Newtons’ divided difference equation as shown in equation (2.18): 

                f ( , , , ….                                        … (2.18) 

The polynomial is derived from this equation known as Newton's divided difference 

formula for interpolation polynomial[36, 37], as shown in equation (2.19) : 

 =  + ( ) f ( ) + ( ) ( ) f ( ) + 

( )( ) ( ) f ( ) + …. + ( ) ( ) ( ) …  

( )f( ) + …. + ( ) f 

( )                                                                                  … (2.19) 

 

1       i = j 

0       i ≠ j 

1       i = j 

0       i ≠ j 
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2.9  Evolution of Magic Square  

 

Studies on magic squares have lasted nearly three thousand years with the 

foremost study reported in China about 2200 B.C. Arab astrologers have used magic 

squared in the 19th century to calculate horoscopes, and by 1300 A.D., the west has 

already started using magic squares. The German artist engraved the date 1514 in the 

bottom row as two consecutive numbers because the magic square concept is not well 

understood. Magic squares are commonly used by puzzlers and amateur 

mathematicians. A magic square of order n in recreational mathematics is an 

arrangement of n numbers, usually different integers, in a square, such that the sum of 

all the numbers in all rows, columns, and both diagonals amount to the same constant. 

The construction of magic squares using different methods has been discussed in many 

types of research[38] .  

 

2.10 Principles of Magic Square 

A magic square consists of a square matrix presented as a checkerboard filled 

with letters or numbers in a specified arrangement. Mathematicians have found interest 

in arithmetic squares that consists of N2 boxes (known as cells) which are filled with 

different integers. Such a manner of numbers arrangement is regarded as a magic 

square if the sums of the numbers in the vertical columns, horizontal rows, and main 

diagonals are equal. A magic square is said to be of the Nth order if it has integers 

which are the consecutive numbers from 1 to N2 and the magic number or sum of each 

row is a constant represented as S [39], as shown in equation (2.20): 

                                                                                             … (2.20) 

In the magic square, the pivot element is the center element in the middle square as 

depicted in Figure 2.3. The following formula can be used to calculate the pivot 

element in any magic square of odd order with sequential numbers, as shown in 

equations (2.21):  

 

                                                                                                  … (2.21) 
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According to equation (2.21):              

                                                      = 5                                             

Sometimes, the magic number is referred to as the magic sum or magic constant. To 

derive this expression for S, recall that the sum of the first m numbers in the arithmetic 

series 1+ 2 + 3 + …. + m is equal to m (m + 1) / 2. In our case, m = N2 because we are 

interested in the sum of all the numbers in the magic square. This means that the sum of 

the numbers in a magic square is N2 (N2 + 1) / 2 = (N4 + N2) / 2. To get S, we divide this 

result by N, which gives the sum for each of the N rows and N columns [40].  

A better understanding of these mathematical definitions will be achieved with some 

examples. The third order magic square with 3 * 3 cells and containing integers 1 – 9 is 

the simplest magic square. It has a magic sum of 15 along the 3 rows, 3 columns, and 2 

diagonals. For a third-order square, the digits and its mirror image can only be arranged 

in one unique way, as shown in figure (2.3): 

4 9 2 

3 5 7 

8 1 6 

 

Figure 2.3 Third-Order Magic Square 
 

In this case, N 3 because there are 3 rows and 3 columns, while the magic sum S is 15 

because the summation of the numbers in any direction = 15. For instance, considering 

the previous square, it will be observed that the sum of 4 + 9 + 2 = 15 (row), the sum of 

4 + 3 + 8 = 15 (column), and the sums is 4 + 5 + 6 = 15 (diagonal), etc. The magic sum 

formula can be compute as shown in equation (2.22):  

 

 

According to equation (2.22):              

 

 
A compact formula exists for the calculation of the magic constant for magic squares 

that start at numbers other than 1 and that make use of an arithmetic series with a 

   … (2.22) 



Chapter Two                                                                    Theoretical Background 

 

24 
 

constant difference between successive integers. The magic constant for these kinds of 

squares depends on the order N, the starting integer A, and the difference D between 

successive terms [41], as shown in equation (2.23). 

 

                          … (2.23) 

 
 

The consecutive numbers (1 to n2) in n rows and n columns can be arranged in basic 

Latin square format. The pivot element lies between two numbers,   and , as 

illustrate in equation (2.21).                                    

Instead of using consecutive integers starting with 1, we might use an arithmetic series 

starting with, say, 17 and with a difference of 3 between successive integers. 

Another formula for the determination of the pivot element in non-sequential odd order 

numbers which might have indeterminate integer number at the beginning or a period 

or another word with a difference of more than 1 in-between the numbers, as shown in 

equation (2.24). Here, N is the square order, A is the starting number, while D is the 

difference between the successive and the previous numbers. Three instances that 

respectively explain the notation are presented in Figure (2.4) a, b and c [42]. 

                                                                                
 

63 42 57  48 13 38  18 4 14 

48 54 60  23 33 43  8 12 16 

51 66 45  28 53 18  10 20 6 

(a): N=3, A=42 

and D=3 
 

(b): N=3, A=13 

and D=5 
 

(c): N=3, A=4 

and   D=2 

Figure 2.4 Three of Magic Squares with Different Pivot Element 

 

The examples of the pivot element as shown below according to equation (2.24): 

(a) P =  = 54                         

(b) P =  = 33                          

(c) P =  = 12                            

… (2.24) 
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The equation is used to calculate the Magic Sum (MS) (which includes the sum of all 

the rows, columns and diagonals numbers) in a magic square, as shown in equation 

(2.25): 

                                                                                                  … (2.25) 

The MS for 3*3 = 45, MS for 4*4 = 136, MS for 5*5 = 325, MS for 8*8=2080 and so 

on; MS can also be calculated by multiplying the magic squares’ MC * dimension [43] . 

 

2.11 Magic Square Construction 

Looking at magic squares and their hidden symmetries and amazing properties, 

it becomes difficult to believe that they can be constructed via several easy-to-

remember approaches using simple rules. In fact, handbooks of “mental magic” often 

give these methods as “secret” ways to impress audiences. Several ways of magic 

squares construction have been developed through the ages. Based on these methods, 

magic squares can be categorized into 3 classes [44]: 

 

 

2.11.1 Magic Squares of Odd Order 

These are magic squares whose order N has the form 2m + 1, where m could be any 

positive integer 1, 2, 3, etc [45, 46]. 

 

➢ De la Loubère’s Method: 

Simon de la Loubère, a mathematician, in 1693, developed a method for the creation of 

any odd-order magic square. The method starts by positioning a 1 in the central upper 

cell. Let us construct a fifth-order magic square using this method. 

Next, place 2 in an imaginary square diagonally upward to the right but outside the 

table. Here, we visually represent this box outside the table by temporarily adding 

another row and column to the square. Being that the 2 positioned outside the square,  

it is brought to the bottom of the column. Next, position a 3 upward to the right of the 

2, as illustrate in figure (2.5). 
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(a) De la Loubère’s First Step              (b)  De la Loubère’s Movements 

Figure 2.5 Odd Order Magic Square (De la Loubère’s Methods) 

 

In the next step, place a 4 upward but to the right of the 3. Again, this 4 is 

outside the table, hence, it is placed at the opposite row end, with a 5 positioned 

upward to its right. It is not possible to place a 6 upward and to the right of the 5 since 

there is no space available; hence, 6 is positioned below the 5. We proceed until the 10 

falls outside of the original square and continue the process. Notice that 16 falls outside 

the corner square and is written beneath the 15, as is the case when encountering an 

occupied square, as shown in figure (2.6). 

 

 18 25 2 9  

17 24 1 8 15 17 

23 5 7 14 16 23 

4 6 13 20 22 4 

10 12 19 21 3 10 

11 18 25 2 9  

 

Figure 2.6 The Complete Square of De la Loubère’s Method  

➢ In Summary: 

 

1. Start by placing 1 in the cell at the center of the top row. 

2. Upon reaching any top edge, continue placing the integers in a diagonally upward 

position but to the right at the bottom of the next column. 

3. Upon reaching the right-hand edge, continue placing the integers at the last cell but 

to the left of the next highest row. 
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4. Upon reaching an already filled cell, drop down one cell and continue. 

5. Upon reaching the upper right corner cell, drop down one row. 

 

By rotations and reflections, seven other magic squares can be constructed from 

this method. Once you have memorized this simple approach, you can amaze your 

friends by generating odd-order squares of a higher order. Additionally, you can start 

with a 1 in any cell and always generate a square that is magic in rows and columns but 

not necessarily diagonals. 

 

You can also use de la Loubère’s method to form imperfect magic squares that start 

with numbers other than 1. For example, the following square was created by starting 

with 3, and each succeeding integer was obtained by adding 2 to the preceding integer, 

as illustrate in figure (2.7): 

17 3 13 

7 11 15 

9 19 5 

 

Figure 2.7 De la Loubère’s Square 
 

Try this approach with other starting numbers and with other differences between 

succeeding integers. 

 

➢ Stairstep Method 

        You may construct a magic square of odd order using the following easy recipe 

that involves a staircase like the assembly of cells. As an example, let’s construct a  

2 * 3 magic square. First, draw a “staircase” with consecutive integers along 

diagonals, as shown in figure (2.8): 
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  1   

 4  2  

7  5  3 

 8  6  

  9   

 

Figure 2.8 Stairstep Method 

The cells containing the integers 1, 3, 7, and 9 are outside the central 3 * 3 array. To 

bring them into the array, slide each number to occupy the vacant cells furthest away 

from it along the same column or row. This movement will generate the following 

magic square, as illustrate in figure (2.9): 

4 9 2 

3 5 7 

8 1 6 

 

Figure 2.9 Third-Order Magic Square 
 

Here is another example of the staircase method; this time, it is used to 

construct a 5 * 5 magic square, as shown in figures (2.10) and (2.11): 

    25     

   24  20    

  23 0 19 0 15   

 22 0 18 0 14 0 10  

21  17 0 13 0 9  5 

 16 0 12 0 8 0 4  

  11 0 7 0 3   

   6  2    

    1     

 

Figure 2.10 Staircase Before “infolding” 
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23 6 19 2 15 

10 18 1 14 22 

17 5 13 21 9 

4 12 25 8 16 

11 24 7 20 3 
 

 

Figure 2.11 Final form of 5 * 5 Stair Step Magic Square 

 

This time, let’s start with the 1 on the bottom cell and proceed with numbering 

diagonally to the right. The dots represent empty cells to be filled in a manner similar 

to the previous 3 * 3 cell example. 

 

2.11.2 Magic Squares of a Singly Even Order  

Where N is of the form 2(2m + 1), such as 2, 6, 10, 14, 18, 22, etc. The order of a 

singly even square is only divisible by 2 and not by 4 [47]. 

 

➢  Ralph Strachey’s Method 

This method can be used for the construction of certain singly even order magic 

squares. As discussed, such magic squares have an order which is only divisible by 2 

and not by 4. For instance, magic squares of order 6, 10, and 14 are considered singly 

even-order squares. Recall that singly even squares of order N are defined such that N = 

4x +2 for positive integer values of x. In the following example, N = 6 an x  = 1. The 

Strachey method is not quite as elegant as for odd squares in the sense that the method 

is largely empirical. Singly even magic squares are a big challenge to construct using 

simple rules. Let’s describe the method generally before giving a specific example. 

Start by subdividing a square into four equal parts, A, B, C, and D, as shown in figure 

(2.12). 

A C 

D B 

 

Figure 2.12 Strachey’s Method 
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Eventually, square arrays will be inserted into A, B, C, and D; these four-square 

arrays will be of odd order M each with N 2/ 4 cells. For our example case of N = 6, this 

means that each subsquare is of order M = 3, with nine cells. Here’s a general 

description. Start by using de la Loubère’s method to construct a magic square with 

integers 1 through M2 where M = N / 2. Jam this magic square into A.  

Construct and jam three other magic squares into B, C, and D. These additional magic 

squares go from M2 + 1 through 2M2, 2M2 + 1 through 3M2, and 3M2 + 1 through 4M2. 

a large square filled with consecutive integers 1 through N2 will be integrated.  

If this N * N square was examined, the sum R of the integers in each row is the same. 

The sum C of the integers in each column is the same, but R does not equal C. The 

sums D1 and D2 of the integers in the main diagonals are different from the column 

sums or row sums. By swapping a small number (N2 / 4 - N) of integers, the square can 

be converted into a magic square. 

Look at an example to clarify this; let’s choose x =1, which gives us a sixth-order 

square. Start by dividing a square into four equal squares A, B, C, and D. Using de la 

Loubère’s method, the numbers 1 through 9 are used to construct the upper left square, 

as illustrate in figure (2.13): 

8 1 6 26 19 24 

3 5 7 21 23 25 

4 9 2 22 27 20 

35 28 33 17 10 15 

30 32 34 12 14 16 

31 36 29 13 18 11 

 

Figure 2.13 Singly Even Strachey’s Method 

 

In square B, use the same approach to construct a magic square using numbers 10 

through 18. In square C, the same approach is used to construct a magic square using 

numbers 19 through 27. In Square D, the same approach is used to construct a magic 

square using numbers 28 through 36. Look carefully, 6*6 magic square seems close to 

be obtained. Notice that at this point, all rows sum to the same number, 84. All columns 

sum to 111. The right main diagonal sums to 165. The left main diagonal sums to 57. 

this 6 * 6 square can be turned into a magic square by swapping just three pairs of 
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numbers. To help you see the swaps, I’ve singly and doubly underlined pairs and put a 

pair in bold italic. Just by swapping the 8 and 35, the 4 and 31, and the 5 and 32 a 

perfect sixth-order magic square is obtained, as shown in figures (2.14) and (2.15). 
 

8 1 6 26 19 24 

3 5 7 21 23 25 

4 9 2 22 27 20 

35 28 33 17 10 15 

30 32 34 12 14 16 

31 36 29 13 18 11 

 

Figure 2.14 Ralph Strachey’s Method Before Swapping 

 

35 1 6 26 19 24 

3 32 7 21 23 25 

31 9 2 22 27 20 

8 28 33 17 10 15 

30 5 34 12 14 16 

4 36 29 13 18 11 

 

Figure 2.15 Ralph Strachey’s Method After Swapping 

 

2.11.3 Magic Squares of a Doubly Even Order  

These are magic squares whose order N is of the form 4m, such as 4, 8, 12, 16, 

32, etc. The order of a doubly even magic square is divisible by both 2 and 4 [48]. 

 

➢ Dürer’s Method: 

Albrecht Dürer’s 4 * 4 magic square was constructed in 1514 A.D. At that time, 

Dürer described a general method for constructing doubly even magic squares. First, 

draw imaginary main diagonals through every 4 * 4 sub-square of the square such as in 

the following square on the left. Then, position 1 in the upper left corner cell and 

proceed with the consecutive numbers horizontally to the right; however,  
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only write the numbers down if the cells are crossed by diagonals. Repeat this 

procedure for each row but once the bottom right corner cell is reached, assume that 

that the number 1 falls within this square and reverse the step by proceeding to the left 

horizontally and filling the empty cells. The figure (2.16) shown squares are achieved 

for a fourth-order square before-and-after the described procedures: 

 
 

1 2 3 4  16 2 3 13 

5 6 7 8  5 11 10 8 

9 10 11 12  9 7 6 12 

13 14 15 16  4 14 15 1 

 

(a) Before Diagonal Swaps           (b) After Diagonal Swaps 

Figure 2.16 Doubly Even Durer's Method 
 

In this example with a 4 * 4 square, we first write the consecutive numbers 1 through 

16. Next, the main diagonals is examined and symmetrical swaps are made across the 

center of each highlighted diagonal. This means 1 swap with 16, 6 with 11, 13 with 4, 

and 10 with 7.  

 

2.12 Some Significant Properties of Magic Squares 

Some of the interesting features and properties considered are listed below during 

the construction of normal magic squares [49]: 

1. The magic nature of the squares is maintained by adding a certain number to each 

number in the squares. 

2. The squares are kept magical by multiplying each number in the square by a certain 

number. 

3. The squares are also kept magical by exchanging 2 rows or 2 columns from the 

center of square equidistantly. 

4.  An even order magic square is kept magical by interchanging its quadrants. 

5. An odd order magic square is kept magical by rows and partial quadrants 

interchange. 
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6. The outstanding features of the square matrix make the square “magic” as it contains 

different positive integers from 1, 2, …, n2 whose vector sum in all directions is 

constant. 

 

2.13 Introduction to Magic cube 

A magic cube of order n is a 3-D n*n*n matrix (cubical table)  = [q (i, j, k); 

1≤ i, j, k ≤ n] which contains the natural numbers 1, 2, 3, ... , n3 in an order such that: 

  For all   i, j, k = 1, 2, ..., 

n, (Note: there is no need for the sums of elements on any diagonal in a magic cube). 

The triple of numbers (i; j; k) is called the coordinates of the element q (i; j; k).  as 

shown in figure (2.17) below. 

 

 

Figure 2.17 Magic Cube 

 

A magic square of order 1 is the same as a magic cube of order 1. As there is no magic 

square of order 2, similarly, there is no magic cube of order 2 [50]. In a magic cube, the 

basic feature is that the sum of all numbers in the layers, each column/row, and main 

diagonal space is equal to the single number called the cubes’ magic constant, denoted 

by M3(n), as shown in equation (2.26). 

                                                     M3 (n) =                                       … (2.26) 

As per M. Trenklers’ theorem, a magic cube can be derived by combining a magic 

square with 2 orthogonal Latin squares [51]. The magic square concept can be extended 

into the third dimension; doing this will give us a magic cube. The sum of the row, 

column and main diagonal lines in such cubes is always a constant. Figure (2.18) is an 

example of such cubes: 
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2 13 27  16 21 5  24 8 10 

22 9 11  3 14 25  17 19 6 

18 20 4  23 7 12  1 15 26 

1st layer                          2nd layer                        3rd layer 

Figure 2.18 Magic Cube of Order 3 

Magic cubes consist of entries 1, ....,  which are arranged in an analogous manner to 

those in magic squares. As illustrate in equation (2.27): 

                                                         =  ( )                                     … (2.27) 

Each layer in a magic cube is a magic square. The magic cube is similar to the magic 

square from the perspective of construction probability which dramatically increases 

with the order [52] . 

Another approach towards the construction of a magic cube is presented in figure 

(2.20) below. The starting element in the diagonal cube starts from one end of the cube 

(from the upper layer dimensions to the lower left corner). This represents the smallest 

normal magic cube of 3x3x3 dimensions consisting of sequential numbers from 1 - 27 

which are arranged in 3 layers of 9 numbers. For this magic cube, the magic constant is 

equal 42, as shown in figure (2.19). These layers represent the face or dimension for the 

magic cube magically arranged from all directions. 

 

Figure 2.19 Magic Cube of Three Layers 

There is more to magic cubes than just a game of numbers (as obtainable in chessboard 

or Rubik cube). The construction of magic cubes is mainly dependent on mathematical 
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rules. They are rooted in several fields of mathematics, such as matrices, number 

theory, and combinatory [53].  

 

2.14 The Construction of a Magic Cube  

Magic cubes’ construction is a challenging task that has over the years attracted 

much research interest in mathematical sciences. This is because there is no common 

method that works for both odd order and doubly even or singly cubes. However, the 

proposed method is suitable for all forms of magic cubes of any order as it basically 

relies on the technique of magic squares. This method allows for the construction of 

several magic cubes using sequential numbers or with constant differences between 

series of numbers. With this method, working for 6 squares will produce 1 magic cube 

while working for 12 squares will produce 2 magic cubes, etc. So, work with cubes 

involves the use of multiples of 6 numbers to generate several cubes based on the task 

requirements.  

The basic notations for the construction of magic cubes are explained in the following 

examples:  

1. Begin by building 6 separate magic squares of any order to correspond to the 6 sides 

of a cube as depicted in Figure (2.20).  

2. Then, arrange the 6 cube surfaces as follows: position the 1st surface to face the 6th 

surface while the 2nd face the 5th. Finally, position the 3rd surface to face the 4th surface 

with the corresponding colors respectively.  

 

21 0 15  48 27 42  75 54 69 

6 12 18  33 39 45  60 66 72 

9 24 3  36 51 30  63 78 57 

1stsquare  2ndsquare  3rdsquare 

102 81 96  129 108 123  156 135 150 

87 93 99  114 120 126  141 147 153 

90 105 84  117 132 111  144 159 138 

4thsquare  5thsquare  6thsquare 

Figure 2.20 Six Faces of Folding Magic Cube 
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Having constructed and colored the 6 sides/surfaces of the magic cube, compute the 

magic sum and magic constant concurrently for each square such that the sum of each 

of the similarly colored square pairs will produce the same result [16], as shown in 

figures (2.21) and (2.22). 
 

 
 

Figure 2.21 The Magic Constant of the Six Squares 

36 + 441 = 477, 117 + 360 = 477, 198 + 279 = 477 

 
 

Figure 2.22 The Magic Sum of the Six Squares 

108 + 1323 = 1431, 351 + 1080 = 1431, 594 + 837 = 1431 
 

The magic cube illustrated in Figure 2.20 is an order 3 cube with a starting value of 0 

while the constant difference of 3 exists between each number pairs in the 1st square as 

in the following sequence (0, 3, 6, 9…24). The 2nd square begins and ends with the 

arrangement (27, 30, 33, 36…51) until the last or the 6th square of the cube which 

begins with the number 135 and ends with 159. A cube can be constructed from 11 

distinct flat shapes which can be folded-up to generate the cube shapes. These shapes 

are presented in Figure (2.23): 
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Figure 2.23 Eleven Distinct Shapes for the Magic Cubes 

These shapes were colored with 3 distinct colors (green, yellow and Orange) with each 

opposing side similarly colored to achieve a folded cube with 6 sides/surfaces and the 

colors of each opposing side being the same. These colors were deployed to ensure that 

the arrangement of the magic square is maintained [16].  

 

2.15 Applications of Magic Cube 

Magic cube has delightful features that everyone appreciates; however, there is 

no specific application for magic cubes. Studies have recently combined magic squares 

with magic cubes in a bid to exploit their individual in several dimension and scopes 

[17], such as: 

1. Cryptography. 

2. Information security. 

3. Remote access control. 

4. Determinants and matrices field. 

5. Applied mathematics. 

6. Public/secret key sharing. 

7. Number theory. 

8. Coding and error correctness.  
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Chapter Three 

Design and Implementation of the Proposed 

Secret Sharing Algorithms 
 

 

3.1 Introduction 

There are many different ways to develop secret sharing, but by combining 

them with the mathematical properties of magic cubes, the system has become stronger. 

The algorithms used to build magic cubes were previously used in secret key 

exchanges and encryption / decryption operations, but this is the first time that the 

properties of magic cubes have been used with secret sharing algorithms. The 

development of secret sharing algorithms depends on the methods of using the 

properties of magic cubes to share the secret among trusted participants. In this study, 

the proposed approach is combined with the secret of magic cubes and the approach of 

secret keys as an advanced approach to enhance safety requirements. This chapter 

presents four proposed algorithms as described in sections (3.2, 3.3, 3.4, and 3.5). 

 

3.2 First Proposed Algorithm (Secret Sharing with Magic Cube using 

Lagrange interpolation) 
 

The main objective behind the adopted magic cube idea is to transfer the 

magic cube properties from the dealer to a group of trusted subscribers. The pivot 

element of one of the six magic squares is selected from the magic cube and sent within 

a polynomial (secret) to the participants. In addition, another selected element (The 

element of G) is sent to the subscribers to obtain the characteristics of the magic cube 

and then to reconstruct the original magic cube again. To describe the main notations 

for the mixing of magic cube with the Lagrange interpolation method of Shamir 

Scheme, the following must be explained: 

The algorithm is beginning with build a magic cube of odd order in a manner as explain 

in chapter two (2.16). The pivot element is selected from the first magic square of the 

magic cube to use it as a secret value in the polynomial to compute the main points (xi, 

yi) and send them to the participants, as shown in equation (3.1):  
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            F (x) = (pivot) + a1 x + a2 x
2 + …+ ak-1 x

k-1       mod    prime             … (3.1) 

Magic cube properties are sent to subscribers to be rebuilt again according to some 

parameters likewise (Start value, Difference value, Pivot element and the cube order). 

The new selected element (G) is chosen under special conditions after the magic cube 

is built by the dealer. This element must be smaller than the pivot element (Pivot > G) 

and greater than the cube's dimensions (G > N). When the Modular operation is taken 

between the pivot element and the numbers smaller than it, the output that will equal 

the dimensions (N) of the magic cube will be chosen accordingly, as shown in equation 

(3.2): 

                                                     Pivot Mod G = N                                         … (3.2) 

 Also, the produce of dividing the (G) element on the dimensions of the magic cube 

will represent the difference (D) value according to the equation (3.3): 

                                                     G / N = Difference                                         … (3.3) 

After sending the points and (G) number to the participants. The Lagrange interpolation 

is used, as shown in equations (3.4, 3.5, 3.6, and 3.7) to reconstruct the secret again to 

obtain the pivot element (secret): 

                                          L0 =                                                                           …   (3.4) 

                                          L1 =                                                                            …   (3.5) 

                                         L2 =                                                                            …    (3.6) 

                                        F (x) =                                                … (3.7) 

After obtaining the pivot element, the equation (3.2) will be calculated to get the 

Dimensions (N) of the Magic cube and the equation (3.3) will also be calculated to 

obtain the difference (D) between the magic cube numbers. After obtaining (Pivot, 

Dimensions and Difference) of the magic cube, it is easy to obtain the starting number 

(A) of the magic cube by the equation (3.8) below: 

                                      Start Number =                          …      (3.8) 
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Algorithm 3.1 First Proposed Algorithm (Secret Sharing with Magic Cube using 

Lagrange Interpolation) 

 

Input:  pivot element, random coefficients (ak), variable (xk), modular reduction 

(prime number). 

Output:   secret (pivot). 

 

1) Initialization of Algorithm 

a- Select a magic cube with six magic squares of odd order exclusively. 

2) Preprocessing Constructing Magic Cube (odd order) 

a-  The magic cube starts with a Start Number (A). 

b- Choose the dimensions of the cube (N) and the amount of the difference between 

the cube numbers (D). 

3) Transmitter Key Generation (KG) 

a- Choose the Pivot element of the first magic square in the magic cube to be 

(secret) within the polynomial, equation (3.1). 

b- Conclude Six points of polynomial. 

c- Send points to six trusted subscribers. 

d- Determine the Threshold value. 

4) Generating (G) element 

a- Select the element (G) with conditions (Pivot > G > N). 

b- The selected G number should satisfy the condition of equations (3.2) and (3.3). 

c- Send the (G) number to subscribers publicly. 

5) Receiver Key Generation (KG) 

a- Reconstruct the secret again by a specified number of subscribers (Threshold) to 

get the Pivot element via Lagrange Interpolation. 

b- Equation (3.2). 

c- Equation (3.3) where the resultant integer is taken and the remainder value is 

ignored. 

d- After acquiring the properties of the magic cube (Pivot, D and N), the starting 

number (A) of the magic cube can be obtained through equation (3.8).  
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6) Reconstructing Magic Cube 

a- Reconstructed the original magic cube through the characteristics obtained by 

the participants. 

 

 

Example: 

Assume that a folded magic cube of odd order (5*5) consisting of six magic 

squares, starting by the number 3 and with a constant difference between the sequential 

numbers is 4 as shown in figure (3.1). 
 

259 231 203 295 267  159 131 103 195 167  59 31 3 95 67 

263 255 227 219 291  163 155 127 119 191  63 55 27 19 91 

287 279 251 223 215  187 179 151 123 115  87 79 51 23 15 

211 283 275 247 239  111 183 175 147 139  11 83 75 47 39 

235 207 299 271 243  135 107 199 171 143  35 7 99 71 43 

reSqua rd3  Square nd2  Square st1 

559 531 503 595 567  459 431 403 495 467  359 331 303 395 367 

563 555 527 519 591  463 455 427 419 491  363 355 327 319 391 

587 579 551 523 515  487 479 451 423 415  387 379 351 323 315 

511 583 575 547 539  411 483 475 447 439  311 383 375 347 339 

535 507 599 571 543  435 407 499 471 443  335 307 399 371 343 

e Squar th6                            Square            th5                   Square                    th4 

Dimension = 5, Difference = 4, Start = 3 

Figure 3.1 Odd Order Magic Cube with Six Dimensions 

 

The Pivot element (51) of the first magic square is selected in the magic cube to be the 

secret within a polynomial. After that select the other coefficients randomly within the 

polynomial as stated in equation (3.1). The magic cube properties are represented in the 

Shamir’s secret sharing scheme with the following important parameters: 

Where n = participants, k = threshold, D = difference. 

n = 6, k = 3, p = 89, p > s and p > n. 

                F(x) = 51 + 14 x + 6 x2    mod   89 
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As a result; six points of the polynomial are calculated and sent to six trusted 

subscribers (n) by the dealer as explained in Table (3.1). 

Table 3.1 Generated Points of 1st Algorithm According to (x) And (f (x)) axes  

 

(x) F (x) Points (x, f (x)) 

1 71 (1, 71) 

2 14 (2, 14) 

3 58 (3, 58) 

4 25 (4, 25) 

5 4 (5, 4) 

6 84 (6, 84) 

 

Compute a suitable (G) number that fits to the pivot element and the dimensions (D) of 

the cube to be (G = 23). Pivot > G, G > Dimension (N). 

51 > 23 > 5 

Distribute the generated six points to six subscribers accompanied by the element (G). 

The selection of any three points (k = 3) to reconstruct the secret (Pivot) will be 

verified: 

For Example:                 D0 = (2, 14), D1 = (4, 25), D2 = (6, 84) 

Compute the Lagrange interpolation through equations (3.4, 3.5, 3.6, and 3.7) : 

 

-  

 

Therefore, the original secret is (51). 

After obtaining the Pivot element and (G) elements, it is possible to deduce the 

dimensions (D) of the original Magic Cube, as illustrate in equation (3.2): 

51 % 23 = 5. 



Chapter Three                                                          Design and Implementation 

 

43 
 

By the same steps deduce the difference (D) between the numbers of the original Magic 

Cube according to the equation (3.3):                                                      

                                                           23 / 5 = 4. 

After getting the following parameters (Pivot, Difference and Dimension), the starting 

number (A) can be obtained by equation (3.8): 

Start Number =   = 3 

Finally, the six participants will have the ability to rebuild the original magic cube 

again as shown in Figure (3.2) below: 

 

259 231 203 295 267  159 131 103 195 167  59 31 3 95 67 

263 255 227 219 291  163 155 127 119 191  63 55 27 19 91 

287 279 251 223 215  187 179 151 123 115  87 79 51 23 15 

211 283 275 247 239  111 183 175 147 139  11 83 75 47 39 

235 207 299 271 243  135 107 199 171 143  35 7 99 71 43 

eraSqu rd3  Square nd2  Square st1 

559 531 503 595 567  459 431 403 495 467  359 331 303 395 367 

563 555 527 519 591  463 455 427 419 491  363 355 327 319 391 

587 579 551 523 515  487 479 451 423 415  387 379 351 323 315 

511 583 575 547 539  411 483 475 447 439  311 383 375 347 339 

535 507 599 571 543  435 407 499 471 443  335 307 399 371 343 

                      4th Square                                            5th Square                                                 6 th Square 

Figure 3.2 The Reconstruction of Original Odd Order Magic Cube 
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Figure 3.3 First Proposed Algorithm (Secret Sharing with Magic Cube using Lagrange 

Interpolation) 
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3.3 Second Proposed Algorithm (Secret Sharing with Magic Cube 

using Hermite Interpolation) 

This algorithm is a mixing of magic cube with secret sharing using Hermite 

interpolation, as: 

The algorithm is beginning with build a magic cube of odd order in a manner as explain 

in chapter two (2.16). The pivot element is selected from the first magic square of the 

magic cube to use it as a secret value in the polynomial, as shown in equation (3.1) to 

compute the main points ( ) and its derivatives ( ) and send them to the 

participants. Therefore, equation (3.1) becomes equation (3.9) after derivative: 

        F(x) =  + 2.  x + … + k. .     mod    prime                … (3.9) 

Magic cube properties are sent to subscribers to be rebuilt again according to some 

parameters likewise (Start value, Difference value, Pivot element and the cube order). 

The new selected element (G) is chosen under special conditions after the magic cube 

is built by the dealer. This element must be smaller than the pivot element (Pivot > G) 

and greater than the cube's dimensions (G > N). When the Modular operation is taken 

between the pivot element and the numbers smaller than it, the output will equal the 

dimensions (N) of the magic cube, as shown in equation (3.2) will be chosen 

accordingly. Also, the output of dividing the (G) element on the dimensions of the 

magic cube will represent the difference (D) value according to equation (3.3). After 

sending the points and (G) number to the participants, the Hermite interpolation is used 

to reconstruct the secret again to obtain the pivot element (secret), as illustrate in 

equations (3.10, 3.11, and 3.12): 

              (x) =             … (3.10) 

          Where 

          (x) =                                 … (3.11) 

And  

          (x) =                                                           … (3.12) 

After obtaining the pivot element, will be calculated the (Pivot Mod G) to get the 

Dimensions (N) of the Magic cube, and (G Divide N) to obtain the difference (D) 

between the Magic cube numbers. After obtaining (Pivot, Dimensions and Difference) 
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of the magic cube, it is easy to obtain the starting number (A) of the Magic cube by the 

equation regarding the equation (3.13) below:  

                         Start Number =                        …  (3.13) 

Algorithm 3. 2 Second Proposed Algorithm (Secret Sharing with Magic Cube using 

Hermite Interpolation) 

Input:  pivot element, random coefficients (ak), variable (xk), modular reduction 

(prime number). 

Output:   secret (pivot). 

1) Initialization of Algorithm 

a- Choose a magic cube with six magic squares of odd order exclusively. 

2) Preprocessing Constructing Magic Cube (odd order) 

a- The magic cube starts with a Start Number (A). 

b- Choose the dimensions of the cube (N) and the amount of the difference between 

the cube numbers (D). 

3) Transmitter Key Generation (KG) 

a- Choose the Pivot element of the first magic square in the magic cube to be 

(secret) within the polynomial, as illustrate in equation (3.1), compute the 

polynomial derivative, as shown in equation (3.9). 

b- Conclude Six points of ( ) and ( ). 

c- Send points and its derivatives to six trusted subscribers. 

d- Determine the Threshold value. 

4) Generating (G) element 

a- Choose the element (G) with conditions (Pivot > G > N). 

b- The selected G number should satisfy the condition of equations (3.2) and (3.3). 

c- Send the (G) number to subscribers publicly. 

5) Receiver Key Generation (KG) 

a- Reconstruct the secret again by a specified number of subscribers (Threshold) to 

get the Pivot element via Hermite Interpolation. 

b- Equation (3.2). 

c- Equation (3.3) where the resultant integer is taken and the remainder value is 

ignored. 
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d- After acquiring the properties of the magic cube (Pivot, D and N), the starting 

number (A) of the magic cube can be obtained through equation (3.8).  

6) Reconstructing Magic Cube 

a- Reconstructed the original magic cube through the characteristics obtained by the 

participants. 

 

Example: 

Assume that a folded magic cube of odd order (5*5) consisting of six magic 

squares, starting by the number 5 and with a constant difference between the sequential 

numbers is 3 as shown in figure (3.4). 
 

197 176 155 224 203  122 101 80 149 128  47 26 5 74 53 

200 194 173 167 221  125 119 98 92 146  50 44 23 17 71 

218 212 191 170 164  143 137 116 95 89  68 62 41 20 14 

161 215 209 188 182  86 140 134 113 107  11 65 59 38 32 

179 158 227 206 185  104 83 152 131 110  29 8 77 56 35 

Square rd3  Square nd2  Square st1 

422 401 380 449 428  347 326 305 374 353  272 251 230 299 278 

425 419 398 392 446  350 344 323 317 371  275 269 248 242 296 

443 437 416 395 389  368 362 341 320 314  293 287 266 245 239 

386 440 434 413 407  311 365 359 338 332  236 290 284 263 257 

404 383 452 431 410  329 308 377 356 335  254 233 302 281 260 

Square  ht6                 Square                       th5                               Square        th4 

Dimension = 5, Difference = 3, Start = 5 

Figure 3.4 The Odd Order Magic cube of 5*5 Dimension  

The Pivot element (41) of the first magic square is selected in the magic cube to be the 

secret within a polynomial. After that select the other coefficients randomly within the 

polynomial to produce ( ) as stated in equation (3.1). Additionally, compute the 

derivative of polynomial to deduce the ( ) as stated in equation (3.9). The magic cube 

properties are represented in the Hermite interpolation with the following important 

parameters: 

Where n = participants, k = threshold, D = difference. 

n = 6, k = 3, p = 53, p > s and p > n. 

F(x) = 41 + 9 x + 11 x2    mod   53 

And 

(x) = 9 + 22 x        mod       53 
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As a result; six points ( , ) and ( ) of the polynomial are calculated and sent to six 

trusted subscribers (n) by the dealer as explained in Table (3.2). 

 

Table 3.2 Generated Points of 2nd Algorithm According to (x) And (f (x)) axes 
 

(x) f(x) (x) Points (x, f (x)), (f’(x)) 

1 8 31 (1, 8), (31) 

2 50 0 (2, 50), (0) 

3 8 22 (3, 8), (22) 

4 41 44 (4, 41), (44) 

5 43 13 (5, 43), (13) 

6 14 35 (6, 14), (35) 

 

Compute a suitable (G) number that fits to the pivot element and the dimensions (D) of 

the cube to be (G = 18). Pivot > G, G > Dimension (N). 

41 > 18 > 5 

Distribute the generated six points to six subscribers accompanied by the element (G). 

The selection of any three points (k = 3) to reconstruct the secret (Pivot) will be 

verified: 

For Example:    

 = (1, 8, 31),     = (2, 50, 0),      = (3, 8, 22) 

Compute the Hermite interpolation: 

First compute the Lagrange interpolation through equations (3.4, 3.5, and 3.6) and their 

derivatives, as shown in equation (3.9): 

 

 (x) = x -  = -1.5 

 

-         (x) = -2x + 4 = 0 

And  

,         (x) = x -  = 1.5 

The polynomials  through equation (3.11): 

(x) = = -18 
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(x) =  = 9 

And  

(x) =  = 10 

They  are compute by equation (3.12): 

(x) =  = -9 

(x) =  = -18 

And  

(x) =  = -3 

Finally, by using equation (3.10) produce: 

 (x) = (-18*8) + (9*50) + (10*8) + (-9*31) + (-18*0) + (-3*22) = 41 

Therefore, the original secret is (41).  

After obtaining the Pivot element and (G) element, it is possible to deduce the 

dimensions (N) of the original Magic Cube, through equation (3.2): 

41 % 18 = 5. 

By following the same steps, deduce the difference (D) between the numbers of the 

original Magic Cube according to the equation (3.3): 

                                                         18 / 5 = 3. 

After getting the following parameters (Pivot, Difference and Dimension), the starting 

number (A) can be obtained by equation (3.8): 

Start Number =   = 5 
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Finally, the six participants will have the ability to rebuild the original magic cube 

again as shown in Figure (3.5) below: 

 

197 176 155 224 203  122 101 80 149 128  47 26 5 74 53 

200 194 173 167 221  125 119 98 92 146  50 44 23 17 71 

218 212 191 170 164  143 137 116 95 89  68 62 41 20 14 

161 215 209 188 182  86 140 134 113 107  11 65 59 38 32 

179 158 227 206 185  104 83 152 131 110  29 8 77 56 35 

Square rd3  Square nd2  uareSq st1 

422 401 380 449 428  347 326 305 374 353  272 251 230 299 278 

425 419 398 392 446  350 344 323 317 371  275 269 248 242 296 

443 437 416 395 389  368 362 341 320 314  293 287 266 245 239 

386 440 434 413 407  311 365 359 338 332  236 290 284 263 257 

404 383 452 431 410  329 308 377 356 335  254 233 302 281 260 

                   4th Square                                            5th Square                                           6th Square 

 

Figure 3.5 The Reconstruction of 5*5 Odd Order Magic Cube 

 

 



Chapter Three                                                          Design and Implementation 

 

51 
 

 

Figure 3.6 Second Proposed Algorithm (Secret Sharing with Magic Cube using 

Hermite Interpolation) 
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3.4 Third Proposed Algorithm (Secret Sharing with Magic Cube using 

Lagrange Interpolation) 
 

The main objective beyond the proposed method is to maintain the exchanging 

confidential information between the dealer and subscribers. The proposed method 

imposed that the share information must be strictly trusted and integrated. The 

transferred dimension to a group of trusted subscribers will move the characteristics of 

the original magic cube to all groups. 

The proposed method can be described to explain each part for the dealer and 

subscribers’ side. A magic cube is chosen with n dimensions that are considered secret 

where (secret = a0 = order) under the polynomial equation. This selected magic cube 

consists of six magical squares with any (n*n) dimension (odd, doubly and singly even 

order). When selecting the dimensions (N) of the magic cube, the factorial is computed 

for the dimension (Fact (N)) to deduce the magic cube starting value (A), as shown in 

equation (3.14) bellow:   

                                            Factorial (N) = A                                     … (3.14) 

Thereafter, the power for the dimension (Power (N)) is computed to obtain the magic 

cube and the difference (D) value between the numbers of the magic cube, as shown in 

equation (3.15): 

                                            Power (N) = D                                        … (3.15) 

After concluding the basic properties of Magic Cube (N, A and D) which will be 

compatible with the required confidential information provided by dealer and 

subscribers, the dimensions (N) of the magic cube will be the (secret) within the 

polynomial to get points (xi , yi) and then send them to the participants as shown in 

equation (3.22). 

               F (x) = (order) + a1 x + a2 x
2 + …+ ak-1 x

k-1       mod    prime           … (3.16) 

When points are received by subscribers, Lagrange interpolation is used to reconstruct 

the secret (order) as stated in the mathematical equations (3.4, 3.5, 3.6, and 3.7).  

When the participants get the secret (dimensions) of the original magic cube, they will 

calculate the factorial value for the cube-dimension (N) to get the start element (A), and 

then calculate the power for the cube-dimension to get the Difference (D) between the 

numbers of the magic cube. All participants will have the dimension value and 
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difference value for the magic cube and consequently they will be able to conclude the 

start value easily as shown in equation (3.8). 

The participants can reconstruct the original magic cube and compute the pivot element 

easily, as shown in equation (3.17). The pivot element (P) can also be deduced if the 

magic cube is (odd order). Thus, the magic constant (MC) and the magic sum (MS) of 

the magic cube can be calculated according the following mathematical equations 

(3.18) and (3.19): 

                                   Pivot (P) =                                … (3.17) 

                         Magic Constant (MC) = N*(                         … (3.18) 

                    Magic SUM (MS) = Magic Constant (MC)* Order (N)              … (3.19) 

The proposed method increased the computational complexities for the reconstruction 

process. The introduced algorithm requires additional effective parameters of magic 

cube to rebuild the secret properly. The proposed approach involves various 

mathematical comprehensions that require more mathematical computational effort. 

These extra simple operations include the folded magic cube reconstruction, factorial 

operation, and power computation in addition to secret reassembling. figure (3.9) below 

shows the main stages for the proposed algorithm.  

 

Algorithm 3.3 Third Proposed Algorithm (Secret Sharing with Magic Cube using 

Lagrange Interpolation) 

 

Input:  order, random coefficients (ak), variable (xk), modular reduction (prime 

number). 

Output:   secret (order). 

1) Initialization of Algorithm 

a- Choose a specific dimension for the magic cube (odd, singly or Doubly even 

order).                 

b- Apply the Factorial to the dimensions (N) of the magic cube to obtain the starting 

number (A). 

c- Apply the power to the dimensions (N) of the magic cube to get the difference 

(D) between the numbers of the magic cube. 

2) Preprocessing Constructing Magic Cube (odd, singly or doubly even order) 

a- Build the magic cube by starting number (A), magic cube dimensions (N), and 
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the difference (D) between the magic cube numbers. 

3) Transmitter Key Generation (KG) 

a- Choose the magic cube order to be (secret) within the polynomial, as shown in 

equation (3.16). 

b- Conclude six points of polynomial. 

c- Send points to six trusted subscribers. 

d- Determine the Threshold value. 

4) Receiver Key Generation (KG) 

a- Reconstruct the secret again by a specified number of subscribers (Threshold) to 

get the original magic cube order (N) via Lagrange Interpolation. 

b- Cube dimensions (N) are the secret, (secret = a0 = order). 

c- Compute equation (3.14) of the magic cube. 

d- Compute equation (3.15) of the magic cube.  

5) Reconstructing Magic Cube 

b- Reconstruct the original magic cube through the characteristics obtained by 

the participants. 

c- Calculate the magic constant (MC) of the magic cube by equation (3.18). 

d- Calculate the magic sum (MS) of the magic cube by equation (3.19). 

e- Calculate the pivot element of (odd order) magic cube by equation (3.17). 

 

Example: 

Assume that there is a magic cube of (doubly even order) that consists of six 

magical square arrays. The factorial mathematical operation is taken for magic cube 

dimension (N) to get the starting number (A) in magic cube construction. Additionally, 

the power mathematical operation is computed for the dimension (N) value in order to 

determine the difference (D) values between the numbers of the magic cube, as 

illustrated in Figure (3.7). The main parameters can be determined as follows: 

The cube dimension with fourth order of n*n = 4*4*4*4*4*4. 

Factorial (4) = 24, the start number (A) of the magic cube is = 24 

Power (4) = 16, the difference (D) between the numbers of the magic cube is = 16. 
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 728 568 552 776  472 312 296 520  206 56 40 264  

 648 680 696 600  392 424 440 344  136 168 184 88  

 712 616 632 664  456 360 376 408  200 104 120 152  

 536 760 744 584  280 504 488 328  24 248 232 72  

             3rd Square            2nd Square     1st Square 

 1496 1336 1320 1544  1240 1080 1064 1288  984 824 808 1032  

 1416 1448 1464 1368  1160 1192 1208 1112  904 936 952 856  

 1480 1384 1400 1432  1224 1128 1144 1176  968 872 888 920  

 1304 1528 1512 1352  1048 1272 1256 1096  792 1016 1000 840  

Square ht6      Square                                  th5                                  Square  th4 

Dimension = 4, Difference = 16, Start number = 24 

Figure 3.7 Doubly Even Magic Cube  

 

Select the magic cube of fourth order to be the (secret) within the polynomial, and then 

select the other parameters randomly within the polynomial, as shown in equation 

(3.16). The magic cube properties are represented in the Shamir’s secret sharing 

scheme: 

Where n = participants, k = threshold, d = difference. 

n = 6, k = 3, p = 19, p > s and p > n. 

F(x) = 4 + 9 x + 13 x2    mod   19 

Six points of the polynomial are computed, concluded and sent to six trusted 

subscribers (n) by the dealer, as illustrated in table (3.3) bellow. 

 

Table 3.3 Generated Points of 3rd Algorithm According to (x) And (f (x)) axes 

( x ) F ( x ) Points ( x, f (x)) 

1 7 (1, 7) 

2 17 (2, 17) 

3 15 (3, 15) 

4 1 (4, 1) 

5 13  (5, 13) 

6 13  (6, 13) 
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The dealer will determine the allowed threshold computation that the participants will 

need for reconstructing the secret properly. The dealer will distribute the six 

polynomial points among six subscribers. According to the threshold idea, any three of 

the six participants (k = 3) will be able to reconstruct the secret (order): 

To prove that, choose three polynomial points as follows:  

D0 = (1, 7), D1 = (2, 17), D2 = (3, 15) 

Compute the Lagrange interpolation using equations (3.4, 3.5, 3.6, and 3,7): 

 

-  

 

Therefore, the original secret is (4). 

After obtaining the (order = 4), it is possible to compute the factorial and the power to 

(4) using equations (3.14) and (3.15): 

The order of the magic cube is = 4 

Factorial (4) = 24, the start number (A) of the magic cube is = 24. 

Power (4) = 16, the difference (D) between the numbers of the magic cube is = 16. 

The conclusion of order, difference and start number of the original magic cube, the 

magic constant (MC) and the magic sum (MS) can be obtained by using equations 

(3.18) and (3.19). 
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The six participants can reconstruct the original (Doubly even order) magic cube, as 

illustrated in Figure (3.8). 

 728 568 552 776  472 312 296 520  206 56 40 264  

 648 680 696 600  392 424 440 344  136 168 184 88  

 712 616 632 664  456 360 376 408  200 104 120 152  

 536 760 744 584  280 504 488 328  24 248 232 72  

             3rd Square            2nd Square     1st Square 

 1496 1336 1320 1544  1240 1080 1064 1288  984 824 808 1032  

 1416 1448 1464 1368  1160 1192 1208 1112  904 936 952 856  

 1480 1384 1400 1432  1224 1128 1144 1176  968 872 888 920  

 1304 1528 1512 1352  1048 1272 1256 1096  792 1016 1000 840  

                  4th Square                                   5th Square                                          6th Square 

Figure 3.8 The Reconstructed Magic Cube 
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Figure 3.9 Third Proposed Algorithm (Secret Sharing with Magic Cube using Lagrange 

Interpolation) 
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3.5 Fourth Proposed Algorithm (Secret Sharing with Magic Cube 

using Newton Divided Difference Interpolation) 
 

A magic cube is chosen with n dimensions that are considered secret where 

(secret = a0 = order) under the polynomial equation. This selected magic cube consists 

of six magical squares with any (n*n) dimension (odd, doubly and singly even order). 

When selecting the dimensions (N) of the magic cube, the factorial is computed for the 

dimension (Fact (N)) to deduce the magic cube starting value (A), as shown un equation 

(3.14).   

Thereafter, the power for the dimension (Power (N)) is computed to obtain the magic 

cube and the difference (D) value between the numbers of the magic cube, as illustrate 

in equation (3.15). 

After concluding the basic properties of Magic Cube (N, A and D) which will be 

compatible with the required confidential information provided by dealer and 

subscribers, the dimensions (N) of the magic cube will be the (secret) within the 

polynomial to get points (  , ) and then send them to the participants as shown in 

equation (3.16). 

When points are received by subscribers, Newton’s Divided Difference Interpolation 

Formula is used to reconstruct the secret (order) as stated in the following mathematical 

equations (3.20, 3.21, 3,22, and 3,23):   

 

      

                                                                                                  … (3.20) 

     )                                                             … (3.21)     

                                                                                                    … (3.22) 

     )                                                  ⁝ 

                               ⁝ 

⁝                                                                    ⁝ 

                               ⁝ 
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     ) 

 

 =  +   +    + … + 

…                                        …(3.23) 

When the participants get the secret (dimensions) of the original magic cube, they will 

calculate the factorial value for the cube-dimension (N) to get the start element (A), and 

then calculate the power for the cube-dimension to get the Difference (D) between the 

numbers of the magic cube. All participants will have the dimension value and 

difference value for the magic cube and consequently they will be able to conclude the 

start value easily as shown in equation (3.8). 

The participants can reconstruct the original magic cube and compute the pivot element 

easily. The pivot element (P) can also be deduced if the magic cube is (odd order). 

Thus, the magic constant (MC) and the magic sum (MS) of the magic cube can be 

calculated according to the mathematical equations (3.13, 3.18, and 3,19).                     

The proposed method increased the computational complexities for the reconstruction 

process. The introduced algorithm requires additional effective parameters of magic 

cube to rebuild the secret properly. The proposed approach involves various 

mathematical comprehensions that require more mathematical computational effort. 

These extra simple operations include the folded magic cube reconstruction, factorial 

operation, and power computation in addition to secret reassembling. Figure (3.13) 

below shows the main stages for the proposed algorithm.  

 

Algorithm 3.4 Fourth Proposed Algorithm (Secret Sharing with Magic Cube 

using Newton Divided Difference Interpolation) 

 

Input:  order, random coefficients (ak), variable (xk), modular reduction (prime 

number). 

Output: secret (order). 

1) Initialization of Algorithm 

a- Choose a specific dimension for the magic cube (odd, singly or Doubly even 

order).                 

b- Apply the Factorial to the dimensions (N) of the magic cube to obtain the starting 

number (A). 
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c- Apply the power to the dimensions (N) of the magic cube to get the difference 

(D) between the numbers of the magic cube. 

2) Preprocessing Constructing Magic Cube (odd, singly or doubly even order) 

a- Build the magic cube by starting number (A), magic cube dimensions (N), and 

the difference (D) between the magic cube numbers. 

3) Transmitter Key Generation (KG) 

b- Choose the magic cube order to be (secret) within the polynomial, as illustrate in 

equation (3.16). 

c- Conclude six points of polynomial. 

d- Send points to six trusted subscribers. 

e- Determine the Threshold value. 

4) Receiver Key Generation (KG) 

a- Reconstruct the secret again by a specified number of subscribers (Threshold) to 

get the original magic cube order (N) via Newton’s Divided Difference 

Interpolation Formula. 

b- Cube dimensions (N) are the secret, (secret = a0 = order). 

c- Compute equation (3.14) of the magic cube. 

d- Compute equation (3.15) of the magic cube.  

5) Reconstructing Magic Cube 

a- Reconstruct the original magic cube through the characteristics obtained by the 

participants. 

b- Calculate the magic constant (MC) of the magic cube through equation (3.18). 

c- Calculate the magic sum (MS) of the magic cube through equation (3.19). 

d- Calculate the pivot element of (odd order) magic cubes through equation (3.17). 

 

Example: 

Assume that there is a magic cube of (singly even order) that consists of six 

magical square arrays. The factorial mathematical operation is taken for magic cube 

dimension (N) to get the starting number (A) in magic cube construction. Additionally, 

the Power mathematical operation is computed for the dimension (N) value in order to 

determine the difference (D) values between the numbers of the magic cube, as 

illustrated in Figure (3.10). The main parameters can be determined as follows: 

The cube dimension with fourth order of n*n = 6*6*6*6*6*6.                        
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Factorial (6) = 720, the start number (A) of the magic cube is = 720. 

Power (6) = 36, the difference (D) between the numbers of the magic cube is = 36 

1944 720 900 1620 1368 1548  3240 2016 2196 2916 2664 2844  4536 3312 3492 4212 3960 4140 

792 1836 936 1440 1512 1584  2088 3132 2232 2736 2808 2880  3384 4428 3528 4032 4104 4176 

1800 1008 756 1476 1656 1404  3096 2304 2052 2772 2952 2700  4392 3600 3348 4068 4248 3996 

972 1692 1872 1296 1044 1224  2268 2988 3168 2592 2340 2520  3564 4284 4464 3888 3636 3816 

1764 864 1908 1116 1188 1260  3060 2160 3204 2412 2484 2556  4356 3456 4500 3708 3780 3852 

828 1980 1728 1152 1332 1080  2124 3276 3024 2448 2628 2376  3420 4572 4320 3744 3924 3672 

1st square  2nd square  3rd square 

5832 4608 4788 5508 5256 5436  7128 5904 6084 6804 6552 6732  8424 7200 7380 8100 7848 8028 

4680 5724 4824 5328 5400 5472  5976 7020 6120 6624 6696 6768  7272 8316 7416 7920 7992 8064 

5688 4896 4644 5364 5544 5292  6984 6192 5940 6660 6840 6588  8280 7488 7236 7956 8136 7884 

4860 5580 5760 5184 4932 5112  6156 6876 7056 6480 6228 6408  7452 8172 8352 7776 7524 7704 

5652 4752 5796 5004 5076 5148  6948 6048 7092 6300 6372 6444  8244 7344 8388 7596 7668 7740 

4716 5868 5616 5040 5220 4968  6012 7164 6912 6336 6516 6264  7308 8460 8208 7632 7812 7560 

           4th Square                                 5th Square                                  6th Square                    

Dimension = 6, Difference = 36, Start number = 720 

Figure 3.10 Singly Even Magic cube  

 

Select the magic cube of sixth order to be the (secret) within the polynomial, and then 

select the other parameters randomly within the polynomial, as shown in equation 

(3.16). The magic cube properties are represented in the Newton’s Divided Difference 

Interpolation Formula: 

Where n = participants, k = threshold, d = difference. 

n = 6, k = 3, p = 11, p > s and p > n. 

F(x) = 6 + 8 x + 5 x2    mod   11 

Six points of the polynomial are computed, concluded and sent to six trusted 

subscribers (n) by the dealer, as illustrated in table (3.4). 

 

Table 3.4 Generated Points of 4th Algorithm According to (x) And (f (x)) axes 

 

( x ) F ( x ) Points ( x, f (x)) 

1 8 ( 1, 8 ) 

2 9 ( 2, 9 ) 

3 9 ( 3, 9 ) 

4 8 ( 4, 8 ) 

5 6  ( 5, 6 ) 

6 3  ( 6, 3 ) 
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The dealer will determine the allowed threshold computation that the participants will 

need for reconstructing the secret properly. The dealer will distribute the six 

polynomial points among six subscribers. According to the threshold idea, any three of 

the six participants (k = 3) will be able to reconstruct the secret (order): 

To prove that, choose three polynomial points as follows:  

D0 = (2, 9),   D1 = (4, 8),   D2 = (6, 3) 

 

Compute the Newton’s Divided Difference Interpolation using equations (3.20, 3.21, 

3.22, and 3.23): 

 

 = - 0.5 

                                         = - 0.5 

 = - 2.5 

Finally, 

 =  +   +    = 6 

Therefore, the original secret is (6). 

After obtaining the (order = 6), it is possible to compute the factorial and the power to 

(6): 

The order of the magic cube is = 6 

Factorial (6) = 720, the start number (A) of the magic cube is = 720. 

Power (6) = 36, the difference (D) between the numbers of the magic cube is = 36. 

The conclusion of order, Difference and Start number of the original magic cube, the 

magic constant (MC) and the magic sum (MS) can be obtained by using equations 

(3.18) and (3.19). 
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The six participants can reconstruct the original (Singly even order) magic cube, as 

illustrated in Figure (3.11). 

1944 720 900 1620 1368 1548  3240 2016 2196 2916 2664 2844  4536 3312 3492 4212 3960 4140 

792 1836 936 1440 1512 1584  2088 3132 2232 2736 2808 2880  3384 4428 3528 4032 4104 4176 

1800 1008 756 1476 1656 1404  3096 2304 2052 2772 2952 2700  4392 3600 3348 4068 4248 3996 

972 1692 1872 1296 1044 1224  2268 2988 3168 2592 2340 2520  3564 4284 4464 3888 3636 3816 

1764 864 1908 1116 1188 1260  3060 2160 3204 2412 2484 2556  4356 3456 4500 3708 3780 3852 

828 1980 1728 1152 1332 1080  2124 3276 3024 2448 2628 2376  3420 4572 4320 3744 3924 3672 

1st square  2nd square  3rd square 

5832 4608 4788 5508 5256 5436  7128 5904 6084 6804 6552 6732  8424 7200 7380 8100 7848 8028 

4680 5724 4824 5328 5400 5472  5976 7020 6120 6624 6696 6768  7272 8316 7416 7920 7992 8064 

5688 4896 4644 5364 5544 5292  6984 6192 5940 6660 6840 6588  8280 7488 7236 7956 8136 7884 

4860 5580 5760 5184 4932 5112  6156 6876 7056 6480 6228 6408  7452 8172 8352 7776 7524 7704 

5652 4752 5796 5004 5076 5148  6948 6048 7092 6300 6372 6444  8244 7344 8388 7596 7668 7740 

4716 5868 5616 5040 5220 4968  6012 7164 6912 6336 6516 6264  7308 8460 8208 7632 7812 7560 

            4th Square                                 5th Square                                   6th Square 

 

Figure 3.11 The Reconstructed Singly Even Magic Cube 
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Figure 3.12 Fourth Proposed Algorithm (Secret Sharing with Magic Cube using 

Newton Divided Difference Interpolation) 
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In the four proposed algorithms three types of magic cubes were used. Three 

mathematical methods of numerical analysis were used to protect the secret keys. 

Below is a table (3.5) showing the characteristics of the four proposed algorithms. 

 

Table 3.5. Comparison among the Proposed Algorithms According to (Secret Sharing 

and Magic Cube Properties)   
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Odd Math 3-Order Folding 6-D 5 6-points K = 3 
Lagrange 

Interpolation 

Odd Math 3-Order Folding 6-D 5 6-points K = 3 
Hermite 

Interpolation 

Doubly 

Even 
Math 4-Order Folding 6-D 4 6-points K = 3 

Lagrange 

Interpolation 

Singly 

Even 
Math 6-Order Folding 6-D 6 6-points K = 3 

Divided 

Difference 

Interpolation 

 

According to above table the second algorithm has many qualities which makes 

it the best algorithm to be suggested in this chapter. These qualities are the Hermite 

interpolation method has great complexities to protect confidential information. In 

addition to the derivative used in this method where the stages of complexity and 

calculations necessary to rebuild the secret keys by users. As will as the complexity 

added by (G element) in the algorithm which in case of loss or stolen of this element no 

one can benefit from stealing it as long as the secret key is unknown to the 

cryptanalyst.   
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Chapter Four 

Results and Analysis  

4.1 Introduction 

The implemented secret sharing algorithms rely on the interaction between the 

secret sharing algorithm and the unique properties possessed by magic cubes and the 

mathematical processes among them. The main idea of the implemented algorithms 

was based on increasing the complexity of the properties provided by magic cube 

properties to preserve confidential information and to resist any risks related to harmful 

attacks and security aspects. The design of the implemented algorithms is based on 

providing a high degree of security for the secret keys between the dealer and the 

trusted subscribers. Therefore, in this chapter the analysis of confidentiality, 

advantages, limitations and applications of the implemented algorithms will be 

examined. 

 

4.2 Graphical User Interface (GUI) 

This study is designed by simple graphical interfaces that allow the user to 

choose one of the implemented algorithms and use them in the process of managing 

secret keys. In addition, the user is given the freedom to choose one of the 

mathematical numerical analysis methods (Lagrange, Hermite, Divided difference) for 

the purpose of sharing the secret. The dimensions of the magic cube, which is built by 

the user if it is (odd, singly or double even), which contains all the confidential and 

sensitive information, can also be chosen easily. The secret sharing algorithms 

implemented in this study designed by Microsoft Visual Studio 2017 (C sharp 

language) include a graphic environment in order to make it easier for the user to select 

and use the appropriate algorithm, as illustrate in figures (4.1, and 4.2). Computer 

specification used in programming algorithms (processor core (TM) i7-77HQ CPU @ 

2.80 GHz, Ram 16.0 GB, 64 bit-Operating system, HD 1TB, windows10, and 4GB 

VGA). This design includes all the necessary mathematical operations in addition to 

the methods of creating magic cubes in all their dimensions, as well as all numerical 

analysis methods that have been used. 
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Figure 4.1. Secret Sharing with Magic Cube algorithms (Building the Secret Keys) 

 

 

Figure 4.2. Secret Sharing with Magic Cube algorithms (Rebuilding the Secret Keys) 
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4.3 The Analysis of Interpolation Methods 

Each method of numerical analysis has a set of characteristics that distinguishes 

it from other methods. Therefore, Lagrange interpolation requires very large 

computation operations and its use can be risky. Lagrange interpolation greatly 

increases the problem of finding coefficients so it only takes (linear time) to find these 

coefficients. This is good for Lagrange interpolation if they need the same set of points 

in frequently manner, but this process does not benefit in the case of repeated the 

calculations more than once. In other words, Lagrange interpolation is much better 

when many information sets have to be made on the same data points. Often, Lagrange 

interpolation is a theoretical tool used to prove theorems, because it is ineffective when 

adding a new point (which requires calculating the boundary many times again, from 

zero) and is also numerically unstable.  

In contrast to the Lagrange Interpolation, Newton divided difference formula is 

much more efficient because it does not require very large calculations, the coefficients 

can be obtained at a reasonable rate square time and the evaluations are more stable. 

The fact that there is no need to re-calculate the evaluations for many of the 

interpolation, made Newton divided difference formula more efficient than the 

Lagrange Interpolation. In the sense that if new point is added to the calculations, it is 

not required to return the calculation from zero, but calculate the new point only, so it 

is stable numerically and effectively from the point of calculation.  

Newton divided difference formula does not require a long-time calculation or prior 

knowledge of the number of points in the solution so it is more efficient and useful than 

Lagrange Interpolation. 

Returning to Hermite interpolation, it possesses characteristics no less than its 

counterparts (Lagrange and Newton divided difference) because it possesses a double 

computational complexity that exists in both previous ways because it contains 

(derivative of polynomial and points), so it strengthens exists in its derivatives. Without 

an existing derivative result, no solutions can be made to arithmetic operations so the 

process of reconstructing the secret is twice as complicated as the previous two 

methods. Hermite interpolation provides double protection for confidential information 

and has the highest accuracy in analysis and arithmetic complexity over Lagrange 

interpolation.  
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All the previously methods are using the same number of (coefficients) and it 

deal with points (equal and unequal) dimension. Through the characteristics mentioned 

above, the user is shown the most efficient way suitable to his work from the three-

interpolation mentioned to be used in the applications of share sharing. Through the 

characteristics mentioned for each of the previous three numerical analysis methods 

which uses the same number of (coefficients) and it deal with points (equal and 

unequal) dimension.  

 

4.4 Security Analysis for the Implemented Secret Sharing Algorithms 

The implemented algorithms are based on finding suitable and useful solutions 

to mathematical problems facing the secret sharing algorithms to maintaining 

confidential information. Therefore, all algorithms are designed to provide a level of 

safety and high efficiency. This part of the study will include the analytical aspects of 

the security of implemented secret sharing algorithms. 

 

4.4.1 The Security Analysis of The First Algorithm (Secret Sharing with Magic 

Cube using Lagrange Interpolation) 

The introduced method is the result of merging two completely different 

mathematical foundations. The proposed method is adopted to apply high degree of 

confidentiality for trusting the information sharing and managing. Basically, the 

building of N*N magic cube depends on an odd order of folded magic square with six 

dimensions. The magic cube construction requires several impact parameters such as 

(Dimension, Pivot element, Difference Value and the Start Value). These parameters 

have a vital role in the reconstruction process of the magic cube secret scheme. 

 The efficiency of the implemented system depends on how to transfer the 

properties of the magic cubes by sharing the secret (pivot element) among a group of 

trusted subscribers. The reliability and the efficiency of the implemented method faded 

away the security concerns about distribution the secret on untrusted server. The 

mixture of magic cube mathematical base and the Lagrange interpolation mathematical 

problem introduces high mathematical complexity.  

The strength of the mathematical complexity will prevent the attacker or 

intruder from revealing any information about the polynomial equation or magic cube 

parameters. Thus, since the attacker will need sufficient information for reconstructing 
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the magic cube or rebuilding the secret, he tries to disclose the magic cube parameters 

throughout the leakage information from the interpolation equation. The attacker will 

need to know at least three parameters from four unknown parameters in order to 

recover the secret. This means the implemented method gives another security layer for 

the secret scheme which is ultimately strong and secret. However, it is easy to alter all 

the parts (or even k) without modifying the secret and without discovering any 

information about the secret. The replacement or alteration process is occurred through 

the selection of a new Lagrange interpolation polynomial f (x) and a new set of 

participants (shares). 

Therefore, in the event of loss or theft part of this confidential information, it 

will be impossible to retrieve the secret key. Put differently, if the shares are less than 

(k-threshold), it will be very hard to rebuild the secret key and to reconstruct the 

original magic cube. The magic cube comprehension provides an additional security 

layer that requires high estimation probability and high guessing strategy with a large 

search space. Since the attacker has to predicate the correct dimension and the first 

value (starting number) for the building magic cube, he or the cryptanalyst also will 

need the amount of consecutive difference value between the numbers. The process of 

merging magic cubes with (secret sharing) provides more reliability and efficiency.  

The submitted method is perfectly secure and gives a robust idea to distribute 

the properties of the magic cube to a group of trusted subscribers. Finally, the 

participants will try to get the secret (pivot element) from the Lagrange interpolation 

equation then reconstruct magic cube properly. The implemented method doesn’t give 

any leakage information for the pivot element or secret coefficients. Thus; it can resist 

any attempts to predict the secret or computing the polynomial coefficients of degree 

(k-1). 

 

4.4.2 The Security Analysis of The Second Algorithm (Secret Sharing with Magic 

Cube using Hermite Interpolation) 

The implemented algorithm is produced by mixing mathematical properties of 

the secret sharing with the mathematical properties of magic cubes. This algorithm was 

implemented for the purpose of providing the highest degree of protection for 

confidential information transmitted over internet networks. A magic cube (odd order) 
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composed of N*N was built. The mathematical properties of magic cubes play a major 

role in the process of protecting sensitive information through impact parameters 

required to construct any magic cube (start number, difference value, dimension, pivot 

element). 

The efficiency of this algorithm depends on how the mathematical properties of 

the magic cubes are transferred by the secret sharing. The (Pivot Element) plays an 

important role in this process, because it will be considered a secret and embedded in 

the polynomial and transferred to a group of trusted participants. 

The use of Hermite Interpolation in the process of the secret sharing with the 

mathematical properties of Magic Cubes has been added dramatically mathematical 

complexity to the algorithm. Hermite interpolation made the derivative of the 

polynomial and then sends all points with their derivatives to subscribers through 

confidential communication channels. After the trusted participants have obtained the 

points and their derivatives, the original secret (pivot element) is reconstructed to 

obtain the mathematical properties of the original magic cube to rebuild it. 

The mathematical complexity provided by the derivative may be complex 

relative to the trusted participants during the reconstruction of the original secret, but 

this complexity will provide significant protection for confidential information against 

any risk by adversaries and unauthorized subscribers. Integrating the mathematical 

complexity provided by Hermite interpolation with the mathematical properties of 

Magic Cube will be a major obstacle to any cryptanalyst trying to predict secret key 

parts. In addition, the opponent must get all the magic cube's parameters (start number, 

difference value, dimension, pivot element) so that he can rebuild it to get the secret 

information. 

 

4.4.3 The Security Analysis of The Third Algorithm (Secret Sharing with Magic 

Cube using Lagrange Interpolation) 

 

In the implemented study, a high degree of confidentiality has been applied to 

protect information by integrating two different algorithms of magic cube 

reconstruction algorithm and secret sharing algorithm. The process of building magic 

cubes depends on complex techniques, and these techniques give a powerful magic 

cube construction against any malicious activity. This study is based on how to transfer 
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the properties of magic cubes to a group of trusted participants during the secret sharing 

process. The confidentiality of information is an important part that is offered by 

complex mathematical relationships in magic cubes. The magic cube characteristics 

give additional secure layer against the active attacks. 

This complexity relies on hiding the dimension cube via the interpolation 

polynomial equation. This notation prevents the intruder from knowing the dimensions 

of the magic cube, the starting number or even the amount of difference value among 

the magic cube numbers. The process of integrating magic cubes with a sharing secret 

provides great challenge in key management protocols. Furthermore; the preservation 

of confidential information by distributing the properties of the magic cube to a group 

of trusted subscribers acts a real difficulty. The implemented algorithm produced 

several secure layers of computational complexity that require high potential analysis. 

It embedded the magic cube construction in the secret value to facilitate the 

reconstruction process of the magic cube dimensions on the part of participants. Thus, 

the implemented system resists any attempts by cryptanalyst to predict the magic cube 

dimensions, the starting number, or the difference value between the elements or any 

parameter. In this respect, the intruder tries to get some leakage information to deduce 

the secret value and consequently discovers the dimension of magic cube. In this sense, 

the factorial and power computation increase the protection stages, because it will 

increase the difference between the numbers, and make it difficult to predict the 

difference between the elements of the magic cube. However, there are many previous 

studies that have been published by researchers on magic cubes but they have not 

achieved the desired goals.  

 

4.4.4 The Security Analysis of The Fourth Algorithm (Secret Sharing with Magic 

Cube using Newton Divided Difference Interpolation) 

In the implemented algorithm, the maximum protection of sensitive information 

has been applied by the integration of two different mathematical systems, one of 

which is the other, the secret and magic cubes. The construction of the magic cube is 

done through methods and techniques that give it strength and mathematical 

complexity in the face of any possible danger to which the information is exposed. The 

focus of this algorithm is how to transfer the properties of the magic cubes to a group 
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of trusted subscribers by secret mode. The process of transition is done by making the 

(Dimension) of the magic cube the secret in the polynomial and then sending the points 

to the subscribers. 

After the participants get the points, the Newton Divided Difference Interpolation 

formula are used for the purpose of rebuilding the original secret (Dimension) and then 

can be obtained all magic cube parameters for the purpose of rebuilding the original 

magic cube. Also, the factorial and power provided the algorithm with a high degree of 

complexity, due to the inability of the opponent to predict the value of the starting 

number or the amount of difference between the elements of the magic cube.  

Thus, the obvious focus of the method of this research is the process of 

integrating magic cubes (with any order) along with the sharing of the secret key to 

provide a compact mathematical system, which contains multi security layers and high 

computational complexity.  As a result, the attacker will be unable to compute the 

secret value even if part of secret information lost or theft according to the threshold (k-

1). This means that there are no sufficient data to rebuild the secret key and to get the 

original magic cube.  

The algorithms implemented in this study are based on the security of the 

Shamir’s secret sharing scheme and the second-degree boundary polynomials in 

addition to numerical analysis methods with the mathematical properties of the magic 

cubes. The table (4.1) below showing an analysis of the strength and complexity of the 

implemented algorithms. 

Table 4.1 A Comparison of the Strength and Complexity Analysis of the 

Implemented Algorithms with Shamir’s model 
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4.5 Investigation and Analysis about Prime Number Affect  

The strength and complexity of secret sharing scheme lies in the size of finite 

field arithmetic. The size of p   P, (p > S) and (p > n) is used. The prime number must 

be very large, greater than the number of subscribers (n) and ai. The calculation of 

points should be (x, f(x) mod p) instead of (x, f(x)). So, each participant will receive one 

point and will be aware of the prime number (publicly), therefore, the prime number 

should not be small to be predicted and discovered by opponents. 

Assuming that the secret and the coefficients are as follows: 

(S = 1234, a1 = 166, a2 = 94) Where (a0 = S). 

The Polynomial that will produce points are: 

f (x) = 1234 + 166 x + 94 x2  

Six points will be produced from this Polynomial: 

Bx-1 = (x, f(x)), B0 = (1, 1494), B1 = (2, 1942), B2 = (3, 2578), B3 = (4, 3402), B4 = (5, 

4414), B5 = (6, 5614). 

It is possible to choose any three points randomly to reconstruct the secret: 

(x0, y0) = (2, 1942), (x1, y1) = (4, 3402), (x2, y2) = (5, 4414). 

Lagrange interpolation will be calculated: 
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Therefore, 

 

The secret is the constant part of the Polynomial which equals 1234. 

The problem (Cryptoanalysis): 

when using only integer numbers in the polynomial, it will be dangerous to the 

secret because it is possible to be revealed easily. 

If one of the opponents managed to steal two points out of a total of six, and 

remaining one point to reveal the original secret, note that k = 3, n = 6, f(x) = S + a1 x+ 

ak-1 x
k-1, a0 = S, ai  N. He needs to know more information about the secret so he will 

do the following: 

i. Fills the f(x) formula with S and the value of k: f(x) = S + a1 x + … + a3-1 x
3-1  ➔ 

f(x) = S + a1 x + a2 x
2. 

ii. Fills (i) with values of D0’s x and f(x): 1494 = S + a1 1 + a2 1
2 ➔ 1494 = S + a1 

+ a2. 

iii. Fills (i) with the values of D1’s x and f(x): 1942 = S + a1 2 + a2 2
2 ➔ 1942 = S + 

2 a1 + 4 a2. 

iv. Does (iii)-(ii): (1942 – 1494) = (S – S) + (2 a1 – a1) + (4 a2 – a2) ➔ 448 = a1 + 

3a2 and rewrites this as a1 = 448 – 3a2. 

v. Know that a2 ∈ ℕ so she starts replacing a2 in (iv) with 0, 1, 2, 3, … to find all 

possible values for a1: 

• a2 = 0 ➔ a1 = 448 – 3 * 0 = 448 

• a2 = 1 ➔ a1 = 448 – 3 * 1 = 445 

• a2 = 2 ➔ a1 = 448 – 3 * 2 = 442 
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•  

•  

•  

• a2 = 148 ➔ a1 = 448 – 3 * 148 = 4 

• a2 = 149 ➔ a1 = 448 – 3 * 149 = 1 

 

After a2 = 149, the opponent will stop here because he knows if he continues to solve, 

he will get negative values for a1 (This is impossible because a1  N) the opponent will 

now conclude that a2  [0, …., 149]. 

vi. Replaces a1 by (iv) in (ii): 1494 = S + (448 – 3a2) + a2 ➔ S = 1046 + 2a2. 

vii.  Replaces in (vi) a2 by the values found in (v) so she gets S ∈ [1046 + 2 * 0, 

1046 + 2 + 1, ………, 1046 + 2 *149]. 

Which will lead to information: the secret (S)  [1046, 1048, ……, 1344], he now owns 

150 numbers only to guess the secret instead of the finite numbers. 

The solution to this problem is to use a prime number to complicate the process 

of detecting the secret or predicting it by the opponents and also it must be sufficiently 

large.i.e, larger than the number of participants and ai in the polynomial.  

Assuming that the prime number = 1613 was chosen in the same polynomial, the points 

would be as follows: B0 = (1, 1494), B1 = (2, 329), B2 = (3, 965), B3 = (4, 176), B4 = (5, 

1188), B5 = (6, 775). 

If the opponent has two points B0 = (1,1494), B1 = (2, 329), k = 3, n = 6, f(x) = S + a1 

x+ ak-1 x
k-1 mod p, a0 = S, ai  N.   

He needs to know more information about the secret so he will do the following: 

i. Fills the f(x) formula with S and the value of k and P: f(x) = S + a1 x + … + a3-1 x
3-

1 mod 1613 ➔  f(x) = S + a1 x + a2 x
2 – 1613mx: mx ∈ ℕ 

ii. Fills (i) with values of D0’s x and f(x): 1494 = S + a1 1 + a2 1
2 – 1613m1 ➔  1494 

= S + a1 + a2 
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iii. Fills (i) with the values of D1’s x and f(x): 1942 = S + a1 2 + a2 2
2 – 1613m2 ➔ 

1942 = S + 2 a1 + 4 a2 – 1613m1  

iv. Does (iii)-(ii): (1942 – 1494) = (S – S) + (2 a1 – a1) + (4 a2 – a2) + (1613m1 – 

1613m2) ➔ 448 = a1 + 3a2 + 1613(m1 – m2) and rewrites this as a1 = 448 – 3a2 – 

1613(m1 – m2) 

v. Know that a2 ∈ ℕ so she starts replacing a2 in (iv) with 0, 1, 2, 3, … to find all 

possible values for a1: 

• a2 = 0 ➔ a1 = 448 – 3 * 0 – 1613(m1 – m2) = 448 – 1613(m1 – m2)  

• a2 = 1 ➔ a1 = 448 – 3 * 1 – 1613(m1 – m2) = 445 – 1613(m1 – m2)  

• a2 = 2 ➔ a1 = 448 – 3 * 2 – 1613(m1 – m2) = 442 – 1613(m1 – m2)  

•  

In this case the opponent cannot be stopped because the (m1 – m2) can be any number, 

even if it is negative it is (m2 > m1), there are an infinite value for a1. Because the 

number is prime, the opponent cannot get any information about the secret. 

4.6 The Comparison of Implemented Algorithms According to Prime 

Number usage 

In the implemented algorithms, the prime numbers were chosen in varying 

sizes. This choice was made clear. The more important the prime number is, the results 

are greater and make it more difficult to predict or know any information about the 

secret. A comparison was made between all the implemented algorithms in terms of 

mathematical computation foe the key space. Each time three values of (Xi) for each 

algorithm were compared with other algorithms and observed the results. In the first 

comparison, three values were selected for the x = (1, 2, 3) of all the algorithms and the 

results were compared with each other in terms of complexity, as illustrated in figure 

(4.3): 

 

 

 

 

 

. 

. 

. 
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Table 4.2 Selected Values Where the (x = 1, 2, 3)  

1st Algorithm 2nd Algorithm 3rd Algorithm 4th Algorithm 

x y x y x y y' x y 

1 71 1 7 1 8 31 1 8 

2 14 2 17 2 50 0 2 9 

3 58 3 15 3 8 22 3 9 

 

 

Figure 4.3. Comparison of Key Space for (x) Values Mod Prime 

In the second comparison, three values were selected for the x = (4, 5, 6) of all the 

algorithms and the results were compared with each other in terms of complexity, as 

illustrated in figure (4.4): 

Table 4.3 Selected Values Where the (x = 4, 5, 6) 

1st Algorithm 2nd Algorithm 3rd Algorithm 4th Algorithm 

x y x y x y y' x y 

4 25 4 1 4 41 44 4 8 

5 4 5 13 5 43 13 5 6 

6 84 6 13 6 14 35 6 3 
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Figure 4.4. Comparison of Key Space for (x) Values Mod Prime 

In the third comparison, three values were selected for the x = (2, 4, 6) of all the 

algorithms and the results were compared with each other in terms of complexity, as 

illustrated in figure (4.5): 

Table 4.4 Selected Values Where the (x = 2, 4, 6) 

1st Algorithm 2nd Algorithm 3rd Algorithm 4th Algorithm 

x y x y x y y' x y 

2 14 2 17 2 50 0 2 9 

4 25 4 1 4 41 44 4 8 

6 84 6 13 6 14 35 6 3 
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Figure 4.5. Comparison of Key Space for (x) Values Mod Prime 

In the first algorithm a prime number is used that is larger than the prime 

numbers used in other algorithms. In all comparisons, it is clear that the graph of the 

first algorithm is higher than all other algorithms due to the size of the prime number 

used. Therefore, the larger the size of the prime number, the more complicated the 

calculations in the algorithm, which increases the stages of protection of confidential 

information. Mathematical complexities used to rebuild secret keys also increase. 

4.7 Comparison of Elapsed Times to Reconstruct the Implemented 

Algorithms  

In addition to calculating the complexity of each of the implemented 

algorithms, the time taken to rebuild the secret was calculated by the subscribers. In 

each process, three values of (Xi) for each algorithm were compared with the other 

algorithms and the time taken for each was recorded in second. In each comparison 

three different points were selected for the four implemented algorithms as shown in 

the tables (4.5, 4.6, 4.7, and 4,8): 
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Table 4.5 Elapsed Time According to (x) Values 

1st Algorithm 2nd Algorithm 3rd Algorithm 4th Algorithm 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

1  

00:00:05.4212005 
1  

00:00:06.6172480 
1  

00:00:06.7423327 
1  

00:00:06.8210514 2 2 2 2 

3 3 3 3 
 

 

Table 4.6 Elapsed Time According to (x) Values 

1st Algorithm 2nd Algorithm 3rd Algorithm 4th Algorithm 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

4  

00:00:04.1776682 
4  

00:00:05.8433516 
4  

00:00:08.2397311 
4  

00:00:08.4262575 5 5 5 5 

6 6 6 6 
 

 

Table 4.7 Elapsed Time According to (x) Values 

1st Algorithm 2nd Algorithm 3rd Algorithm 4th Algorithm 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

2  
00:00:04.7798393 

2  
00:00:05.2166433 

2  
00:00:08.4472697 

2  
00:00:08.2021446 4 4 4 4 

6 6 6 6 
 

 

 

Table 4.8 Elapsed Time According to (x) Values 

1st Algorithm 2nd Algorithm 3rd Algorithm 4th Algorithm 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

X Elapsed Time 

in Second 

1  
00:00:05.6760810 

1  
00:00:06.2275102 

1  
00:00:08.7820440 

1  
00:00:10.6471402 3 3 3 3 

5 5 5 5 
 

Concerning to the above comparison, the time taken to rebuild the original secret was 

calculated by the trusted users of the implemented algorithms and the time was fixed 

for each algorithm. 
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4.8 Pros and Cons of the Implemented Secret Sharing Algorithms 

 

There are several advantages and disadvantages of any algorithm being 

developed or algorithms being implemented because there is no perfect work in all 

aspects of the design. The implemented algorithms have many advantages and 

limitations, which can be mentioned as follows: 

 

4.8.1 The Pros of the Implemented Algorithms 

 

1. Maintains the parts of the password even in case of loss or theft of one of the 

points (shadows) sent by the dealer to the trusted subscribers. 

2. Perfect secret sharing algorithm, that means all shares do not contain any 

information about the original secret. 

3. If the number of subscribers is smaller than (t-1), the participants cannot rebuild 

the password. This process preserves and protects the confidentiality even if it 

falls into the hands of subscribers who are not eligible to retrieve it and are less 

than the value of the threshold. 

4. Ideal secret sharing algorithm, which means all parts of the secret must be equal 

in size, and the size of the (shadow) should not be greater than the secret size. 

This process keeps the transmission of the parts of the password correctly 

between the dealer and the trusted subscribers. 

5. Fraud prevention by both parties (dealer or subscribers) is prohibited in the 

secret key management process, through which fraud can be detected and 

exceeded to maintain confidentiality. 

6. The use of a very large prime number increases the complexity of calculations 

and the opponent cannot predict the parts of the secret or restore the original 

secret. 

7. Any (shadow) can be replaced without having to change the original (secret) 

when changing one of the trusted participants or addition one participant to the 

group. 

4.8.2 The Cons of the Implemented Algorithms 

 

1.  If there are stolen transactions for more than a one shadow of the shareholders 

sent to trusted subscribers or frauds that occur by the dealer or by subscribers, it 
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will affect the process of rebuilding the original password again. Because it will 

reconstruct incorrect secret. 

2.  If the parts of the password are not equal in size or larger than the size of the 

original password, they cannot be sent to the subscribers. Therefore, all parts of 

the secret must be equal in size before sending them because this will affect the 

process of rebuilding the original secret by the participants. 

3.  After every process of sending the secret from the dealer to the subscribers, there 

must be an update on the original secret. Therefore, the password cannot be 

reused more than once so that it can be detected by the adversaries. 

4.  The time taken to build the password by the dealer is quite different from the 

time taken by trusted subscribers to rebuild the original password. Due to the 

lack of synchronization of the pool of participants during the reconstruction, 

which may expose the secret to security risks and can be discovered. It is 

therefore very important that all trusted participant’s share pool at the same time 

to protect the confidentiality of the liabilities. 

5. All confidential (shareholders) must be sent through secret channels exclusively 

to all trusted subscribers in order to avoid loss or theft by the opponents. 

6.  If the size of the secret parts is too small, it presents the secret to the risk of theft 

or disclosure by the adversaries. Because the small parts of the secret lead to the 

speed of predicting the original secret by the opponent. 

7.  The large size of the secret leads to the need for a prime number larger than it, 

which leads to the need for larger storage space. 

 

4.9 Applications of the Implemented Secret Sharing Algorithms 

The implemented algorithms can be used in many aspects and many 

contributions such as: 

1. It can be used in banks to keep financial transactions confidential. 

2. It can be used in laboratory fields to keep confidential information by qualified 

biologists only to protect them from falling into the hands of unqualified 

persons. 

3. It can be used in war fields, where it can protect the secret codes for launching 

warplanes. 
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4. It can be used to keep confidential sensitive personal information in mobile and 

personal Computer devices. 

5. It can be used in encryption\decryption operations for complex layers of 

protection and maintenance of confidential information such as (business 

transactions). 

6. Easy to apply to electronic devices because they do not need devices with high 

capabilities and specifications. 

7. Through which it can transfer a large number of sensitive information that 

resides within the cells of the magic cube and completely confidential to any 

trusted party. 

8. They have the ability to protect the secret codes of websites because they 

provide more complex layers to protect the secret from the risk of the opponent. 

9. Radar Management Systems. 
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Chapter Five 

Conclusions and Suggestions for Future Works 

5.1  Introduction 

 

The results of experiments for the development of the techniques of (SS) based 

on the mathematical characteristics of the (MCs) were explained in detail in the 

previous chapter. The impact of mathematical techniques on magic cubes was 

demonstrated in the process of managing the secret keys and in increasing the 

complexity of the process of reconstructing the secret when moving from the dealer to 

the trusted participants. This chapter is intended to provide conclusions about the 

performance of development sharing a secret algorithm. In addition, make some 

suggestions for future work. 

 

5.2  Conclusions 

The important conclusions of this work can be summarized by a set of points : 

1. The first implemented algorithm combined the (odd order) magic cube and 

(Lagrange) mathematical base to give a secure secret sharing method.  

2. The first and second algorithms depended basically on sending the pivot 

element as a secret to all participants. Since the pivot play avital role in 

reconstruction the secret with sufficient information. 

3. The submitted method gives a multi security layers in sharing the secret key 

with high level of security. Since, the implemented method requires high 

guessing mathematical operations as well as high search space probability. 

4. A new numerical analysis method was implemented in the second algorithm 

that based on the Hermite interpolation. This algorithm adds a great deal of 

complexity to the protection of the secret keys because it does not rely solely on 

Lagrange interpolation, but relies on the derivative of the polynomial in the 

conclusion of the shares before sending them to subscribers by the dealer. 

5. The Hermite interpolation allowed the subscribers to reconstruct the secret 

through the derivative results and the selected points. Because the derivative 

results will represent an additional secure layer. 
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6. The clue of magic cube diminution-order(N) gave conditional rules in 

reconstruction the secret and consequently increased the computational 

complexity for the key management scheme. 

7. The factorial and power mathematical operations have been adapted in 

algorithms third and fourth to increase the complexity layers in construction and 

reconstruction the secret.  

8. The use of magic cubes characteristics has increased the complexity of the 

security of the secret keys transferred between the dealer and the trusted 

subscribers compared with the Shamir secret sharing scheme, which relies 

solely on the protection provided by Lagrange Interpolation polynomial. 

9. The mathematical properties of magic cube was not affect on the time taken to 

transfer the secret key from the dealer to the participants compared with 

Shamir's secret sharing scheme. 

10. The fourth implemented algorithm has adopted a Newton’s divided difference 

interpolation formula that includes a new interpolation method for secret 

sharing based on magic cube mathematical notation. The Newton divided 

difference produce a new direction in secret key management. 

11. Finally, the Hermite algorithm can be considered the best algorithm among the 

proposed algorithms. Because it has many good features that enable it to 

manage the secret securely as a result of its own a derivative mathematical 

property.  

 

5.3  Suggestions for Future Works 

The contributions of this thesis can be extended in different directions as in 

the following suggestions: 

1. Developing new methods of sharing a secret with the magic cubes using new 

different methods of numerical analysis mathematical basis. 

2. Propose new methods for multi-secret sharing techniques through the use of 

mathematical properties for a magic cube. 

3. Suggest secure reconstruction of secret approach in multi-magic cubes with 

equal dimensions. 
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4. Implementation the algorithms in a real cases or scenario such as cloud 

computing, financial transferring money and ad hoc network. 

5. Use implemented algorithms in encryption/decryption processes.
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 الخلاصة
 

عبر الانترنت من اهم المشاكل التي  لتي تتم مشاركتهار حماية البيانات السرية والحساسة اتبتع

حلول م من التقدم التكنلوجي وظهور الكثير من التواجه مستخدمي شبكة الانترنت. على الرغ

ق هو مشاركة البيانات خلال بيئة مفتوحة. ان طرلا يزال التحدي الرئيسي  ات السريةبيانية الاملح

استراتيجية ادارة المفاتيح للبيانات الحساسه و مفاتيح التشفير  في  ا  كبير ا  مشاركة السر تلعب دور

تم   ه قد ذي تم بناءلية السركة االمشار صفةان  ة و الادارة بطريقة امنة. فيما يخص التوليد, المبادل

العديد من  بينبتوزيع المفاتيح السرية  لموزعتأسيسه على مباديء رياضية مثبتة والتي تسمح ل

خوارزميات حسابية جديدة والتي هي مبنية   4المشتركين بأمان. في هذه الاطروحه تم اقتراح 

.  ( Lagrange Interpolation) ـلكعبات السحرية والخلفية الرياضية بالكامل على مباديء الم

والذي يستغل العنصر  الفردي للمكعب السحري طوياعتمدت الخوازمية الاولى على توليد نظام 

 ةليكون السر ومن ثم يتم تضمنيه في معادلة متعدد  في المكعب  السحري الاولللمربع  المحوري

من   ليتمكن عب السحري للمشتركينصائص المكفي نقل خ محوري الالحدود.  سيدعم العنصر 

  (Hermite Interpolation)الرياضية مكعب السحري الاصلي مرة اخرى. الطريقة ناء العادة ب ا

 Lagrange)قيدا من طريقة تم استخدامها في الخوارزمية الثانية والتي تعتبر اكثر تع

Interpolation) ةقد ومشت الحدو متعددة. وذلك لانها تعتمد على مشتقات (Lagrange 

Interpolation) والمشتركين. تفترض   موزعالواعادة بناء السر من قبل  ءية بناعمل يف

( للمكعب السحري هو المفتاح السري والذي سوف يتم تضمينه في  Nالخوارزمية الثالثة بان البعد )

من الحصول على   لة الى المشتركين الموثوقين . سيتمكن المشتركينالحدود وارسا ةمعادلة متعدد 

. تتطلب الخوارزمية العثور  (Lagrange Interpolation) ستخداماد عبعب( لمكد اابعاالسر) 

مرة   بين عناصر المكعب السحري ليتم اعادة بنائهقيمة الفرق و لبناء المكعب  البداية قيمة على رقم

  دي ترتيب فراللمكعبات السحرية ذات)  ل يمكن للخوارزمية الثالثة العمل مع انواع مختلفة اخرى. 



 

 
 

هي الطريقة الحسابية للتحليل العددي عة المقترحة بوازمية الرازوجي(. الخ مفرد او, نظام 

(Newton’s Divided Difference Interpolation) تم تطبيق معادلة .(Newton)   على

الحدود الثانية واظهرت نتائج جيدة مقارنة بما سبق  في عملية حماية المفاتيح   ةخوارزمية متعدد 

للمكعبات السحرية اظهرت مرونة  حسابية ال  ع الخصائص كة السر مرا دمج مش ان عملية .ةالسري

المشاركة السرية المقترحة تم   قكبيرة في التعامل مع مختلف طرق التحليل العددي. ان طر

وعامل التعقيد الحسابي. ان  اختبارها وقياسها وفقا لبعض المقاييس المهمة مثل الوقت المنقضي

ساب السر. كل طرق التحليل العددي المستعملة بولة لحة ومقمعقول نتائج ت اعطة لمنفذ رات االاختبا

ت نتائج جيدة خلال عملية مشاركة السر واعطت الحماية الضرورية للمعلومات الحساسة. قدم

ار الطريقة  تيالطرق المقترحة ولدت نتائج مميزة ووضعت المستخدمين امام خيارات عديدة لاخ

لحمايتها من السرقة, الخسارة أو لموثوقين ساسة للمشتركين اعلوماتهم السرية والحسبة لنقل مالمنا

. تم برمجة الطرق المقترحه من خلال برنامج فيجوال استوديو  (محلل الشفرات المهاجم )خطر 

 core (TM) باستخدام معالجبت  64نسخة  10وندوز تحت نظام  سي شارب بلغة برمجة  2016

i7-77HQ CPU @ 2.80 GHz  , , Ram 16.0 GB HD 1TB  ,4GB VGA . 
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