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A B S T R A C T   

This study aims to use limestone wasted from the factory of stone carving for the adsorption of Pb(II) ion from 
aqueous solution. The process of adsorbing Pb(II) ion was achieved by using the patch method at conditions of 
(mass of adsorbent = 0.3, 0,6, 1.2 g, contact time = 15, 30, 45, 60, 120 min, particles size = 150, 250, 300 µm, 
pH media = 2, 3, 4, 5, 6, 7, 8, 9, temperature = 288, 298, 308, 318 K and initial concentration = 50, 70, 90, 100 
mg/L) to obtain the best adsorption conditions. The atomic absorption spectroscopy was used to determine the 
concentration of the Pb(II) ion after the adsorption steps. Results show that the limestone was efficient for the 
removal of Pb(II) ion with efficiency reaching 99.5 % when 1.2 g of limestone was used. The study also revealed 
that the smaller particle size of limestone is, the higher percentage of removal will be. The adsorption increased 
almost rapidly with pH up to 5. The adsorbent uptake reaches the maximum after 15 min of contact. The 
Freundlich, Langmuir and Temkin isotherms plots show a good linearity, where R2 was more than 0.99, sug-
gesting a good agreement with the experimental data.   

1. Introduction 

Various industrial processes result in elevated concentrations of toxic 
ions, which are considered high-level environmental pollutants and pose 
a threat to human health and the eco-system [1–2]. The WHO limits 
permitted concentration of Pb(II) ions in drinking water at 0.05 mg/L 
and Pb(II) in wastewaters at a level of 0.05–0.10 mg/L before dis-
charging [3–4]. There is a need to find a process that reduces this 
pollution. Many methods have been used for the removal of these toxic 
ions from aqueous solutions, including ion exchange, chemical precip-
itation, microfiltration, chemical reduction, reverse osmosis, and 
adsorption [2,5–9]. The adsorption method has proven to be an effective 
method for removing ions while using environmentally friendly mate-
rials and reducing costs as well [6,10–11].Table 1. 

Because of the high toxicity of Pb(II) ion, extensive research have 
been focusing on the removal of this ion from aqueous solution using a 
variety of adsorbents. ZnO nano-powders functionalized by chelating 
reagent was used for the removal of Pb(II) and Cd(II) aqueous solution 
[12]. Graphene oxide functionalized with oxidethiol [13] and multi- 
walled carbon nanotubes grafted with acrylamide [14] was reported 
to have high adsorption capacities for Pb(II) ions. EDTA-Zr(IV)iodate 

showed a removal percentage that reaches 90 % where the initial con-
centration was 10 mg/L [15]. It has also been reported that activated 
carbon prepared from Rosa Canina-L seeds and composited with NiO has 
maximum monolayer adsorption capacity (qm) of up to 1428.57 mg/L 
[16]. 

The removal of Pb(II) ions using minerals relies on many factors 
including electrical properties, acidity and basicity of the minerals, ion 
charge, concentration and size, competition of other ions, and the pH 
and the temperature of the solution [22–23]. The minerals have many 
attractive properties that qualify them to be used as adsorbents. Of these 
is their high ability to adsorb resulting from the fact that minerals 
contain rough surface, pores and cavities [12]. Minerals may contain 
water that can be dried, and leave cavities behind it. They also have 
some cation in their structure, which acts like ion-exchanger that can 
replace their ions with toxic ions in the aqueous solutions [24–26]. The 
use of minerals’ powder with fine particles gives them a high surface 
area that increases their ability for adsorption. Waste of limestone from 
the factory of stone carving is usually sent to landfilling [24–28]. 
Therefore, different strategies are proposed to use this type of waste as a 
low cost adsorbent material. This strategy is considered a promising 
application of green chemistry principles [29–33]. 
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This research aims to study the possibility of using limestone rocks 
for the removal of heavy metal ion from contaminated aqueous solutions 
produced from a variety of industries. The limestone is produced in large 
amounts as byproducts during the manufacturing of rocks; thus it is 
considered as a waste in rocks factories with very low cost. The lime-
stone was used as an adsorbent of Pb(II) ion and the affection of ion 
concentrations, temperature and pH on its adsorption ability were 
investigated. 

2. Methodology 

2.1. Reagent 

All the chemicals and reagents were obtained from Sigma Aldrich. 
The Pb(II) ion stock solution (1000 mg/L) was prepared by dissolving Pb 
(NO3)2 in deionized water. Experiments and analysis were conducted in 
the laboratories of the college of Science, University of Anbar. 

2.2. Preparation of adsorbent 

The limestone was collected from the waste of sculpting factories in 
the city of Hit, Anbar, Iraq. The limestone was firstly grinded by mill, 
dried at 105 ◦C and sieved to obtain three different particle sizes of 150, 
250 and 300 mm [10]. 

2.3. Characterization of limestone 

Field emission scanning electron emission (FE-SEM) was employed 
for the morphological characterization using HITACHI S-4500. 

2.4. Adsorption procedure: 

Adsorption procedure was carried out via batch method. A specified 
weight of limestone was mixed with 50 ml of Pb(II) ion solution in 100 
ml of polyethylene container and shaken in a thermostatic water bath for 
a specific time = 5, 15, 30, 45, 60, 80, 120 min. The adsorption exper-
iment was also carried out at pH = 2, 3, 4, 5, 6, 7, 8, 9, temperature =
288, 298, 308, 318 K and initial concentration = 50, 70, 90, 100 mg/L 
[10,22,34]. The mixtures were then filtered and residual Pb(II) ion in 
the solution was measured by flame atomic absorption spectroscopy 
(Phoenix 986 AAS, USA). 

2.5. Theory basis of adsorption process 

Experiments involving adsorption are normally described by the 
Freundlich, Langmuir and Temkin isotherms. In Freundlich isotherm: 

qe = Kf Ce
1/n (1).where qe is the amount of uptake in mg/kg of the 

adsorbent, Ce is the amount of adsorbate at the equilibrium, n is the 
Freundlich coefficient, and Kf the Freundlich adsorption capacity 
[22–23,34]. 

The isotherm of Langmuir is described by equation: 
Ce/qe = 1/(bqm) + (1/qm) Ce (2).where b is the Langmuir co-

efficients and qm is the monolayer capacity [22–23,34]. 
The Temkin isotherm is given by the equation: 
qe = B ln AT + B ln Ce (3). 
B = RT/bT (4).where AT = Temkin isotherm equilibrium binding 

constant (L/g), bT = Temkin isotherm constant, R = universal gas con-
stant (8.314 J/mol/K), T = Temperature at 298 K and B = Constant 
related to heat of sorption (J/mol) [35–37]. 

The linear Freundlich plots are obtained by drawing ln qe vs ln C, 
where the adsorption coefficients are estimated. The linear Langmuir 
plots are obtained by drawing Ce/qe against Ce. The linear Temkin plots 
are obtained by plotting Ce vs ln Ce. 

3. Results and discussion: 

3.1. Adsorbents 

This study aimed to exploit limestone as an eco-friendly-adsorbent to 
eliminate heavy metals ions from wastewater. Although adsorption is a 
highly promising and efficient method, it suffers from the use of a 
relatively expensive materials as adsorbents [12,21,33,15–17,38–40]. 
With a view to find a simple and non-costly method in terms of mate-
rials, the effect of temperature, pH, contact time and particle size of 
limestone as adsorbent, on the removal of Pb(II) ion from aqueous so-
lution were investigated. Fig. 1. 

Table 1 
Adsorption capacities of Pb(II) ions onto various adsorbents reported in the 
literature.  

Adsorbent qe (mg/ 
g) 

Ref. 

Functionalized graphene oxide-thiol(prepared with 80 mg 
cysteamine (GO-SH2) 

200 [13] 

NH2-HMS (functionalized HMS type mesoporous silica with 
amine groups) 

119 [16] 

poly (acrylamide-co-itaconic acid)/multi walled carbon 
nanotubes 

71 [14] 

NiO/Rosa Canina-L seeds activated carbon nanocomposite 1428.57 [17] 
magnetite nanoparticles 3.44 [18] 
magnetic alginate beads based on maghemite nanoparticles 50 [19] 
P(MMA-HEMA) 3.037 [20] 
Phyllanthus emblica fruit stone (PEFS) 9.936 [21] 
FMBM-functionalized ZnO nanopowders 61.2 [12]  

Fig. 1. Schematic representation of Pb(II) ion adsorption with limestone.  
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3.2. Characterization of limestone 

The FE-SEM image of limestone shown in Fig. 2 clearly reveals a 
rough surface and high porosity which explain the excellent adsorption 
of Pb(II) ions from the aqueous solutions. The XRD pattern of the 
limestone (Fig. 3) shows that calcite is the dominant mineral in lime-
stone [41–43]. The predominant calcite increases the surface polarity 
and surface hydrophilicity of the limestone, which increases the inter-
action with Pb(II) ions through electrostatic interaction. Therefore, the 
presence of calcite increases the removal of Pb(II) ions. 

3.3. Effect of adsorbent dosage 

The effect of limestone dosage was studied and 0.3, 0.6 and 1.2 g of 

limestone were used for the removal of Pb(II) ion from 50 ml aqueous 
solution at concentration of 50 mg/L. The percentage of adsorption 
shown in Fig. 4 significantly increased from 96 %, when 0.3 g of lime-
stone was used, to up to 99.5 % when 1.2 g of limestone was used to 
remove the Pb(II) ion [44–46]. 

3.4. Effect of particle size: 

The effect of particle size of limestone was studied, where three 
different particle sizes (150, 250 and 300 µm) were used. The percentage 
of adsorption was at the maximum when using limestone with particle 
size of 150 µm, and it slightly decreases when the particle size increases 
to 250 µm. The lowest percentage of adsorption was obtained when 

Fig. 2. SEM image of Limestone.  

Fig. 3. XRD of limestone.  
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Fig. 4. Effect of weight of limestone on adsorption of Pb(II) ion (qe) at 298 K 
(limestone 1.2 g/100 ml of aqueous solution, time 30 min and initial Pb(II) ion 
concentration 50 mg/l). 

95
95.5

96
96.5

97
97.5

98
98.5

99
99.5
100

150 200 250 300 350

R
ec

ov
er

y 
%

particle size m

Fig. 5. Effect of particle size on adsorption of Pb(II) ion (qe) (limestone 1.2 g/ 
100 ml of aqueous solution, pH = 5 and initial Pb(II) ion concentration 50 
mg/l). 
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Fig. 6. Effect of pH on adsorption of Pb(II) ion (qe) at 298 K (limestone 1.2 g/ 
100 ml of aqueous solution, time 30 min and initial Pb(II) ion concentration 50 
mg/l). 
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using limestone with particle size of 300 µm as shown in Fig. 5. This 
finding clearly agreed with the fact that increasing the particle size 
decreases the surface area of contact between the adsorbent and the Pb 
(II) ion solution [47–49]. 

3.5. Effect of pH 

The adsorption of Pb(II) ion was investigated at pH = 2 to 10 where 
all other conditions were constant and the limestone amount was 1.2 g/ 
100 ml of Pb(II) ion solution at concentration of 50 mg/l (Fig. 6). The 
adsorption curve sharply increased up to pH 5. The adsorption was then 
gradually decreasing until pH 8. At pH > 8 there were no increase in the 
adsorption up to pH 10. The low pH leads to free the active sites of the 
limestone and be ready to adsorb more Pb(II) ions. The uptake of Pb(II) 
ion mostly reaches the equilibrium at pH = 5 [46,49–51]. 

3.6. Effect of contact time 

The effect of contact time were experimentally investigated at pH =
5 using the limestone as adsorbent (1.2 g/100 ml of 50 mg/l Pb(II) ion 
solution). The samples were shaken for contact times of 5–120 min. It is 
fundamental to estimate the influence of contact time between the 
limestone and the Pb(II) ion solutions. As shown in Fig. 7, the adsorbent 
uptake reaches the maximum after 15 min of contact, where no addi-
tional uptake can be noticed when increasing the contact time up to 120 
min [46,52–53]. 

3.7. Effect of temperature 

The effect of increasing temperature (from 288 to 318 K) on the ef-
ficiency of limestone as adsorbent material was studied. The amount of 
adsorption decreases as the temperature increases as shown in Fig. 8, 
which confirms that the adsorption is exothermic [50,54]. 

3.8. Effect of initial Pb(II) ion concentration 

The effect of initial Pb(II) ion concentration on adsorption is shown 
in Fig. 9. The initial concentration was in range of 50–100 mg/L. The 
results show that adsorption percentage reaches maximum (99.3 %), 
when the initial concentration of Pb(II) ion was at 50 and 70 mg/L. At 
higher initial concentrations of Pb(II) ion of 90 and 100 mg/L, the 
adsorption percentage slightly decreased to 98.5 %, which may be 
caused by the fact that all the limestone as adsorbent had a finite active 
sites number. These active sites probably become occupied when con-
centration of Pb(II) ion reaches above a certain value [39,50,55–56]. 
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Fig. 7. Effect of contact time on adsorption of Pb(II) ion (qe) at 298 K (lime-
stone 1.2 g/100 ml of aqueous solution, pH = 5 and initial Pb(II) ion concen-
tration 50 mg/l). 
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Fig. 8. Effect of temperature on adsorption of Pb(II) ion (qe) (limestone 1.2 g/ 
100 ml of aqueous solution, pH = 5 and initial Pb(II) ion concentration 50 
mg/l). 
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Fig. 9. Effect of initial concentration of Pb(II) ion (qe) at 298 K (limestone 1.2 
g/100 ml of aqueous solution, pH = 5). 
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Fig. 10. Freundlich isotherm at 298 K (limestone amount 1.2 g, pH 5, initial Pb 
(II) ion concentration 50, 70, 90 and 100 mg/l, time 30 min). 

Table 2 
Freundlich, Langmuir and Temkin adsorption coefficient at 298 K (limestone 
amount 1.2 g, pH 5, initial Pb(II) ion concentration 50, 70, 90 and 100 mg/l, 
time 30 min).  

Freundlich coefficient Langmuir coefficient Temkin coefficient 

Kf n qm b AT bT  

− 0.6839  1.7217  10.1626  2.7563  4.0917  3022.904  
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3.9. Adsorption isotherm 

The adsorption isotherm experiments were conducted for Pb(II) ion 
by changing the initial concentration between 50 and 100 mg/L. 

The results of adsorption match with the experimental isotherm of 
Freundlich (Fig. 10) i.e. it is usable to describe nonspecific adsorption of 
Pb(II) ion onto heterogeneous surfaces of limestone. The Freundlich 
isotherm plots show a good linearity, where R2 = 0.99. The Freundlich 
coefficients calculated from the drawn chart are summarized in Table 2. 
The coefficients suggest that Pb(II) ion is preferable adsorption on the 
limestone [57,35–37]. The n value is 1.72 and Kf value is − 0.68. 

The experimental Langmuir isotherm were also tested. A plot of (Ce/ 
qm vs the remain concentrations of the Pb(II) ion (Ce) is shown in Fig. 11. 
The constants of Langmuir model and the correlation coefficient value 
(R2) for adsorption of Pb(II) ions onto limestone are summarized in 
Table 2. The correlation coefficient value was up to 0.999 for Pb(II) ion, 
which indicates that the experimental results have an excellent agree-
ment with the Langmuir model confirming that the Pb(II) ion adsorption 
is chemically in nature and bound by chemical forces to the active sites 
onto the limestone surface [22,58–61]. The highest adsorption capac-
ities (qm) obtained by this isotherm were10.16 mg/g. 

The experimental Temkin isotherm was studied. A plot of Ce vs ln Ce 
is shown in Fig. 12. The Temkin constants for the Pb(II) ion are sum-
marized in Table 2. The correlation coefficient value was R2 = 0.99 for 
Pb(II) ion, which suggests that the experimental results have an excel-
lent agreement with the Temkin model [59,61–62]. 

4. Conclusion 

The results showed that the limestone is a superior adsorbents 

material in the removal of Pb(II) ion from aqueous solution. The opti-
mum pH for the removal of Pb(II) ion by the limestone was at 5. The 
adsorption process of Pb(II) ion on the limestone is exothermic. The 
adsorption equilibrium was reached after 15 min of contact. The per-
centage of adsorption was around 96 %, which increased to 99.5 % when 
amount of limestone increased from 0.3 g to 1.2 g. The optimum tem-
perature of adsorption was found to be 288 K and increasing the tem-
perature negatively affects the removal of Pb(II) ion. The adsorption 
percentage was up to 99.3 % when the initial concentration of Pb(II) ion 
is 50 mg/L and slightly decreased to 98.5 % at higher initial concen-
trations of 100 mg/L. The experimental results clearly showed an 
excellent agreement with the isotherms model. In addition to the ability 
of limestone to adsorb heavy metal ions from aqueous solutions, the low 
cost and easy limestone obtaining make it a superior choice for appli-
cation of wastewater treatment and consider a promising application of 
green chemistry principles. 
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