
J. of university of anbar for pure science : Vol.7:NO.1: 2013

ISSN: 1991-8941

Design Feed Forward Neural Network To Solve Boundary

Value Problems

Luma. N. M. Tawfiq Muna. H. Ali

Baghdad University - College of Education Ibn Al-Haitham.

 Accepted: 18/9/2012 Received: 6/3/2012

Abstract :The aim of this paper is to design fast feed forward neural network to present a method to
solve second order boundary value problem for ordinary differential equations. That is to develop an
algorithm which can speedup the solution times, reduce solver failures, and increase possibility of
obtaining the globally optimal solution and we use several different training algorithms many of them
having a very fast convergence rate for reasonable size networks.Finally, we illustrate the method by
solving model problem and present comparison with solutions obtained using other different method .

Keyword : Artificial neural network, Feed Forward neural network, Training Algorithm , ODE .

1. Introduction
 Many methods have been developed so
far for solving differential equations. Some of
them produce a solution in the form of an array
that contains the value of the solution at a
selected group of points, others use basis
functions to represent the solution in analytic
form and transform the original problem
usually to a system of algebraic equations.[1]
 Most of the previous study in solving
differential equations using Artificial neural
network(ANN) is restricted to the case of
solving the systems of algebraic equations
which result from the discretization of the
domain. ANN is a simplified mathematical
model of the human brain, It can be
implemented by both electric elements and
computer software. It is a parallel distributed
processor with large numbers of connections, it
is an information processing system that has
certain performance characters in common
with biological neural networks. Ann have
been developed as generalizations of
mathematical models of human cognition or
neural biology, based on the assumptions that :
[1]
1- Information processing occurs at many
simple elements called neurons that is
fundamental to the operation of ANN's.
2- Signals are passed between neurons over
connection links.
3- Each connection link has an associated
weight which, in a typical neural net,
multiplies the signal transmitted.
4- Each neuron applies an activation function
(usually nonlinear) to its net input (sum of
weighted input signals) to determine its output
signal.

 The units in a network are organized into a
given topology by a set of connections or
weights .
 ANN is Characterized by[2] :
1- Architecture: its pattern of connections
between the neurons.
2- Training Algorithm : its method of
determining the weights on the connections.
3- Activation function.
 ANN are often classified as single layer
or multilayer. In determining the number of
layers, the input units are not counted as a
layer, because they perform no computation.
Equivalently, the number of layers in the net
can be defined to be the number of layers of
weighted interconnects links between the slabs
of neurons [3].

2. Multilayer Feed Forward

Architecture [4]
 In a layered neural network the
neurons are organized in the form of layers.
We have at least two layers: an input and an
output layer. The layers between the input and
the output layer (if any) are called hidden
layers, whose computation nodes are
correspondingly called hidden neurons or
hidden units. Extra hidden neurons raise the
network’s ability to extract higher-order
statistics from (input) data .
 The ANN is said to be fully connected
in the sense that every node in each layer of the
network is connected to every other node in the
adjacent forward layer , otherwise the network
is called partially connected. Each layer
consists of a certain number of neurons; each
neuron is connected to other neurons of the
previous layer through adaptable synaptic
weights w and biases b .

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

3. Description of the Method
In the proposed approach the model function is
expressed as the sum of two terms: the first
term satisfies the boundary conditions (BC)
and contains no adjustable parameters. The
second term can be found by using feed
forward neural network(FFNN) which is
trained so as to satisfy the differential equation
and such technique we called collocation
neural network. Since it is known that a
multilayer FFNN with one hidden layer can
approximate any function to arbitrary
accuracy[5], [6] , thus our FFNN contains one
hidden layer.
 In this section we will illustrate how our
approach can be used to find the approximate
solution of the general form a differential
equation of 2nd order :
 y"(x) = F(x, y(x), y'(x))
, (1)
where a subject to certain BC’s and x (x1,
x2, …, xn) Rn, D Rn denotes the domain
and y(x) is the solution to be computed.
 If yt(x, p) denotes a trial solution with
adjustable parameters p, the problem is
transformed to a discretize form :

 Minp i
ˆx D

in G

 F(xi , yt(xi ,p), yt'(xi ,p))
, (2)
subject to the constraints imposed by the BC’s.
In the our proposed approach, the trial solution
yt employs a FFNN and the parameters p
correspond to the weights and biases of the
neural architecture. We choose a form for the
trial function yt(x) such that it satisfies the
BC’s. This is achieved by writing it as a sum
of two terms :
 yt(xi , p) = A(x) + G(x, N(x, p)) , (3)
where N(x, p) is a single-output FFNN with
parameters p and n input units fed with the
input vector x. The term A(x) contains no
adjustable parameters and satisfies the BC’s.
The second term G is constructed so as not to
contribute to the BC’s, since yt(x) satisfy them.
This term can be formed by using a FFNN
whose weights and biases are to be adjusted in
order to deal with the minimization problem.

4. Computation of the Gradient
 An efficient minimization of (2) can be
considered as a procedure of training the
FFNN, where the error corresponding to each
input vector xi is the value E(xi) which has to
forced near zero. Computation of this error
value involves not only the FFNN output but
also the derivatives of the output with respect
to any of its inputs. Therefore, in computing
the gradient of the error with respect to the
network weights consider a multi layer FFNN
with n input units (where n is the dimensions

of the domain) one hidden layer with H
sigmoid units and a linear output unit .
 For a given input vector x (x1, x2, …, xn)
the output of the FFNN is :

 N

H

i i
i 1

(z)

, where zi

n

ij j i
j 1

w x b

wij denotes the weight connecting the input
unit j to the hidden unit i
vi denotes the weight connecting the hidden
unit i to the out put unit ,
bi denotes the bias of hidden unit i, and
σ (z) is the sigmoid transfer function (tansig.).
The gradient of FFNN, with respect to the
parameters of the FFNN can be easily obtained
as :

i

N

 (zi), (4)

i

N

b

 vi(zi), (5)

i j

N

w

 vi(zi) xj , (6)

Once the derivative of the error with respect to
the network parameters has been defined, then
it is a straight forward to employ any
minimization technique. It must also be noted,
the batch mode of weight updates may be
employed.

5. Illustration Of The Method
 In this section we describe solution of
single BVP using FFNN .
To illustrate the method, we will consider the
2nd order BVP :
 d2y(x) / dx2 f(x, y, y')
, (7)
where x [a , b] and the BC : y(a) A, y(b) =
B, a trial solution can be written as :
 yt(x, p) (bA– aB)/(b–a) + (B–A)x /(b–a) +
(x–a)(x–b)N(x, p) , (8)
where N(x, p) is the output of a FFNN with
one input unit for x and weights p .
Note that
 yt(x) satisfies the BC by construction.
The error quantity to be minimized is given by
:

 E[p]

n

i 1

 d2yt(xi ,p) / dx2 – f(xi , yt(xi ,p) ,

dyt(xi ,p) / dx) }2 , (9)

where the xi [a , b]. Since :
dyt(x, p)/dx (B–A)/(b–a)+ {(x–a)+(x–

b)}N(x,p) + (x–a) (x–b)

dN (x , p)

d x

and

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

d2yt(x, p) /dx2 = 2N(x, p) + 2{(x–a)+(x–b)}
d N (x , p)

d x

+ (x–a) (x–b) d2 N(x, p) /dx2
it is straightforward to compute the gradient of
the error with respect to the parameters p using
(4) – (6). The same holds for all subsequent
model problems.

6.Algorithm:
the main steps of the algorithm are the
following:
Step1: Determine the variable interval of the
x, i.e. (x [a,b]).
Step2: input the analytic solution .
Step3: Determine the Boundary condition.
Step4: Determine the structure of the neural
network for solving BVP.
Step5: Determine the activation function and
corresponding training algorithm Complete the
design.
Step6: Determine the trial solution.
Step7: Implementation.
Step8: compared the neural results and the
exact results.
Step9: stop after obtain the globally optimal
solution.
Step10: if no.
Step9: Go to 7.

7. Example
 In this section we report numerical result,
we use a multi-layer FFNN having one hidden
layer with 5 hidden units (neurons) and one
linear output unit. The sigmoid activation of
each hidden unit is tansig , the analytic
solution ya(x) was known in advance.
Therefore we test the accuracy of the obtained
solutions by computing the deviation :
 y(x) | yt(x) – ya(x) |.
 In order to illustrate the characteristics of
the solutions provided by the neural network
method, we provide figures displaying the
corresponding deviation y(x) both at the few
points (training points) that were used for
training and at many other points (test points)
of the domain of equation. The latter kind of
figures are of major importance since they
show the interpolation capabilities of the
neural solution which to be superior compared
to other solution obtained by using other
methods. Moreover, we can consider points
outside the training interval in order to obtain
an estimate of the extrapolation performance of
the obtained numerical solution.

Example 1
 Consider the following 2nd order BVP :
d2y/dx2 = - dy/dx + 2y
with BC: y(0) 1 , y(1) = e and x [0, 1]. The
analytic solution is : ya(x) exp(x) ,
according to (8) the trial neural form of the
solution is taken to be :

 yt(x) 1 + (e -1) x + x (x - 1) N(x,
p) .
 The FFNN trained using a grid of ten
equidistant points in [0, 1]. Figure(1) display
the analytic and neural solutions with
Levenberg – Marquardt (trainlm) training. The
neural results with different types of training
algorithm such as : Levenberg – Marquardt
(trainlm), conjugate gradient (traincgp) , quasi
– Newton (trainbfg) , Bayesian Regulation
(trainbr) introduced in table (1) and its errors
given in table (2), table(4) gives the weight and
bias of the designer network ,table(3) gives the
performance of the train with epoch and time .
Ibraheem and Khalaf [7] solve this example by
using (integration and interpolation techniques)
and Neural Networks and gave the maximum
error value is max yexact - yNN = 1.2089E-
008 and solution time is 5.9070 sec. and the
result obtained by the neural network given in
figure 2

Example 2
 Consider the following 2nd order BVP :

with BC: y(0) 0 , y(1) = 1 and x [0, 1]. The
analytic solution is : ya(x) 2x /(x+1),
according to (8) the trial neural form of the
solution is taken to be :
 yt(x) x + x (x – 1) N(x, p) .
 The FFNN trained using a grid of ten
equidistant points in [0, 1]. Figure(3) display
the analytic and neural solutions with
Levenberg – Marquardt (trainlm) training. The
neural results with different types of training
algorithm such as : Levenberg – Marquardt
(trainlm), conjugate gradient (traincgp) , quasi
– Newton (trainbfg) , Bayesian Regulation
(trainbr) introduced in table (5) and its errors
given in table (6), table(7) gives the weight and
bias of the designer network ,table(8) gives the
performance of the train with epoch and time .
Ibraheem and Khalaf [7] solve this example by
using (integration and interpolation techniques)
and Neural Networks and gave the maximum
error value is max yexact - yNN =
44.3729E-004 and solution time is 3.8750 sec.
and the result obtained by the neural network
given in figure 4
8. Conclusion
 From the above problems it is clear that the
method which proposed can handle effectively
ODE and provide accurate approximate
solution throughout the whole domain and not
only at the training points. As evident from the
tables, the results of proposed method are more
precise as compared to neural network
suggested in [7].

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

It is very difficult to know which training
algorithm will be the fastest for a given
problem. It will depend on many factors
including the complexity of the problem, the
number of data points in the training set, the
number of weights and biases in the FFNN, the
error goal, and whether the FFNN is being
used for pattern recognition (discriminant
analysis) or function approximation
(regression).
In general, the practical results on FFNN show
which contain up to a few hundred weights the
Levenberg-Marquardt algorithm (trainlm) will
have the fastest convergence, then trainbr and
then trainbfg. However, "trainbr" it does not
perform well on function approximation on
problems. The "traincg", algorithms have
relatively modest memory requirements in
particular "traincgp", but the computation
required does increase geometrically with the
size of the FFNN . The performance of the
various algorithms can be affected by the
accuracy required of the approximation.

 References

[1] I. A.Galushkin, " Neural Networks
Theory", Berlin Heidelberg , 2007.
[2] R. M. Hristev , " The ANN Book ", Edition
1, 1998 .
[3] T.Villmann, U.Seiffert and A.Wismϋller , "
Theory and Applications of Neural maps ",
ESANN2004 PROCEEDINGS - European
Symposium on Ann, pp.25 - 38, April 2004 .
[4] L.N.M.Tawfiq and R.S.Naoum , " On
Training of Artificial Neural Networks " , AL-
Fath Jornal , No 23, 2005 .
[5] L.N.M.Tawfiq and R.S.Naoum " Density
and approximation by using feed forward
Artificial neural networks ", Ibn Al-Haitham
Journal for Pure & Applied Sciences, Vol. 20
(1) 2007.
[6] A. K. Jabber ," On Training Feed Forward
Neural Networks for Approximation Problem
", MSc Thesis, Baghdad University, College of
Education (Ibn Al-Haitham), 2009.
[7] K. I. Ibraheem and B. M. Khalaf , Shooting
Neural Networks Algorithm for Solving
Boundary Value Problems in ODEs ,
Applications and Applied Mathematics:
An International Journal , Vol. 6, Issue 11 , pp.
1927 – 1941, 2011 .

Table1: Analytic and Neural solution of example 1

Out of FFNN yt(x) Exact solution Inp
ut

Trainbr Traincgp Trainbfg Trainlm ya(x) x
0.999999525460
578

0.997450555522
462

1.000000001669
88

1.00000983089
905

1 0.0

1.105229256698
24

1.104613721774
80

1.105170918441
09

1.10517091807
565

1.10517091807
565

0.1

1.221409723857
94

1.221976008387
46

1.221409606091
82

1.22140275816
017

1.22140275816
017

0.2

1.349841758836
80

1.350529358640
27

1.349864539918
30

1.34985880757
600

1.34985880757
600

0.3

1.491839218726
39

1.491802133706
46

1.491824700755
97

1.49182469764
127

1.49182469764
127

0.4

1.648756430445
83

1.647924384100
36

1.648721270422
85

1.64872258180
316

1.64872127070
013

0.5

1.822111486961
20

1.821430240372
42

1.822118800429
70

1.82211880039
051

1.82211880039
051

0.6

2.013756121506
24

2.014585759849
56

2.013731518513
59

2.01374615271
598

2.01375270747
048

0.7

2.225887575409
56

2.228110200443
83

2.225492400271
40

2.22554092849
247

2.22554092849
247

0.8

2.460545724194
18

2.459513132811
21

2.459603113036
82

2.45965082692
107

2.45960311115
695

0.9

2.718281618505
24

2.701873951256
76

2.718281829550
48

2.71828182845
905

2.71828182845
905

1.0

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

 Table2 : Accuracy of solutions for example 1

Table3 : the performance of the train with epoch and time

Table 4: Weight and bias of the network for different training algorithm

Deviation y(x) | yt(x) ya(x) | w h e r e yt(x) computed by the following
training algorithm

Trainbr T r a i n c g p Trainbfg T r a i n l m
4.74539422312681
e-07

0.00254944447753802 1.66987534910845
e-09

9.83089905348678
e-06

5.83386225889715
e-05

0.000557196300851492 3.65442787142456
e-10

2.22044604925031
e-16

6.96569776748035
e-06

0.000573250227294153 6.84793165306452
e-06

2.22044604925031
e-16

1.70487392048280
e-05

0.000670551064267722 5.73234229195307
e-06

4.44089209850063
e-16

1.45210851227873
e-05

2.25639348054862
e-05

3.11470271796566
e-09

0

3.51597457055597
e-05

0.000796886599769398 2.77281309024602
e-10

1.31110302747928
e-06

7.31342931303836
e-06

0.000688560018087481 3.91950916167616
e-11

2.22044604925031
e-16

3.41403576564758
e-06

0.000833052379080268 2.11889568917378
e-05

6.55475449207188
e-06

0.0003466469170927
41

0.00256927195136258 4.85282210678228
e-05

0

0.0009426130372340
86

8.99783457422032
e-05

1.87987447830551
e-09

4.77157641158854
e-05

2.09953809005015
e-07

0.0164078772022869 1.09143893922692
e-09

4.44089209850063
e-16

Time Epoch Performance of train TrainFcn
0:00:02 148 7.75e-32 Trainlm
0:00:05 282 2.49e-18 Trainbfg
0:00:01 48 5.87e-07 Traincgp
0:00:06 396 6.15e-10 Trainbr

Weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.5134 0.8604 0.0521
0.1776 0.9344 0.9312
0.3986 0.9844 0.7287
0.1339 0.8589 0.7378

0.0309 0.7856 0.0634

Weights and bias for trainbfg

Net.B{1} Net.LW{2,1
}

Net.IW{1,1
}

0.0292 0.4242 0.7112
0.9289 0.5079 0.2217
0.7303 0.0855 0.1174
0.4886 0.2625 0.2967

0.5785 0.8010 0.3188

Weights and bias for traincgp

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.6511 0.8978 0.9431
0.1336 0.4972 0.1127
0.6385 0.7713 0.6483
0.3849 0.0604 0.4808
0.7657 0.2625 0.0665

Weights and bias for trainbr

Net.B{1} Net.LW{2,1
}

Net.IW{1,1}

0.0321 0.6153 0.9158
0.8271 0.5831 0.1355
0.3400 0.6983 0.3321
0.8467 0.0293 0.8975
0.2461 0.5279 0.4996

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

y
t

Figure 1: analytic and neural solution of example 1 using : trainlm training algorithm

 Figure2a. Learning curve of NN gave in [7] for Example 1

Figure2b. Curve of NN gave in [7] and exact for Example 1

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

Table5: Analytic and Neural solution of example 2

Table 6 : Accuracy of solutions for example 2

Out of FFNN yt(x) Exact solution Input

Trainbr Traincgp Trainbfg Trainlm ya(x) X
2.10062376188036
e-06

2.95252630078124
e-05

1.28139499011581
e-10

0 0 0.0

0.18138474875450
4

0.17981391809300
8

0.18146081338943
4

0.18163249901017
0

0.18181818181
8182

0.1

0.33332948600684
0

0.33298636197686
9

0.33324812112556
8

0.33333333333333
3

0.33333333333
3333

0.2

0.46155449471967
6

0.46214064457979
6

0.46153846250503
6

0.46153846153846
2

0.46153846153
8462

0.3

0.57140931965352
7

0.57191901635744
2

0.57142857052548
9

0.57139523116436
8

0.57142857142
8572

0.4

0.66668040989376
3

0.66669528498619
2

0.66666666628307
4

0.66663687318271
8

0.66666666666
6667

0.5

0.74999662968055
2

0.74976155073882
3

0.75000000168059
0

0.74998976018676
7

0.75000000000
0000

0.6

0.82341283116355
0

0.82334483751137
9

0.82352587943156
5

0.82352941176470
6

0.82352941176
4706

0.7

0.88869533214190
8

0.88889571416073
8

0.88888888925837
9

0.88888888888888
9

0.88888888888
8889

0.8

0.94736846457308
1

0.94737979048635
9

0.94737913334746
6

0.94736842105263
1

0.94736842105
2632

0.9

1.00068490668473 0.99949006487816
5

1.00000000011712 1.00000000000000 1 1.0

Deviation y(x) | yt(x) ya(x) | w h e r e yt(x) computed by the following
training algorithm

Trainbr T r a i n c g p Trainbfg T r a i n l m
2.10062376188036
e-06

2.95252630078124
e-05

1.28139499011581
e-10

0

0.0004334330636780
46

0.00200426372517432 9.03082386649601
e-10

0.00018568280801
1678

3.84732649355568
e-06

0.00034697135646449
8

0.0003573684287478
40

0

1.60331812142367
e-05

0.00060218304133402
6

8.52122077651396
e-05

1.11022302462516
e-16

1.92517750449150
e-05

0.00049044492887051
5

9.66574043026469
e-10

3.33402642036518
e-05

1.37432270962412
e-05

2.86183195253864 e-05 3.83592380082121
 e-10

2.97934839488256
 e-05

3.37031944841470
e-06

0.000238449261177109 1.68059044458602
e-09

1.02398132326709
e-05

0.0001165806011562
69

0.00018457425332640
8

3.53233314132062
e-06

1.11022302462516
e-16

0.0001935567469812
94

6.82527184903137
e-06

3.69490105178727
e-10

2.22044604925031
e-16

4.35204492443830
e-08

1.13694337268155
e-05

1.07122948340699
e-05

5.55111512312578
e-16

0.0006849066847285
37

0.00050993512183483
7

1.17118315046127
e-10

3.33066907387547
e-16

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

Table 7: Weight and bias of the network for different training algorithm

Table 8 : the performance of the train with epoch and time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y
t

Figure 3: analytic and neural solution of example 1 using : trainlm training algorithm

Weights and bias for trainbfg

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.7613 0.2021 0.2040
0.4027 0.4691 0.6241
0.6743 0.3784 0.7252
0.5511 0.3404 0.8344

0.0515 0.0639 0.0189

Weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.0018 0.5932 0.4884
0.7118 0.3044 0.7290
0.8677 0.9677 0.2026
0.1183 0.8960 0.2163

0.0390 0.1900 0.9763

Weights and bias for traincgp

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.7058 0.5066 0.2039
0.1331 0.7169 0.3867
0.6655 0.3012 0.0650
0.3756 0.7060 0.4323
0.5024 0.9152 0.6897

Weights and bias for trainbr
Net.B{1} Net.LW{2,1

}
Net.IW{1,1}

0.5711 0.6603 0.4559
0.6902 0.6805 0.2428
0.8956 0.8506 0.0019
0.2669 0.0373 0.6153
0.0686 0.6808 0.6612

Time Epoch Performance of train TrainFcn
0:00:08 530 6.87e-32 Trainlm
0:00:20 1157 6.98e-19 Trainbfg
0:00:00 26 6.48e-08 Traincgp

0:00:01 92 8.47e-10 Trainbr

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

 Figure4a. Learning curve of NN for Example 2 gave in [7]

 Figure4b. Curve of NN gave in [7] and exact solution for Example 2

 تصمیم شبكة عصبیة ذات تغـذیة تقـدمیة لحل مسائل قیم حدودیة

 منى حسین علي لمى ناجي محمد توفیق

dean_coll.science@uoanbar.edu.iqE.mail:

 الخلاصة

ـدمیة تمثـل طریقـة لحـل مسـائل قـیم حدودیـة للمعـادلات التفاضـلیة الاعتیادیـة الهدف من البحث هو تصمیم شـبكة عصـبیة ذات تغــذیة تقـ
وهذا یعني تطویر خوارزمیة التدریب بحیث تسرع زمن الحل وتقلل من حالات الفشـل فـي الحصـول علـى الحـل و تزیـد أمكانیـة الحصـول

فـة بعضـها یمتلـك نسـبة تقـارب سـریعة جـدا فـي حالـة على الحل المثالي الرئیسي واستخدمنا في ذلك عدد مـن خوارزمیـات التـدریب المختل
 . [7]الشبكات التي تمتلك أحجام معقولة أخیرا وضحنا الطریقة من خلال حل مثالین وقارنا نتائج الشبكة المقترحة مع نتائج المصدر

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

mailto:dean_coll.science@uoanbar.edu.iqE.mail:
http://www.novapdf.com/
http://www.novapdf.com/

