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Abstract :The aim of this paper is to design fast feed forward  neural network to present a method to 
solve second order boundary value problem for ordinary differential equations. That is to develop an 
algorithm which can speedup the solution times, reduce solver failures, and increase possibility of 
obtaining the globally optimal solution and we use several different training algorithms many of them 
having a very fast convergence rate for reasonable size networks.Finally, we illustrate the method by 
solving model problem and present comparison with solutions obtained using other different method .  
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1. Introduction 
          Many methods have been developed so 
far for solving differential equations. Some of 
them produce a solution in the form of an array 
that contains the value of the solution at a 
selected group of points, others use basis 
functions to represent the solution in analytic 
form and transform the original problem 
usually to a system of algebraic equations.[1] 
            Most of the previous study in solving 
differential equations using Artificial neural 
network(ANN) is restricted to the case of 
solving the systems of algebraic equations 
which result from the discretization of the 
domain. ANN is a simplified  mathematical 
model of the human brain, It can be 
implemented by both electric elements and 
computer software. It is a parallel distributed 
processor with large numbers of connections, it 
is an information processing system that has 
certain performance characters in common 
with biological neural networks. Ann have 
been developed as generalizations of 
mathematical models of human cognition or 
neural biology, based on the assumptions that : 
[1] 
1- Information processing occurs at many 
simple elements called neurons that is 
fundamental to the operation of ANN's. 
2- Signals are passed between neurons over 
connection links. 
3- Each connection link has an associated 
weight which, in a typical neural net, 
multiplies the signal transmitted. 
4- Each neuron applies an activation function 
(usually nonlinear) to its net input (sum of 
weighted input signals) to determine its output 
signal. 

       The units in a network are organized into a 
given topology by a set of connections or 
weights . 
      ANN is Characterized by[2] : 
1- Architecture: its pattern of connections 
between the neurons. 
2- Training Algorithm : its method of 
determining the weights on the connections.  
3- Activation function.  
           ANN are often classified as single layer 
or multilayer. In determining the number of 
layers, the input units are not counted as a 
layer, because they perform no computation. 
Equivalently, the number of layers in the net 
can be defined to be the number of layers of 
weighted interconnects links between the slabs 
of neurons [3]. 

2. Multilayer Feed Forward 

Architecture [4] 
            In a layered neural network the 
neurons are organized in the form of layers. 
We have at least two layers: an input and an 
output layer. The layers between the input and 
the output layer (if any) are called hidden 
layers, whose computation nodes are 
correspondingly called hidden neurons or 
hidden units. Extra hidden neurons raise the 
network’s ability to extract higher-order 
statistics from (input) data . 
           The ANN is said to be fully connected 
in the sense that every node in each layer of the 
network is connected to every other node in the 
adjacent forward layer , otherwise the network 
is called partially connected. Each layer 
consists of a certain number of neurons; each 
neuron is connected to other neurons of the 
previous layer through adaptable synaptic 
weights w and biases b . 

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/


J. of university of anbar for pure science  : Vol.7:NO.1: 2013 

 
 

3. Description of the Method 
In the proposed approach the model function is 
expressed as the sum of two terms: the first 
term satisfies the boundary conditions (BC)  
and contains no adjustable parameters. The 
second term can be found by using feed 
forward neural network(FFNN) which is 
trained so as to satisfy the differential equation 
and such technique we called collocation 
neural network. Since it is known that a 
multilayer FFNN with one hidden layer can 
approximate any function to arbitrary 
accuracy[5], [6] , thus our FFNN contains one 
hidden layer. 
 In this section we will illustrate how our 
approach can be used to find the approximate 
solution of the general form a differential 
equation of 2nd order :  
                  y"(x) = F( x, y(x), y'(x) )                      
,          (1) 
where a subject to certain BC’s and x  (x1, 
x2, …, xn)  Rn, D  Rn denotes the domain 
and y(x) is the solution to be computed. 
           If yt(x, p) denotes a trial solution with 
adjustable parameters p, the problem is 
transformed to a discretize form : 

          Minp i
ˆx D

in G




 F(xi , yt(xi ,p), yt'(xi ,p) )             
,           (2) 
subject to the constraints imposed by the BC’s. 
In the our proposed approach, the trial solution 
yt employs a FFNN and the parameters p 
correspond to the weights and biases of the 
neural architecture. We choose a form for the 
trial function yt(x) such that it satisfies the 
BC’s. This is achieved by writing it as a sum 
of two terms :  
  yt(xi , p) = A(x)  + G( x, N(x, p) )   ,           (3) 
where N(x, p) is a single-output FFNN with 
parameters p and n input units fed with the 
input vector x. The term A(x)  contains no 
adjustable parameters and satisfies the BC’s. 
The second term G is constructed so as not to 
contribute to the BC’s, since yt(x) satisfy them. 
This term can be formed by using a FFNN 
whose weights and biases are to be adjusted in 
order to deal with the minimization problem. 

4. Computation of the Gradient 
   An efficient minimization of (2) can be 
considered as a procedure of training the 
FFNN, where the error corresponding to each 
input vector xi is the value E(xi) which has to 
forced near zero. Computation of this error 
value involves not only the FFNN output but 
also the derivatives of the output with respect 
to any of its inputs. Therefore, in computing 
the gradient of the error with respect to the 
network weights consider a multi layer FFNN 
with n input units (where n is the dimensions 

of the domain ) one hidden layer with H 
sigmoid units and a linear output unit . 
  For a given input vector x  ( x1, x2, …, xn ) 
the output of the FFNN is :     

     N  

H

i i
i 1

(z )


 
,  where  zi  

n

ij j i
j 1

w x b



 

wij denotes the weight connecting the input 
unit j to the hidden unit i  
vi denotes the weight connecting the hidden 
unit i to the out put unit , 
bi denotes the bias of hidden unit i, and  
σ (z) is the sigmoid transfer function ( tansig. ). 
The gradient of FFNN, with respect to the 
parameters of the FFNN can be easily obtained 
as : 

  

i

N
 

   (zi),             (4) 

i

N

b




  vi(zi),            (5) 

i j

N

w




  vi(zi) xj ,      (6) 

Once the derivative of the error with respect to 
the network parameters has been defined, then 
it is a straight forward to employ any 
minimization technique. It must also be noted, 
the batch mode of weight updates may be 
employed.  

5. Illustration Of The Method 
        In this section we describe solution of 
single BVP using FFNN . 
To illustrate the method, we will consider the 
2nd order BVP : 
           d2y(x) / dx2   f( x, y, y' )                                   
,         (7) 
where x  [a , b] and the BC : y(a)  A, y(b) = 
B, a trial solution can be written as : 
  yt(x, p)  (bA– aB)/(b–a) + (B–A)x /(b–a) + 
(x–a)(x–b)N(x, p)       ,         (8) 
where N(x, p) is the output of a FFNN with 
one input unit for x and weights p . 
Note that  
          yt(x) satisfies the BC by construction. 
The error quantity to be minimized is given by 
: 

   E[p]  

n

i 1

 
 
 


 d2yt(xi ,p) / dx2 – f(xi , yt(xi ,p) , 

dyt(xi ,p) / dx ) }2    ,       (9) 

where the xi  [a , b]. Since :  
dyt(x, p)/dx  (B–A)/(b–a)+ {(x–a)+(x–

b)}N(x,p) +  (x–a) (x–b)

dN ( x , p )

d x



 
and  
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d2yt(x, p) /dx2 = 2N(x, p) + 2{(x–a)+(x–b)} 
d N ( x , p )

d x



+  (x–a) (x–b) d2 N(x, p) /dx2 
it is straightforward to compute the gradient of 
the error with respect to the parameters p using 
(4) – (6). The same holds for all subsequent 
model problems. 

6.Algorithm: 
the main steps of the algorithm are the 
following: 
Step1: Determine the variable interval of  the  
x, i.e. (  x  [a,b] ). 
Step2:  input the analytic solution . 
Step3: Determine the Boundary condition. 
Step4: Determine the structure of the neural 
network for solving BVP. 
Step5: Determine the activation function and 
corresponding training algorithm Complete the 
design. 
Step6: Determine the trial solution. 
Step7: Implementation. 
Step8: compared the neural results and the 
exact results. 
Step9: stop after obtain the globally optimal 
solution. 
Step10:  if no. 
Step9:  Go to 7. 

7. Example 
     In this section we report numerical result, 
we use a multi-layer FFNN having one hidden 
layer with 5 hidden units (neurons) and one 
linear output unit. The sigmoid activation of 
each hidden unit is tansig , the analytic 
solution ya(x) was known in advance. 
Therefore we test the accuracy of the obtained 
solutions by computing the deviation : 
                  y(x)  | yt(x) – ya(x) |. 
       In order to illustrate the characteristics of 
the solutions provided by the neural network 
method, we provide figures displaying the 
corresponding deviation y(x) both at the few 
points (training points) that were used for 
training and at many other points (test points) 
of the domain of equation. The latter kind of 
figures are of major importance since they 
show the interpolation capabilities of the 
neural solution which to be superior compared 
to other solution obtained by using other 
methods. Moreover, we can consider points 
outside the training interval in order to obtain 
an estimate of the extrapolation performance of 
the obtained numerical solution.  

Example 1          
 Consider the following 2nd order BVP : 
d2y/dx2 = - dy/dx + 2y  
with BC: y(0)  1 , y(1) = e and x  [0, 1]. The 
analytic solution is : ya(x)  exp(x) ,  
according to (8) the trial neural form of the 
solution is taken to be : 

                    yt(x)  1 + (e -1) x + x (x - 1) N(x, 
p) . 
           The FFNN trained using a grid of ten 
equidistant points in [0, 1]. Figure(1) display 
the analytic and neural solutions with 
Levenberg – Marquardt (trainlm) training. The 
neural results with different  types of training 
algorithm such as : Levenberg – Marquardt 
(trainlm), conjugate gradient (traincgp) , quasi 
– Newton ( trainbfg ) , Bayesian Regulation 
(trainbr) introduced in table (1) and its errors 
given in table (2), table(4) gives the weight and 
bias of the designer network ,table(3) gives the 
performance of the train with epoch and time . 
Ibraheem and Khalaf [7] solve this example by 
using (integration and interpolation techniques) 
and Neural Networks and gave the maximum 
error value is max  yexact - yNN  = 1.2089E-
008 and solution time is 5.9070 sec. and the 
result obtained by the neural network given in 
figure 2 

Example 2 
           Consider the following 2nd order BVP :  

 
with BC: y(0)  0 , y(1) = 1 and x  [0, 1]. The 
analytic solution is : ya(x)  2x /(x+1),  
according to (8) the trial neural form of the 
solution is taken to be : 
                    yt(x)  x + x (x – 1) N(x, p) . 
           The FFNN trained using a grid of ten 
equidistant points in [0, 1]. Figure(3) display 
the analytic and neural solutions with 
Levenberg – Marquardt (trainlm) training. The 
neural results with different  types of training 
algorithm such as : Levenberg – Marquardt 
(trainlm), conjugate gradient (traincgp) , quasi 
– Newton ( trainbfg ) , Bayesian Regulation 
(trainbr) introduced in table (5) and its errors 
given in table (6), table(7) gives the weight and 
bias of the designer network ,table(8) gives the 
performance of the train with epoch and time . 
Ibraheem and Khalaf [7] solve this example by 
using (integration and interpolation techniques) 
and Neural Networks and gave the maximum 
error value is max  yexact - yNN  = 
44.3729E-004 and solution time is 3.8750 sec. 
and the result obtained by the neural network 
given in figure 4 
8. Conclusion 
   From the above problems it is clear that the 
method which proposed can handle effectively 
ODE and provide accurate approximate 
solution throughout the whole domain and not 
only at the training points. As evident from the 
tables, the results of proposed method are more 
precise as compared to neural network 
suggested in [7].  
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It is very difficult to know which training 
algorithm will be the fastest for a given 
problem. It will depend on many factors 
including the complexity of the problem, the 
number of data points in the training set, the 
number of weights and biases in the FFNN, the 
error goal, and whether the FFNN is being 
used for pattern recognition (discriminant 
analysis) or function approximation 
(regression). 
In general, the practical results on FFNN show 
which contain up to a few hundred weights the 
Levenberg-Marquardt algorithm (trainlm) will 
have the fastest convergence, then  trainbr and 
then trainbfg. However, "trainbr" it does not 
perform well on function approximation on 
problems. The "traincg",  algorithms have 
relatively modest memory requirements in 
particular "traincgp", but the computation 
required does increase geometrically with the 
size of the FFNN . The performance of the 
various algorithms can be affected by the 
accuracy required of the approximation.             
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Table1: Analytic and Neural solution of example 1  

Out of FFNN yt(x) Exact solution Inp
ut 

Trainbr Traincgp Trainbfg Trainlm ya(x) x 
0.999999525460
578  

0.997450555522
462  

1.000000001669
88 

1.00000983089
905  

1 0.0 

1.105229256698
24   

1.104613721774
80   

1.105170918441
09 

1.10517091807
565  

1.10517091807
565  

0.1  

1.221409723857
94  

1.221976008387
46   

1.221409606091
82 

1.22140275816
017  

1.22140275816
017  

0.2 

1.349841758836
80  

1.350529358640
27  

1.349864539918
30 

1.34985880757
600  

1.34985880757
600  

0.3 

1.491839218726
39   

1.491802133706
46  

1.491824700755
97  

1.49182469764
127  

1.49182469764
127  

0.4 

1.648756430445
83  

1.647924384100
36  

1.648721270422
85 

1.64872258180
316  

1.64872127070
013  

0.5 

1.822111486961
20  

1.821430240372
42  

1.822118800429
70 

1.82211880039
051  

1.82211880039
051  

0.6 

2.013756121506
24  

2.014585759849
56  

2.013731518513
59  

2.01374615271
598  

2.01375270747
048  

0.7 

2.225887575409
56   

2.228110200443
83  

2.225492400271
40 

2.22554092849
247  

2.22554092849
247  

0.8  

2.460545724194
18  

2.459513132811
21  

2.459603113036
82 

2.45965082692
107  

2.45960311115
695  

0.9  

2.718281618505
24  

2.701873951256
76  

2.718281829550
48 

2.71828182845
905  

2.71828182845
905  

1.0 
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  Table2 : Accuracy of solutions for example 1 

 
  

Table3 : the performance of the train with epoch and time 

 

  
  
  
  
  

  
Table 4: Weight and bias of the network for different training algorithm 

 

  
  
  
 
 
 
 

 

Deviation y(x)  | yt(x)  ya(x) | w h e r e   yt(x) computed by the following 
training algorithm  

Trainbr  T r a i n c g p  Trainbfg T r a i n l m 
4.74539422312681 
e-07 

0.00254944447753802 1.66987534910845 
e-09 

9.83089905348678 
e-06 

5.83386225889715 
e-05 

0.000557196300851492 3.65442787142456 
e-10 

2.22044604925031 
e-16 

6.96569776748035 
e-06 

0.000573250227294153 6.84793165306452 
e-06 

2.22044604925031 
e-16 

1.70487392048280 
e-05 

0.000670551064267722 5.73234229195307 
e-06 

4.44089209850063 
e-16 

1.45210851227873 
e-05 

2.25639348054862 
e-05 

3.11470271796566 
e-09 

0 

3.51597457055597 
e-05 

0.000796886599769398 2.77281309024602 
e-10 

1.31110302747928 
e-06 

7.31342931303836 
e-06 

0.000688560018087481 3.91950916167616 
e-11 

2.22044604925031 
e-16 

3.41403576564758 
e-06 

0.000833052379080268 2.11889568917378 
e-05 

6.55475449207188 
e-06 

0.0003466469170927
41 

0.00256927195136258 4.85282210678228 
e-05 

0 

0.0009426130372340
86  

8.99783457422032 
e-05 

1.87987447830551 
e-09 

4.77157641158854 
e-05 

2.09953809005015 
e-07 

0.0164078772022869 1.09143893922692 
e-09 

4.44089209850063 
e-16 

Time Epoch Performance of train TrainFcn   
0:00:02 148 7.75e-32 Trainlm 
0:00:05 282 2.49e-18 Trainbfg 
0:00:01 48 5.87e-07  Traincgp 
0:00:06 396 6.15e-10  Trainbr 

Weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.5134 0.8604 0.0521 
0.1776 0.9344 0.9312 
0.3986 0.9844 0.7287 
0.1339 0.8589 0.7378 

0.0309 0.7856 0.0634 

Weights and bias for trainbfg 

Net.B{1} Net.LW{2,1
} 

Net.IW{1,1
} 

0.0292 0.4242 0.7112 
0.9289 0.5079 0.2217 
0.7303 0.0855 0.1174 
0.4886 0.2625 0.2967 

0.5785 0.8010 0.3188 

Weights and bias for traincgp 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.6511 0.8978 0.9431 
0.1336 0.4972 0.1127 
0.6385 0.7713 0.6483 
0.3849  0.0604 0.4808 
0.7657 0.2625  0.0665 

Weights and bias for trainbr 

Net.B{1} Net.LW{2,1
} 

Net.IW{1,1} 

0.0321  0.6153 0.9158 
0.8271 0.5831 0.1355 
0.3400 0.6983 0.3321 
0.8467 0.0293 0.8975 
0.2461 0.5279 0.4996 
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Figure 1: analytic and neural solution of example 1 using : trainlm training algorithm 

 

                   Figure2a. Learning curve of NN gave in [7] for Example 1 

 
Figure2b. Curve of NN gave in [7] and exact for Example 1 
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Table5: Analytic and Neural solution of example 2 

 

 

Table 6 : Accuracy of solutions for example 2 

 

Out of FFNN yt(x) Exact solution Input 

Trainbr Traincgp Trainbfg Trainlm ya(x) X 
2.10062376188036 
e-06 

2.95252630078124 
e-05 

1.28139499011581 
e-10 

0    0  0.0 

0.18138474875450
4  

0.17981391809300
8  

0.18146081338943
4 

0.18163249901017
0  

0.18181818181
8182  

0.1  

0.33332948600684
0  

0.33298636197686
9  

0.33324812112556
8 

0.33333333333333
3  

0.33333333333
3333  

0.2 

0.46155449471967
6  

0.46214064457979
6  

0.46153846250503
6 

0.46153846153846
2  

0.46153846153
8462  

0.3 

0.57140931965352
7  

0.57191901635744
2  

0.57142857052548
9 

0.57139523116436
8  

0.57142857142
8572  

0.4 

0.66668040989376
3  

0.66669528498619
2  

0.66666666628307
4 

0.66663687318271
8  

0.66666666666
6667  

0.5 

0.74999662968055
2  

0.74976155073882
3  

0.75000000168059
0 

0.74998976018676
7  

0.75000000000
0000  

0.6 

0.82341283116355
0  

0.82334483751137
9  

0.82352587943156
5 

0.82352941176470
6  

0.82352941176
4706  

0.7 

0.88869533214190
8  

0.88889571416073
8  

0.88888888925837
9 

0.88888888888888
9  

0.88888888888
8889  

0.8  

0.94736846457308
1  

0.94737979048635
9  

0.94737913334746
6 

0.94736842105263
1  

0.94736842105
2632  

0.9  

1.00068490668473  0.99949006487816
5  

1.00000000011712 1.00000000000000  1  1.0 

Deviation y(x)  | yt(x)  ya(x) | w h e r e   yt(x) computed by the following 
training algorithm 

Trainbr  T r a i n c g p  Trainbfg T r a i n l m 
2.10062376188036 
e-06 

2.95252630078124 
e-05 

1.28139499011581 
e-10 

0 

0.0004334330636780
46  

0.00200426372517432 9.03082386649601 
e-10 

0.00018568280801
1678 

3.84732649355568 
e-06 

0.00034697135646449
8 

0.0003573684287478
40 

0 

1.60331812142367 
e-05 

0.00060218304133402
6 

8.52122077651396 
e-05 

1.11022302462516  
e-16  

1.92517750449150  
e-05 

0.00049044492887051
5 

9.66574043026469 
e-10 

3.33402642036518 
e-05 

1.37432270962412  
e-05 

2.86183195253864 e-05 3.83592380082121 
 e-10 

2.97934839488256 
 e-05 

3.37031944841470 
e-06 

0.000238449261177109 1.68059044458602 
e-09 

1.02398132326709 
e-05 

0.0001165806011562
69  

0.00018457425332640
8 

3.53233314132062 
e-06 

1.11022302462516 
e-16 

0.0001935567469812
94 

6.82527184903137 
e-06 

3.69490105178727 
e-10 

2.22044604925031 
e-16 

4.35204492443830 
e-08 

1.13694337268155 
e-05 

1.07122948340699 
e-05 

5.55111512312578 
e-16 

0.0006849066847285
37 

0.00050993512183483
7 

1.17118315046127 
e-10 

3.33066907387547 
e-16 

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/


J. of university of anbar for pure science  : Vol.7:NO.1: 2013 

 
 

Table 7: Weight and bias of the network for different training algorithm 

 
  
  
  
 
 
 
 
 

 
 
 
 

 

 

 

 

 
Table  8 : the performance of the train with epoch and time 
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Figure 3: analytic and neural solution of example 1 using : trainlm training algorithm 

 

Weights and bias for trainbfg 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.7613 0.2021 0.2040 
0.4027 0.4691 0.6241 
0.6743 0.3784 0.7252 
0.5511 0.3404 0.8344 

0.0515 0.0639 0.0189 

Weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.0018 0.5932 0.4884 
0.7118 0.3044 0.7290 
0.8677 0.9677 0.2026 
0.1183 0.8960 0.2163 

0.0390 0.1900 0.9763 

Weights and bias for traincgp 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.7058 0.5066 0.2039 
0.1331 0.7169 0.3867 
0.6655 0.3012 0.0650 
0.3756  0.7060 0.4323 
0.5024 0.9152  0.6897 

Weights and bias for trainbr 
Net.B{1} Net.LW{2,1

} 
Net.IW{1,1} 

0.5711  0.6603 0.4559 
0.6902 0.6805 0.2428 
0.8956 0.8506 0.0019 
0.2669 0.0373 0.6153 
0.0686 0.6808 0.6612 

Time Epoch Performance of train TrainFcn  
0:00:08 530 6.87e-32 Trainlm 
0:00:20 1157 6.98e-19  Trainbfg  
0:00:00 26 6.48e-08  Traincgp 

0:00:01 92 8.47e-10  Trainbr 
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                   Figure4a. Learning curve of NN for Example 2 gave in [7] 

 
                 Figure4b. Curve of NN gave in [7] and exact solution for Example 2 

 

  

  

  

 تصمیم شبكة عصبیة ذات تغـذیة تقـدمیة لحل مسائل قیم حدودیة

  

 منى حسین علي     لمى ناجي محمد توفیق    

dean_coll.science@uoanbar.edu.iqE.mail:   

  

  الخلاصة

ـدمیة تمثـل طریقـة لحـل مسـائل قـیم حدودیـة للمعـادلات التفاضـلیة الاعتیادیـة الهدف من البحث هو تصمیم شـبكة عصـبیة ذات تغــذیة تقـ
وهذا یعني تطویر خوارزمیة التدریب بحیث تسرع زمن الحل وتقلل من حالات الفشـل فـي الحصـول علـى الحـل و تزیـد أمكانیـة الحصـول 

فـة بعضـها یمتلـك نسـبة تقـارب سـریعة جـدا فـي حالـة على الحل المثالي الرئیسي واستخدمنا في ذلك عدد مـن خوارزمیـات التـدریب المختل
  .     [7]الشبكات التي تمتلك أحجام معقولة أخیرا وضحنا الطریقة من خلال حل مثالین وقارنا نتائج الشبكة المقترحة مع نتائج المصدر
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