J. of university of anbar for pure science : Vol.7:NO.1: 2013

ISSN: 1991-8941

Design Feed Forward Neural Network To Solve Boundary
Value Problems

Luma. N. M. Tawfiq

Muna. H. Ali

Baghdad University - College of Education Ibn Al-Haitham.

Received: 6/3/2012

Accepted: 18/9/2012

Abstract :The aim of this paper is to design fast feed forward neural network to present a method to
solve second order boundary value problem for ordinary differential equations. That is to develop an
algorithm which can speedup the solution times, reduce solver failures, and increase possibility of
obtaining the globally optimal solution and we use several different training algorithms many of them
having a very fast convergence rate for reasonable size networks.Finally, we illustrate the method by
solving model problem and present comparison with solutions obtained using other different method .

Keyword : Artificial neural network, Feed Forward neural network, Training Algorithm , ODE .

1. Introduction

Many methods have been developed so
far for solving differential equations. Some of
them produce a solution in the form of an array
that contains the value of the solution at a
selected group of points, others use basis
functions to represent the solution in analytic
form and transform the original problem
usually to a system of algebraic equations.[1]

Most of the previous study in solving
differential equations using Artificial neural
network(ANN) is restricted to the case of
solving the systems of algebraic equations
which result from the discretization of the
domain. ANN is a simplified mathematical
model of the human brain, It can be
implemented by both electric elements and
computer software. It is a parallel distributed
processor with large numbers of connections, it
is an information processing system that has
certain performance characters in common
with biological neural networks. Ann have
been developed as generalizations of
mathematical models of human cognition or
neural biology, based on the assumptions that :
(1]
1- Information processing occurs at many
simple elements called neurons that is
fundamental to the operation of ANN's.
2- Signals are passed between neurons over
connection links.
3- Each connection link has an associated
weight which, in a typical neural net,
multiplies the signal transmitted.
4- Each neuron applies an activation function
(usually nonlinear) to its net input (sum of
weighted input signals) to determine its output
signal.

The units in a network are organized into a
given topology by a set of connections or
weights .

ANN is Characterized by[2] :

1- Architecture: its pattern of connections
between the neurons.

2- Training Algorithm : its method of
determining the weights on the connections.

3- Activation function.

ANN are often classified as single layer
or multilayer. In determining the number of
layers, the input units are not counted as a
layer, because they perform no computation.
Equivalently, the number of layers in the net
can be defined to be the number of layers of
weighted interconnects links between the slabs
of neurons [3].

2. Multilayer Feed
Architecture [4]

In a layered neural network the
neurons are organized in the form of layers.
We have at least two layers: an input and an
output layer. The layers between the input and
the output layer (if any) are called hidden
layers, whose computation nodes are
correspondingly called hidden neurons or
hidden units. Extra hidden neurons raise the
network’s ability to extract higher-order
statistics from (input) data .

The ANN is said to be fully connected
in the sense that every node in each layer of the
network is connected to every other node in the
adjacent forward layer , otherwise the network
is called partially connected. Each layer
consists of a certain number of neurons; each
neuron is connected to other neurons of the
previous layer through adaptable synaptic
weights w and biases b .

Forward

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

3. Description of the Method

In the proposed approach the model function is
expressed as the sum of two terms: the first
term satisfies the boundary conditions (BC)
and contains no adjustable parameters. The
second term can be found by using feed
forward neural network(FFNN) which is
trained so as to satisfy the differential equation
and such technique we called collocation
neural network. Since it is known that a
multilayer FFNN with one hidden layer can
approximate any function to arbitrary
accuracy[5], [6] , thus our FENN contains one
hidden layer.

In this section we will illustrate how our
approach can be used to find the approximate
solution of the general form a differential
equation of 2nd order :

y'®) = FC x, yx), y&)

, ()
where a subject to certain BC’s and x = (x1,
x2, ..., xn) € Rn, D < Rn denotes the domain

and y(x) is the solution to be computed.

If yt(x, p) denotes a trial solution with
adjustable parameters p, the problem is
transformed to a discretize form :

2

Néizr;p 5eP F(xi , yt(xi ,p), yt(xi ,p))
subject to the constraints imposed by the BC’s.
In the our proposed approach, the trial solution
yt employs a FFNN and the parameters p
correspond to the weights and biases of the
neural architecture. We choose a form for the
trial function yt(x) such that it satisfies the
BC’s. This is achieved by writing it as a sum
of two terms :

VL P =AK +G(x,Nxp) . ()
where N(x, p) is a single-output FFNN with
parameters p and n input units fed with the
input vector x. The term A(x) contains no
adjustable parameters and satisfies the BC’s.
The second term G is constructed so as not to
contribute to the BC’s, since yt(x) satisfy them.
This term can be formed by using a FFNN
whose weights and biases are to be adjusted in
order to deal with the minimization problem.

4. Computation of the Gradient

An efficient minimization of (2) can be
considered as a procedure of training the
FFNN, where the error corresponding to each
input vector xi is the value E(xi) which has to
forced near zero. Computation of this error
value involves not only the FFNN output but
also the derivatives of the output with respect
to any of its inputs. Therefore, in computing
the gradient of the error with respect to the
network weights consider a multi layer FFNN
with n input units (where n is the dimensions

of the domain) one hidden layer with H
sigmoid units and a linear output unit .

For a given input vector x = (x1, X2, ..., xn)
the output of the FFNN is :
R n
ZV‘G(Z‘) ZW.jXJ+b.
N == , wWhere zi= =

wij denotes the weight connecting the input
unit j to the hidden unit i

vi denotes the weight connecting the hidden
unit i to the out put unit ,

bi denotes the bias of hidden unit i, and

G (z) is the sigmoid transfer function (tansig.).
The gradient of FFNN, with respect to the
parameters of the FFNN can be easily obtained
as:

oN =0 (z), 4)
ov,
ON _ vio'(z), (5)
ob

i

N =wo'z)x, (6)
ow ..
1]
Once the derivative of the error with respect to
the network parameters has been defined, then
it is a straight forward to employ any
minimization technique. It must also be noted,
the batch mode of weight updates may be
employed.
5. Illustration Of The Method
In this section we describe solution of
single BVP using FFNN .
To illustrate the method, we will consider the
2nd order BVP :
d2y(x) / dx2 = f(x, 5y)
,)
where x € [a, b] and the BC : y(a) = A, y(b) =
B, a trial solution can be written as :
yt(x, p) = (bA— aB)/(b-a) + (B-A)x /(b-a) +
(x-a)(x-b)N(x,p) . 3
where N(x, p) is the output of a FFNN with
one input unit for x and weights p .
Note that
yt(x) satisfies the BC by construction.
The error quantity to be minimized is given by

n

Elpl = Z {d2yt(xi ,p) / dx2 — fi(xi, yt(xi ,p) ,
dytxi,p)/dx)}2 , (9)
where the xi € [a, b]. Since :
dyt(x, pYdx = B-A)(b-a)+ {(x-a)+(x—
dN (x.p)

B)IN(p) + (x-a) (x-b) ~ dX
and

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

d2yt(x, p) /dx2 = 2N(x, p) + 2{(x—a)+(x-b)}
dN (x,p)

dx 4+ (x-a) (x-b) d2 N(x, p) /dx2
it is straightforward to compute the gradient of
the error with respect to the parameters p using
(4) — (6). The same holds for all subsequent
model problems.

6.Algorithm:

the main steps of the algorithm are the
following:

Stepl: Determine the variable interval of the
X, 1.e. (X € [a,b]).

Step2: input the analytic solution .

Step3: Determine the Boundary condition.
Step4: Determine the structure of the neural
network for solving BVP.

StepS: Determine the activation function and
corresponding training algorithm Complete the
design.

Step6: Determine the trial solution.

Step7: Implementation.

Step8: compared the neural results and the
exact results.

Step9: stop after obtain the globally optimal
solution.

Stepl0: if no.

Step9: Go to 7.

7. Example

In this section we report numerical result,
we use a multi-layer FFNN having one hidden
layer with 5 hidden units (neurons) and one
linear output unit. The sigmoid activation of
each hidden unit is tansig , the analytic
solution ya(x) was known in advance.
Therefore we test the accuracy of the obtained
solutions by computing the deviation :

Ay(x) =] yt(x) - ya(x) |
In order to illustrate the characteristics of

the solutions provided by the neural network
method, we provide figures displaying the
corresponding deviation Ay(x) both at the few
points (training points) that were used for
training and at many other points (test points)
of the domain of equation. The latter kind of
figures are of major importance since they
show the interpolation capabilities of the
neural solution which to be superior compared
to other solution obtained by using other
methods. Moreover, we can consider points
outside the training interval in order to obtain
an estimate of the extrapolation performance of
the obtained numerical solution.

Example 1

Consider the following 2nd order BVP :
d2y/dx2 = - dy/dx + 2y

withBC: y(0)=1, y(1)=eand x € [0, 1]. The
analytic solution is ya(x) = expx) ,
according to (8) the trial neural form of the
solution is taken to be :

yt(x) =1+ (e-1) x+x (x-1) N(x,
p.

The FFNN trained using a grid of ten
equidistant points in [0, 1]. Figure(l) display
the analytic and neural solutions with
Levenberg — Marquardt (trainlm) training. The
neural results with different types of training
algorithm such as : Levenberg — Marquardt
(trainlm), conjugate gradient (traincgp) , quasi
— Newton (trainbfg) , Bayesian Regulation
(trainbr) introduced in table (1) and its errors
given in table (2), table(4) gives the weight and
bias of the designer network ,table(3) gives the
performance of the train with epoch and time .
Ibraheem and Khalaf [7] solve this example by
using (integration and interpolation techniques)
and Neural Networks and gave the maximum
error value is max | yexact - yNN | = 1.2089E-
008 and solution time is 5.9070 sec. and the
result obtained by the neural network given in
figure 2

Example 2
Consider the following 2nd order BVP :

d'_’
dx

— 1 3 2
= B (»"—2y°),

e

(]

with BC: y(0) =0, y(1) =1 and x € [0, 1]. The
analytic solution is ya(x) = 2x /(x+1),
according to (8) the trial neural form of the
solution is taken to be :

yt(x) =x+x (x— 1) N(x, p) .

The FFNN trained using a grid of ten
equidistant points in [0, 1]. Figure(3) display
the analytic and neural solutions with
Levenberg — Marquardt (trainlm) training. The
neural results with different types of training
algorithm such as : Levenberg — Marquardt
(trainlm), conjugate gradient (traincgp) , quasi
— Newton (trainbfg) , Bayesian Regulation
(trainbr) introduced in table (5) and its errors
given in table (6), table(7) gives the weight and
bias of the designer network ,table(8) gives the
performance of the train with epoch and time .
Ibraheem and Khalaf [7] solve this example by
using (integration and interpolation techniques)
and Neural Networks and gave the maximum
error value is max | yexact - yNN | =
44.3729E-004 and solution time is 3.8750 sec.
and the result obtained by the neural network
given in figure 4
8. Conclusion

From the above problems it is clear that the
method which proposed can handle effectively
ODE and provide accurate approximate
solution throughout the whole domain and not
only at the training points. As evident from the
tables, the results of proposed method are more
precise as compared to neural network
suggested in [7].

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

It is very difficult to know which training
algorithm will be the fastest for a given
problem. It will depend on many factors
including the complexity of the problem, the
number of data points in the training set, the
number of weights and biases in the FFNN, the
error goal, and whether the FFNN is being
used for pattern recognition (discriminant
analysis) or function approximation
(regression).

In general, the practical results on FFNN show
which contain up to a few hundred weights the
Levenberg-Marquardt algorithm (trainlm) will
have the fastest convergence, then trainbr and
then trainbfg. However, "trainbr" it does not
perform well on function approximation on
problems. The "traincg", algorithms have
relatively modest memory requirements in
particular "traincgp", but the computation
required does increase geometrically with the
size of the FFNN . The performance of the
various algorithms can be affected by the
accuracy required of the approximation.

References

[11 L A.Galushkin, " Neural
Theory", Berlin Heidelberg , 2007.
[2] R. M. Hristev, " The ANN Book ", Edition
1, 1998 .

[3] T.Villmann, U.Seiffert and A.Wismbller , "
Theory and Applications of Neural maps ",
ESANN2004 PROCEEDINGS - European
Symposium on Ann, pp.25 - 38, April 2004 .
[4] LN.M.Tawfiqg and R.S.Naoum , " On
Training of Artificial Neural Networks " , AL-
Fath Jornal , No 23, 2005 .

[5] LN.M.Tawfiq and R.S.Naoum " Density
and approximation by using feed forward
Artificial neural networks ", Ibn Al-Haitham
Journal for Pure & Applied Sciences, Vol. 20
(1) 2007.

[6] A. K. Jabber ," On Training Feed Forward
Neural Networks for Approximation Problem
", MSc Thesis, Baghdad University, College of
Education (Ibn Al-Haitham), 2009.

[7] K. L. Ibraheem and B. M. Khalaf , Shooting
Neural Networks Algorithm for Solving
Boundary Value Problems in ODEs |,
Applications and Applied Mathematics:

An International Journal , Vol. 6, Issue 11 , pp.
1927 — 1941, 2011 .

Networks

Tablel: Analytic and Neural solution of example 1

Inp | Exact solution Out of FENN y,(x)
ut
X Ya(X) Trainlm Trainbfg Traincgp Trainbr
00 |1 1.00000983089 | 1.000000001669 | 0.997450555522 | 0.999999525460
905 88 462 578

0.1 | 1.10517091807 | 1.10517091807 | 1.105170918441 | 1.104613721774 | 1.105229256698
565 565 09 80 24

0.2 | 1.22140275816 | 1.22140275816 | 1.221409606091 | 1.221976008387 | 1.221409723857
017 017 82 46 94

0.3 | 1.34985880757 | 1.34985880757 | 1.349864539918 | 1.350529358640 | 1.349841758836
600 600 30 27 80

0.4 | 1.49182469764 | 1.49182469764 | 1.491824700755 | 1.491802133706 | 1.491839218726
127 127 97 46 39

0.5 | 1.64872127070 | 1.64872258180 | 1.648721270422 | 1.647924384100 | 1.648756430445
013 316 85 36 83

0.6 | 1.82211880039 | 1.82211880039 | 1.822118800429 | 1.821430240372 | 1.822111486961
051 051 70 42 20

0.7 | 2.01375270747 | 2.01374615271 | 2.013731518513 | 2.014585759849 | 2.013756121506
048 598 59 56 24

0.8 | 2.22554092849 | 2.22554092849 | 2.225492400271 | 2.228110200443 | 2.225887575409
247 247 40 83 56

0.9 | 245960311115 | 2.45965082692 | 2.459603113036 | 2.459513132811 | 2.460545724194
695 107 82 21 18

1.0 | 2.71828182845 | 2.71828182845 | 2.718281829550 | 2.701873951256 | 2.718281618505
905 905 48 76 24

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

Table2 : Accuracy of solutions for example 1

training algorithm

Deviation Ay(x) = | yi(x) — ya(x) | where y(x) computed by the following

T r ain 1l m|Trainbfg T r ainc g p| Trainbr
9.83089905348678 1.66987534910845 0.00254944447753802 4.74539422312681
e-06 e-09 e-07
2.22044604925031 3.65442787142456 0.000557196300851492 | 5.83386225889715
e-16 e-10 e-05
2.22044604925031 6.84793165306452 0.000573250227294153 | 6.96569776748035
e-16 e-06 e-06
4.44089209850063 5.73234229195307 0.000670551064267722 | 1.70487392048280
e-16 e-06 e-05
0 3.11470271796566 2.25639348054862 1.45210851227873
e-09 e-05 e-05
1.31110302747928 2.77281309024602 0.000796886599769398 | 3.51597457055597
e-06 e-10 e-05
2.22044604925031 3.91950916167616 0.000688560018087481 | 7.31342931303836
e-16 e-11 e-06
6.55475449207188 2.11889568917378 0.000833052379080268 | 3.41403576564758
e-06 e-05 e-06
0 4.85282210678228 0.00256927195136258 0.0003466469170927
e-05 41
4.77157641158854 1.87987447830551 8.99783457422032 0.0009426130372340
e-05 e-09 e-05 86
4.44089209850063 1.09143893922692 0.0164078772022869 2.09953809005015
e-16 e-09 e-07

Table3 : the performance of the train with epoch and time

TrainFcn Performance of train Epoch Time
Trainlm 7.75e-32 148 0:00:02
Trainbfg 2.49e-18 282 0:00:05
Traincgp 5.87e-07 48 0:00:01
Trainbr 6.15e-10 396 0:00:06

Table 4: Weight and bias of the network for different training algorithm

Weights and bias for trainlm Weights and bias for trainbfg
NetIW{1,1} | NetLW{2,1} | Net.B{1} NetIW{1,1 | Net.LW{2,1 | Net.B{1}
0.0521 0.8604 0.5134 } }
0.9312 0.9344 0.1776 0.7112 0.4242 0.0292
0.7287 0.9844 0.3986 0.2217 0.5079 0.9289
0.7378 0.8589 0.1339 0.1174 0.0855 0.7303
0.0634 0.7856 0.0309 0.2967 0.2625 0.4886
0.3188 0.8010 0.5785
Weights and bias for traincgp Weights and bias for trainbr |
NetIW{1.1] | NetLW{2.1] | NetB{1] Net.IW{1,1} | NetLW{2,1 | Net.B{1}
09431 0.8978 0.6511 0.0158 06153 | 00321
0.1127 0.4972 0.1336
0.1355 0.5831 0.8271
0.6483 0.7713 0.6385
0.3321 0.6983 0.3400
0.4808 0.0604 0.3849
0.0665 0.2625 0.7657 0.8975 0.0293 0.8467
. : : 0.4996 0.5279 0.2461

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

2.8
2.6
2.4
2.2
2
=
1.8
1.6
1.4
1.2+
14
o
Figure 1: analytic and neural solution of example 1 using : trainlm training algorithm
FPerdormance is 1.93901e-023, Soal is O
1o F
10°
@ 1ot
=
1D-15 |
107 |
] = 4 5 = 10 12
Stop Training 12 Epochs
Figure2a. Learning curve of NN gave in [7] for Example 1
Solution of d2y/dx2 =y (201+2%y (1]
2.8

I I I T T T T T T
—&— Exact H H H i H
SR | — Mueral Retworks

Figure2b. Curve of NN gave in [7] and exact for Example 1

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

Table5: Analytic and Neural solution of example 2

Input | Exact solution | Out of FFNN y,(x)

X Va(X) Trainlm Trainbfg Traincgp Trainbr
000 0 1.28139499011581 | 2.95252630078124 | 2.10062376188036

e-10 e-05 e-06

0.1 | 0.18181818181 | 0.18163249901017 | 0.18146081338943 | 0.17981391809300 | 0.18138474875450
0.2 3.13832333333333 8.33333333333333 3.333248 12112556 3.33298636197686 3.33332948600684
0.3 (3)%4363 153846153 (3).46153846153846 3.46153846250503 (9).46214064457979 8.4615544947 1967
0.4 31'672142857142 (2).57139523116436 (6).57142857052548 (6).57191901635744 (6).57140931965352
0.5 3.56762666666666 3.66663687318271 (9).66666666628307 (2).66669528498619 (7).66668040989376
0.6 (6).67657000000000 3.74998976018676 3.75000000168059 (2).74976155073882 (3).74999662968055
0.7 8.%020352941 176 (7).82352941 176470 8.82352587943 156 (3).82334483751 137 (2).823412831 16355
0.8 3.78086888888888 (6).88888888888888 (5).88888888925837 (9).88889571416073 8.88869533214190
0.9 3?984?7 36842105 (9).94736842 105263 (9).947379 13334746 3.94737979048635 3.94736846457308
1.0 %632 i .00000000000000 ?.0000000001 1712 §.999490064878 16 i .00068490668473

Table 6 : Accuracy of solutions for example 2

Deviation Ay(x) = | yi(x) — ya(x) | where y(x) computed by the following

training algorithm

T r ain |l m| Trainbfg T r ainc g p| Trainbr

0 1.28139499011581 2.95252630078124 2.10062376188036
e-10 e-05 e-06

0.00018568280801 | 9.03082386649601 0.00200426372517432 | 0.0004334330636780

1678 e-10 46

0 0.0003573684287478 | 0.00034697135646449 | 3.84732649355568
40 8 e-06

1.11022302462516 | 8.52122077651396 0.00060218304133402 | 1.60331812142367

e-16 e-05 6 e-05

3.33402642036518 | 9.66574043026469 0.00049044492887051 | 1.92517750449150

e-05 e-10 5 e-05

2.97934839488256 | 3.83592380082121 2.86183195253864¢-05 1.37432270962412
e-05 e-10 e-05

1.02398132326709 | 1.68059044458602 0.000238449261177109 | 3.37031944841470

e-05 e-09 e-06

1.11022302462516 | 3.53233314132062 0.00018457425332640 | 0.0001165806011562

e-16 e-06 8 69

2.22044604925031 | 3.69490105178727 6.82527184903137 0.0001935567469812

e-16 e-10 e-06 94

5.55111512312578 | 1.07122948340699 1.13694337268155 4.35204492443830

e-16 e-05 e-05 e-08
3.33066907387547 | 1.17118315046127 0.00050993512183483 | 0.0006849066847285

e-16 e-10 7 37

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

Table 7: Weight and bias of the network for different training algorithm

Weights and bias for trainlm Weights and bias for trainbfg
Net.IW{1,1} | NetLW(2,1} | Net.B{1} NetIW{1,1} | NetLW{2,1} | Net.B{1}
0.4884 0.5932 0.0018 0.2040 0.2021 0.7613
0.7290 0.3044 0.7118 0.6241 0.4691 0.4027
0.2026 0.9677 0.8677 0.7252 0.3784 0.6743
0.2163 0.8960 0.1183 0.8344 0.3404 0.5511
0.9763 0.1900 0.0390 0.0189 0.0639 0.0515
Weights and bias for traincgp Weights and bias for trainbr
Net.IW{1,1} | NetLW{2,1 | NetB{1}
NetIW({1,1} | NetLW(2,1} | Net.B{1})
0.2039 05066] 0.7058 0.4559 0.6603 | 0.5711
0.3867 071691 0.1331 0.2428 0.6805 | 0.6902
0.0650 03012] 0.6655 0.0019 0.8506 | 0.8956
0.4323 0.7060 0.3756 0.6153 0.0373 0.2669
0.6897 0.9152 0.5024 0.6612 0.6808 0.0686

Table 8 : the performance of the train with epoch and time

TrainFcn Performance of train Epoch Time
Trainlm 6.87e-32 530 0:00:08
Trainbfg 6.98e-19 1157 0:00:20
Traincgp 6.48e-08 26 0:00:00
Trainbr 8.47e-10 92 0:00:01
1 ‘ ‘ ‘ ‘ ‘ ‘
0.9 - -
0.8 - _
0.7 - -
0.6 - _
s 0.5 _
0.4 .
0.3 -
0.2~ _
0.1 - -
OO O.r1 O.‘2 013 O.‘4 015 016 O.‘7 018 029 1

D
Figure 3: analytic and neural solution of example 1 using : trainlm training algorithm

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

J. of university of anbar for pure science : Vol.7:NO.1: 2013

FPedormance is 3.73427e-008, Goal is O

102 [\ -

107 F -

10 .

Training-Blue

10° =

"I D-S 1 1 1 1 1 1 1
a a0 100 150 200 250 300 350

Stop Training 361 Epochs

Figureda. Learning curve of NN for Example 2 gave in [7]
Solution of d2yfdxD =0 11727 0121275

T T
—S— Exact

1 as | —|—lNueraI .NEtWDrk.S I“"E‘"""i“""‘?"""'é _______ __ ______ __ _____]

Figuredb. Curve of NN gave in [7] and exact solution for Example 2

zu*.\‘g.hﬁ'édim dﬂ@éﬁ&.}lﬁ Q\:\MMM

E.mail: dean_coll.science @uoanbar.edu.iq

-

Al
Lolie V) Llalill eV alaall 4p250n a8 Jilise Jad Ak Jic dedd 4,050 Gl Lypeme 4803 araai s anl (o gl
Jemal) A8l 035 5 Jal) o Jpemal) & Qi Vs e J5 dall (03 gn8 Gy i) Baa) o ol iy 20
Al (8o drgpes ol A gy Lgaiany AaBA) il Claa)lod (o 230 @lld 8 Laadialy oyl JE dal) e

[7] siael il oo dasiall At il Ujlis cpllie da A (e iplall Ly haal Al gine alaal el) cl€al)

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

mailto:dean_coll.science@uoanbar.edu.iqE.mail:
http://www.novapdf.com/
http://www.novapdf.com/

