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Abstract.The aim of the research is design efficient neural networks to solve important type of 

partial differential equations represent many important models. The efficiency of design based 

on chooses a suitable activation function, suitable training algorithms with study how to 

increase the speed of this algorithm. Then we used suggested design to solve third order PDEs. 

1. Introduction 
A neural network (ANN) is a mathematical branch of the field of "artificial intelligence". Artificial 

intelligence attempts to model complex processes using learning means rather than predefined or 

sequential algorithms. Problems like pattern recognition, many forms of graphical analysis, and 

analyses of complex data interactions are best performed with learning-type methods [1]. Artificial 
Neural networks effectively are a mapping which creates a function of several variables from a 

number of sums and products of functions of one variable. It may contain several layers which can be 

used for calculations, corresponding to the layers of the ANN’s and it may modify the parameters in 
the resulting form of the approximation by a learning or training procedure which passes through the 

ANN’s repeatedly or which moves forward and back ward through the ANN’s. 

There are many application for ANNs in different branches for more details see ([2]-[7]) here we use 
this technique to solve type of  differential equations that cannot be solved by other methods or solved 

but here easy implemented, faster, more accuracy. The idea of this research based on many important 

results got from previous researches such ([8]-[12]). 

2. SUGGESTED DESIGN of ANN 
The best architecture can be designed depends on the problems to be represented and its type,  how the 

layers are connected to each other, how many layers a ANN has, number of neurons in each layer, and 

activation function for each layer’s. 

Here we suggest 3 layers feed forward (FFNN) feeding network. The 1st layer consist input neuron 

required to feeding the ANN by the data. Then hidden layer consist processing neurons and 3rd layer 
is output layer. Each layer connected to others by interconnected as synaptic weights, are used to store 

the data and knowledge. These weights taken the initial value randomly then adjusted in training 

process by choosing suitable training algorithm. Most of ANNs takes back-propagation training 
algorithm based on gradient descent (as in the Widrow-Hoff learning rule), which use descent, 
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downhill, direction. But this is often too slow for practical problems [13], then we can use Newton’s or 

quasi-Newton’s method to perform faster convergence, but the implementation of such methods is 

cumbersome and this is due to the need for computation of the Hessian matrix or its inverse [14]. 

However, we will consider the CG algorithm which is a search performed along conjugate directions 

and such process, generally, converge faster than the gradient descent algorithms (GD). Here, we 
suggest high performance algorithm, which can converge from ten to one hundred times faster than the 

algorithm of GD and GD with momentum.  

Thus, we suggest the following algorithm, the initial iteration depend on the negative of gradient. 

But the others depend on product search direction with learning rate, which can be express formally as 

follows: W��� = W� + α�ρ�              (1) 

Where; W���: is the weight in the k+1 iteration, ρ� : is the search direction in the k iteration, α� :  

is the learning rate in the k iteration.               

Suggested update Algorithm  

Given x�;  

Step ρ� ← �g� , k ← 0 , r� ← XW� − Y  
While  r� ≠ 0 

α� ←  − r�
ρ�
ρ�
Wρ�

 ; 
W��� ← W� + α�ρ�; 

β��� ←   g���ρ���
 W
ρ�
Wρ�

 ; 
ρ��� ← −g��� + β���ρ� ; 

k � k+1; 

end (while)  
Most line search algorithms require �k to be a descent direction because this property guarantees 

that the performance function can be reduced along this direction. Moreover, we choose the search 

direction has the form: ρ��g� ,    ρ� = −g� + β�ρ��� ;         (2) 
where gk is the gradient of the performance function with respect to the weights at the iteration k. 

3. Activation function 
For each hidden neurons in the hidden layer we choose sigmoid activation function. The term 

sigmoidal is used for the class of activation functions atisfying
m
lim
��

σ(x) = 0 and, σ(x) = 1, 

also � is continuous and monotonic on all R ([15], [16]). 

So, the logistic sigmoid is often used because it is well suited to the demands of back-  propagation. 

It is continuous and bounded function and ease to find its derivative, that is, ��(x) 	 �(x)[1 � �(x)] and 

���(x)	�(x)[1 � �(x)] [1 �2�(x)]. 

The linear activation function will be choosing for output neuron.   

4. Variable Learning Rate 
To increase the speed of suggested ANN we suggest rule to determine the optimal setting for the 

learning rate before training and, in fact, the optimal learning rate changes during the training process, 

as the algorithm moves across the performance surface. That is 

���� = ���∗ − �(�)���(�)�
‖�(�)‖�  

where w* is the optimal weight. 

The above 
opt is not practical (because w* is not known), we can use the optimal learning rate for 

quadratic error surface (E) as: 

m
lim
��
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�� = �(�)���(�)
������(�)��  

where �k is the search direction. 
The performance of the training algorithm can be improved if during the training process we allow 

the learning rate to change.  

ANN offers an appealing tool for optimization applications, which usually involve finding a global 
minimum of an energy function (error function (E)). The energy function always decreases when the 

state of any processing element changes. Suppose the state changed from +1 to �1 (or vice versa). The 

change in energy �E is given as: 

�E 	 E(xnew) � E(xold)  

= − 1
2 ! X"#$% ! W"&X&#$% − ! X"#$%b" + 1

2 ! X"'*- ! W"&X&'*- + ! X"'*-b"
.

"�

.

&�

.

"�

.

"�

.

&�

.

"�
 

= −X�#$% ! W�&X&#$%
.

&�
− X�#$%b� + X�'*- ! W�&X&'*-

.

&�
+ X�'*-b� 

The above result hold because except for the kth processing element state xk, none of the other 
states have changed, that is: 

X"#$% = X"'*- , for i ≠ k 

and use wij 	 wji, wii 	 0, then: 

∆E = (X�'*- − X�#$%) 3! W�&X�'*- + b�
.
&� 4 

(1) If X� has changed from X�'*- = −1 to X�#$% = +1, then, X�'*- − X�#$% =
−2 and ∑ W�&X�'*- + b�.&�  

must be positive. Thus �E will be negative. 

(2) If X� has changed from  X�'*- = +1 to  X�#$% = −1,, then,  X�'*- − X�#$% =
2 and ∑ W�&X�'*- + b�.&�  must be positive. Thus �E again negative. 

(3) If X�  has not change, then, X�'*- − X�#$% = 0 Then �E 	 0. Thus �E � 0, whenever a 

processing element changes state. 

5. Application problem 
Consider the following 3rd order PDEs: 

(utt − uxx)t + utt − uxx = 0,   0 < t < 2, 0 < x < 1, 

With ICs:     u(x, 0) = exp(−
(6 � �.8)9

�.�� ) , ut(x, 0) = 0, utt(x, 0) = ( 
(6 � �.8)9

�.��9    − 100) u(x, 0), 

Here we take 2 input neurons in the input layer for x and t, also, 15 sigmoid neurons in the hidden 

layers, with 1 output linear neuron for y. the accuracy of practical results calculated as: Error between 

exact (u) and neural solutions (u): E =  max            " ,� |u(x", t�)  −  u(x", t�)| 
= 6.22 × 10−7 

‘Figure 1’ present Simulink suggested design. ‘Figure 2’ present the results after testing but ‘Figure 

3’ present the results after training suggested design. ‘Figure 4’ present the deviation E = �u(x, t) of 
the obtained neural solution at the 100 grid points that were selected for training. ‘Table 1’ illustrates 

the weights of ANN in initial training and after training.  
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Figure 1. suggested design 

 
 

 
  

 
Figure 4. Accuracy of suggested desig 

Table 1. weights of ANN in initial (W0, V0) and after (Wopt, Vopt) training 

0

0.24144 0.47234

1.88921 1.85291

0.88459 1.53971

1.77856 1.45301

1.87231 1.10013

1.59298 1.90811

1.88869 1.67431

W 1.79345 1.62125

1.45391 1.34212

1.29801 2.50801

1.7615 2.56012

1.89021 1.40926

1.43100 0.83421

1.93

�

�
� �

�
� �

	
�

�

� �

�

,

412 1.76451

1.83512 1.86711
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� �
� �
� �
� �
� �
� �
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� �
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0 .4 1 7 2 3
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1 .9 4 7 6 8

1 .7 8 9 9 1

V , a fte r le a rn in g1 .0 9 6 7 1
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� �
� �
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0.26946 0.70201

0.10893 0.41089
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0.70071 0.82391

0.56251 0.201987

0.780091 0.19811

W 0.98734 0.69871

0.70111 0.32865

0.68834 0.59510

0.80124 0.62019

0.71563 0.78961

0.00564 0.74321

�
� �
�

�
�

	 �
�

�

�
�

,
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Figure 2. Results of FFNN after testing Figure 3. Results of FFNN after training 
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Now, we show the convergence of neural results to exact solution. The term convergence refers to 

the adjust behavior of the weights during training process, which lead to minimization of error 

between the desired and actual outputs of ANN. we call it the performance function. Therefore, we 
give the following convergence theorem. 

Theorem 1 

The following three statements are equivalent: 

(a) W is convergent ; 

(b) 
m
lim
��

||Wm|| 	 0; 

(c) �(W) < 1. 

Proof 

We first show that (a) and (b) are equivalent. 

Since ||.|| is continuous, and ||O|| 	 0, then (a) implies (b). But if (b) holds (for some norm), then 
there exists an positive constants M such that:  ‖W:‖< ≤ M‖W:‖< → 0 

Hence, (a) holds. 

Next we show that (b) and (c) are equivalent. 

Now, by the fact that  �(Wm) 	 �m(W), we have:  ‖W:‖ ≥ ρ(W:) = ρ:(W) 

So that (b) implies (c). On the other hand, if (c) holds, then we can find an � > 0 and a natural 

norm, such that: 

||W|| � �(W) + � � � < 1 

Now, if we use the inequalty ||AB|| � ||A|| ||B||, we get:  ‖W:‖ ≤ (‖W‖): ≤ θ: 

So that
m
lim
��

||Wm|| 	 0 (since � < 1) and hence (b) holds. 

A test for convergence of weight matrices which is frequently used can follow from the following 

corollary: 

Corollary 1 
W is convergent to optimal weight if for some matrix norm, ||W|| < 1. 

Proof: 

By property of matrix norms ||AB|| < ||A|| ||B||, we have  ‖W:‖ ≤ ‖W‖: 

then
m
lim
��

||W||m 	 0, since ||W|| < 1 

but 
m
lim
��

||Wm|| � 
m
lim
��

||W||m 	 0, then 
m
lim
��

||Wm|| 	 0 

So that condition (b) of theorem 1 holds. 

6. SENSITIVITY of the LEAST SQUARES SOLUTIONS to the NUMER of  LAYERS 
The stability of the numerical solution of an over determined system, XW=Y depends on the condition 

number of the matrix and the choice of the activation functions. The most used function is ridge 
function and thus we need only to discuss the number of layers to achieve an accurate solution without 

having an ill-condition matrix.  

Suppose the vector X minimizes BXW − YB�
, due to round off error perturbation, the vector Y 

minimizes B(X + δX)W − ( Y − δY)B�
, where ‖δX‖� = ε‖X‖�, BδYB� = σBYB�

and � is the machine 

precession. Rounding errors may actually change the rank of the matrix, but we always assume that 

the rank of X is the same as the rank of (X + �X).  

Golub in (1969) shows that, if r	 XW � Y, then we have roughly: 

BY − XB� ≤ εk(X)(‖X‖� + ‖Y‖�) + ε‖r‖�k�(x) + O(ε�). 
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We see that the upper bound includes terms �||r||2 k2(X) which is a measure of the inherent 

sensitivity of the least square problem; nevertheless we avoids some of the ill effects inherent in the 

use of the normal equations. Moreover, in practice and to be on the safe side, in the absence of other 

information, one should normalize each column of the neural matrix so that its lengths are one. 

The above bound shows that if the norm of the residual vector r is small it is not necessarily true 

that accurate solution has been determined, at the local minima r can be small, and as the condition 

number increases we may get an inaccurate least squares solution. 
To show the dependence of the k(X) on the number of layers of the ANN’s, i.e., on the matrix 

arisen from ANN’s, and the effect of these on residual, we give the following theorem: 

Theorem 2 
Let x � Rm�n, V  ϵ RN�1, y � RM�1 and a � R, if  

X = F XV
G  and y = Hy
aI, then 

1.k(X) ≤ k(X) × F1 + BJB9
‖K‖9G 

2. MinL NXw − yN ≥ MinL NXw − yN� 

Proof: 

1. Suppose the SVD of X and X are �1 ≥ �2 ≥…≥ σN and �σ1≥ �σ2 ≥ … ≥ �σN  respectively. 

 BXWB�
� = BXWB� + (V
X)� 

From the above equality and the definition of SVD we have  

σ.� ≥ σ.�  and σ�� ≤ σ�� + BVB�
 then: 

K��X� = QR9
QS9 ≤ QR9QS9 T1 + BJB9

9
QR9 U = K�(X) T1 + BJB9

9
‖K‖99U. 

Thus K(X) ≤ K(X) T1 + BJB9
9

‖K‖99U
� �Z

 

2. Let W minimizeNXW − yN�
 

Then MinL NXW − yN�
� = NX W − yN�

� = [F KL�\
J]L�^G[

�
� ≥ NX W − yN�

� ≥ MinL NX W − yN�
�
 

Thus MinL NXW − yN� ≥ MinL NXW − yN�
, thus the results hold. 

Note that, since ||W||2 / ||X||2 is almost of order unity, then from the above theorem one can 

conclude that as we fix the number of activation functions, number of column N and increase the 

number of layers of the ANN, the condition number K(X) of our system does not get worse, but the 

residual is worse than the previous value and thus one should be careful on choosing the number of 
layers to get an accurate numerical solution and thus 3 layers is sufficient to approximate any 

continuous function to any required accuracy. 

7. Conclusions 
In this paper, we designed efficient ANN’s by choosing suitable: training algorithm, learning rate and 

activation function. The use of ANN’s based on forward models, for some problems, offers several 

advantages over numerical models in terms of both implementation and calculation of the gradient 
also in the updates of the weights and overall computational cost. Our numerical results shows that, in 

approximation of the numerical solution of 3rd order PDE using 3 layers ANN gives better accuracy 

than using other numerical methods for 3rd order problems. 
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