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ABSTRACT

A module  is called  -module (extending) if for all  there exists a direct summand  B is an essential of  in . The main goal is to get a module namely -module (extending). Meaning we look for conditions and algebraic structures that lead to obtaining the submodules to be essential, and thus we obtain the -module (extending). The tools that enable us to get this goal are semi simple module, multiplication module and injective module. The second goal is to obtain a generalization of -module using the following tools: duo submodule, prime and semi prime submodules (P-(S.P) submodules) and quasi-injective submodule (Q-injective). Finally; we can say that all the results in this work depended on the concept of submodules of the module  and the ring R in this thesis stands for a commutative ring with identity.









	
	
IV

INTRODUCTION

In (1988); Mahmoud A. Kamal And Bruno J. Muller carried out a study about extending modules over commutative domains where they defined the extending module as follows: a module  is extending or satisfies the property  if every complement submodule is a direct summand. In (1990); Mohamed ,S.H. and Muller,B.J. introduced the concepts of extending module where they defined the extending module as follows: an R-module  is said to be extending if every closed submodule of  is a direct summand. In (2009); Fatih Karabacak made a generalization of extending modules where he defined the extending module as follow: a module  is called an extending module if every submodule is essential in a direct summand of . In this work we study -module in detail where we look for tools to get an essential submodule, thus to obtain -module. Throughout this thesis every submodule  is a direct summand. Also we will introduce a generalization of -module.
A submodule  of a module  is essential in case  for every submodule . This concept was first introduced by F. Kasch.
The main goal of this thesis is to give a comprehensive investigation of the properties, characterization and some examples of -module. So we must get an essential submodule in order to get -module.
This thesis consists of three chapters. Each chapter contains three sections.
In chapter one, we recall some fundamental definitions, remarks and propositions. Section one talks about the subject of -module, where a module  is said to be lifting or satisfies (-module), if for any , a direct summand  K is a coessential submodule of  in . Also, a module  if satisfies -module so it is -module. Section two talks about the subject of essential submodule and some tools to help me get an essential submodule. Section three explains the subject of duo submodule and some definitions, where a submodule  is called fully invariant if  is contained in  for every R-endomorphism f of . Also, the right R-module  is called a duo module if every submodule of  is fully invariant. Those definitions are introduced by A.C.zcan, A.Harmanci.
In section one of chapter two, we present some relationship between semi simple module and essential property, where any module  is semi simple if it is a sum of simple module. Among the results which we prove in this section are:
1- Let a module  be a semisimple indecomposable. If , then .
2- Let a module  be an indecomposable over a ring R. If  is injective, then  is essential. Moreover; if  is a simple and flat, then .
	       In section two of chapter two, we study relationship between multiplication module and essential property where any module  is multiplication if  and I is an ideal of R. Among the results which we prove in this section are:
1- If  is a multiplication R-module and let  be one maximal submodule of , then .
2- Let  be a module over local ring R. If  is cyclic module and has only one maximal submodule. Then  is -module.
In section three of chapter two, we present the relationship between injective module and essential property. An R-module  is called injective if for every monomorphism  ةخtending) zation of wudyanother property of any submoduleand homomorphism  there exists a homomorphism . Among the results which we prove in this section are:
1- Let a module  be an injective over a ring R. If  is indecomposable, then any .
2- If  is split and ;  is injective R-module.
	In section one of chapter three, we study a generalization of -module through the duo module. Among the results which we prove in this section are:
1- Consider  as a submodule of  over ring R. If  and , , then  is a duo submodule of .
2- Let  be a -module. If  has a socle not equal zero, then  is duo--module.
	In section two of chapter three, we introduce a generalization of -module through the prime and semiprime P-(S.P) submodules. Where any proper submodule  is prime (briefly P-submodule) when if , , , then  and  is said to be semiprime (S.P-submodule) if  and whenever ,  and  , then . Among the results which we prove in this section are:
1- Let  be a -cyclic R-module If  is a prime module and has fully invariant property, then  is a P-duo--module.
2- Every semi prime submodule of a multiplication -module is  submodules and so  is S.P-duo--module.
In section three of chapter three, we present a generalization for -module through quasi-injective submodule, were a module  is called Quasi-injective (briefly Q-injective) if , and R-homomorphism   can be extended to an R-homomorphism of , and any R-module  is said to be pseudo injective (briefly P-injective) if and only if every R-isomorphism of each submodule of  into  can be extended to an R-endomorphism of . Also, we have any Q-injective is P-injective. Among the results which we prove in this section are:
1- Let  be an R-module over P.I.D. If  is pseudo-injective module, so it is a Q-injective.
2- If  and  in Pseudo-injective module , then  is Q-injective.
Finally, the ring R in this thesis is commutative and identity. Also, a module   in chapter two is an indecomposable module.
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	Chapter One
Preliminaries





INTRODUCTION

Let R be a commutative ring with identity, and let  be a unitary R-module. A module  is called extending (-module) if for any submodule  in , there exists a direct summand B in  is an essential of  [34]. In this chapter, we summarize some definitions, remarks and properties about -module also, some definitions and notes related to -module with some definitions and notes to generalization of -module (Duo submodule, P-(S.P) submodules, Quasi-Injective submodule).













§1.1: Basic Properties of -Module

This section contains some known definitions and related concepts about the subject of -Module.

Definition (1.1.1): [42]
A module  over a ring R is an additive commutative group  together with mapping 

Is called module, for which we have  and  then:
1. .
2. .
3. .
4. .
Definition (1.1.2): [42]
Let  be a module over a ring R. A subgroup  of  is called a submodule of   if  then .
Remark (1.1.3): [29]
Every R-module  has at least two submodules .
Definition (1.1.4): [42]
A module  is called simple if  and has only submodules .
Example: A Z-module is a simple module.
Definition (1.1.5): [15]
Any module  is called semisimple if it is a sum of simple modules.
Remark (1.1.6): [29]
1- Every simple module is semisimple.
2- If  is semisimple, then every  is semi simple.
Definition (1.1.7): [33]
Let  were  be a module. A is called a small submodule of  (denoted by ) if for any .
Example: For any module  we have .
Definition (1.1.8): [42]
A submodule B of an R-module  is called large submodule in  if: , we have .
Definition (1.1.9): [14]
A module  is distributive (D-module) if for any submodules A, B, C we have:
.
Definition (1.1.10): [33]
A module  is said to be hollow if every non-trivial submodule is small in .
Definition (1.1.11): [34]
A module  is called extending (-module) if  a direct summand  B is an essential of  in .
Definition (1.1.12): [33]
A module  is called lifting or satisfies (-module), if  a direct summand  K is a coessential submodule of  in .
Remark (1.1.13): [34]
1- Every injective module is a -module.
2- Every projective module is a -module.
Definition (1.1.14): [17]
If X is a non-empty subset of R, then we denote its annihilator in  and define it to be the set of elements  such that .
.
Definition (1.1.15): [29]
A module  is called faithful if and only if ⟹.
Definition (1.1.16): [31]
A non trivial submodule  is called maximal if and only if there is no proper submodule of  different from  containing .
Remark (1.1.17) : [31]
A submodule  is maximal in  if and only if  is simple R-module.
Definition (1.1.18): [30]
A submodule  is semimaximal if and only if  is a semisimple R-module.
Remark (1.1.19): [30]
Every maximal submodule is semimaximal but the converse is not true.
For example: In Z-module Z, a submodule 6Z is semi-maximal but not maximal.
Definition (1.1.20): [29]
A module is called finitely generated if and only if there exists a finite generating set.
Definition (1.1.21): [19]
A module  is indecomposable if and only if  and  are the only direct summands of  .
§1.2: General View of Essential Submodule

This section contains some known definitions and related concepts about the subject of essential submodule.

Definition (1.2.1): [19]
A submodule  is essential in case   or if whenever , then .
Example: For every R-module , we have .
Definition (1.2.2): [7]
A submodule  of an R-module  is called a direct summand of  in case there is a submodule K of  with .
Definition (1.2.3): [7]
An R-module  is called Artinian if  satisfies the descending chain condition (DCC) on submodule of . We mean a descending sequence  of submodule of . So there exists
.
Definition (1.2.4): [7]
An R-module  is called Noetherian if  satisfies the ascending chain condition (ACC) on submodule of . We mean an increasing sequence  of submodule of . So there exists
.
Definition (1.2.5): [29]
A ring R is called semisimple if it is a direct sum of minimal ideals.
Remark (1.2.6): If  is semisimple. Then  is the only small submodule of  and  is the only large submodule of .
Definition (1.2.7): [29]
An R-module R is called flat module if for every monomorphism 
 is also monomorphism.
Definition (1.2.8): [43]
A submodule  of  is said to be irreducible if for submodules A and B of  implies that either .
Definition (1.2.9): [6]
Let  be an R-module. Then, the radical of  denoted by  is defined to be the intersection of the maximal submodules of .

Definition (1.2.10): [9]
Any module  is called multiplication if , such that  and I is an ideal of R.
Definition (1.2.11): [24]
A module  is an -multiplication module if for every submodule .
Definition (1.2.12): [23]
An element x of a multiplication R-module is called nilpotent if , for some positive integer n.
Definition (1.2.13): [36]
Let  be a module and  in ,  is called perfect in  if for any index set A, the sum  is semi perfect in .


Definition (1.2.14): [13]
A module  over a ring R is said to have the extending property if every submodule of  is contained as an essential submodule in a direct summand of .
Definition (1.2.15): [28]
A submodule  of  is called complement if  has no proper essential extension.
Definition (1.2.16): [29]
Let  be an R-module and 1, 2 are submodules of . Then we say 2 is an addition complement of 1 in  if , and 2 is minimal in the sum of 1 and 2, and equal to .
Definition (1.2.17): [19]
An R-module  is called cyclic if it is generated by single element.
Example: 2Z as a Z-module is a cyclic module.










§1.3: Basic Properties of Duo Submodule

This section contains some known definitions and related concepts about the subject of (DUO) submodule on -module.

Definition (1.3.1): [35]
A submodule  is called fully invariant if  is contained in  for every R-endomorphism f of .
Remark (1.3.2): [35]
It is clear that a submodules  and  of  are fully invariant of .
Definition (1.3.3): [35]
An R-module  is called a duo module if every submodule of  is fully invariant.
Remark (1.3.4): [35]
If  is a simple module, then it is clear that  is duo module.
Definition (1.3.5): [28]
The heart submodule of an R-module  denoted by  is the intersection of all non-zero submodules of .
Remark (1.3.6): [28]
 is a minimal submodule contained in every non-zero submodule when  is non-zero
.

Definition (1.3.7): [28]
Let  be a module and  is called h-closed if .
Definition (1.3.8): [17]
The socle  of an R-module  is the sum of all the simple submodules of 
.
Remark (1.3.9): [28]
1-  for any R-module .
2-  when  has a simple socle.
Definition (1.3.10): [28]
A submodule  of an R-module  which has no proper essential extension in  is called a closed submodule of .
Definition (1.3.11): [28]
Any submodule  of  is called closed duo if  has no proper essential extension and .
Definition (1.3.12): [9]
Let  be an R-module and  . A submodule  is pure in  if any finite system of equation over  which is solvable in  is also solvable in .
Definition (1.3.13): [32] 
A module  is called uniform if 1 and 2 are non-zero submodules of ;  the intersection of any two non-zero submodules is nonzero, equivalently,  is uniform if .
Definition (1.3.14): [29]
A module F is called a free module which satisfies the conditions:
1. F has a basis.
2. .
Definition (1.3.15): [20]
If R is an integral domain and  is an R-module, then an element  is called torsion element if there exists. So we define:

Note that:
1- If , then a module  is called torsion-module.
2- If , then a module  is called torsion-free-module.
Definition (1.3.16): [14]
A module  has square-free-socle if its socle has at most one copy of each simple module.
Definition (1.3.17): [23]
Let  be a multiplication module and . The residual of L by  in  is

Definition (1.3.18): [40]
A submodule  is called stable if for each R-homomorphism  implies , and an R-module  is called fully stable in case every submodule of  is stable.
Definition (1.3.19): [23]
Any proper submodule  is prime (briefly P-submodule) when if , , , then  and  is said to be semiprime (S.P-submodule) if  and whenever   and  for n where , then .
Recall that if any submodule  is a P-submodule, this means  is prime module.
Definition (1.3.20): [38]
A Dedekind domain is a commutative domain with property that every non-zero fractional ideal is invertible.
Definition (1.3.21): [19]
A ring R is said to be local ring if  is a division ring, or a ring R is local if it has a unique maximal ideal.
Definition (1.3.22): [19]
A ring R is called semi-local ring if  is semisimple ring.
Definition (1.3.23): [20]
An R-module  is divisible module if  for all .
Definition (1.3.24): [5]
An R-module  is nonsingular if  with  implies.
Remark (1.3.25):
1- If  then  is singular.
2- If  then  is nonsingular.
Such that .
Definition (1.3.26): [29]
Let R be a ring and let

Be a sequence of homomorphisms of right R-modules , finite or infinite on one or other or both sides, an exact sequence of the form

is called a short exact sequence.

Definition (1.3.27): [29]
An exact sequence A is called a split exact sequence if and only if for every subsequence of the form


is a direct summand of Ai.
Definition (1.3.28): [38]
An R-module P is a projective module if there exists an R-module Q such that  is a free R-module.
Definition (1.3.29): [38]
An R-module  is called injective if for every monomorphism
 ةخtending) zation of wudyanother property of any submoduleand homomorphism  there exists a homomorphism .
Remark (1.3.30): [28]
Every free module over a ring R with (identity) is projective.
Lemma (1.3.31): [ Criterion] [16]
Let R be a ring with (identity). A unitary R-module  is injective if and only if ideal L of R, any R-module homomorphism  may be extend to an R-module homomorphism .
Definition (1.3.32): [27]
A module  is called self-p-injective if  satisfy the following condition; every homomorphism from a projection invariant submodule of  can be lifted to .
Definition (1.3.33): [1]
A ring R is (QF) quasi frobenius if R has (DCC) on right ideals and R is self-injective.
Remark (1.3.34): [1]
Every injective module over a ring R is projective and the converse is true if the ring R is quasi frobenius.
Definition (1.3.35): [36]
A module  is called weakly injective in  if for every finitely generated submodule  of the -injective hull ,  is contained a submodule Y of  such that .
Definition (1.3.36): [11]
A ring R is called hereditary if every ideal I of R is projective.
Definition (1.3.37): [8]
Any ring R is called V-ring if every simple R-module is injective.
Definition (1.3.38): [22]
A module  is said to be Hopfian if every surjective endomorphism of  is an isomorphism.
Definition (1.3.39): [22]
A submodule  of  is said to be non-Hopfian kernel for () if there exists an isomorphism of  to .
Definition (1.3.40): [22]
A non-simple module  is called anti-hopfian if every proper submodule of  is a non-hopfian kernel (if there exists an isomorphism ).
Definition (1.3.41): [26] 
A module  is called Quasi-injective (briefly Q-injective) if  , and R-homomorphism   can be extended to an R-homomorphism of .

Definition (1.3.42): [39]
Any R-module  is said to be pseudo injective (briefly P-injective) if and only if every R-isomorphism of each submodule of  into  can be extended to an R-endomorphism of .
Remark (1.3.43): [25]
Any Q-injective is P-injective but the converse is not true.
Example (1.3.44):
Let R be an algebra over  having basis  with the following multiplication table:
	
	
	
	
	
	
	
	

	
	
	0
	0
	0
	0
	
	0

	
	0
	
	0
	
	0
	0
	

	
	0
	0
	
	0
	
	0
	0

	
	
	0
	0
	0
	0
	0
	0

	
	
	0
	0
	0
	0
	0
	0

	
	0
	
	0
	0
	0
	0
	0

	
	0
	
	0
	0
	0
	0
	0



Then the right R-module  is pseudo-injective but not quasi-injective.
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	Chapter Two
Apply the Essential Property on -module





INTRODUCTION

This chapter introduces the concept of essential property, where a submodule  of  is called essential, if whenever , then  for each submodule L of  or a submodule  of a module  is essential in case  for every submodule . Also, we will study some results, characteristics and properties of the essential submodule and the relationship between essential property and some modules, such as semi simple, multiplication and injective modules. Therefore, in this work every submodule  is a direct summand. In the first part we will study the relationship between essential property and semi simple module on -module and will prove that if   is a submodule of semi simple indecomposable R-module , then . In the next part we will study the relationship between essential property and multiplication module on -module and we will prove that if  be one maximal submodule of a multiplication R-module , then . Finally we will study the relationship between essential property and injective module on -module and will prove that every injective indecomposable module  over a ring R has .






§2.1: Semi-Simple Module and Essential Property

In this section, we present some relationships between semisimple R-module and essential property of any submodule  of . We investigate every submodule  of  is a direct summand of , then  is essential of  and hence  is essential -module.  Also, we prove any module  over a ring R is essential -module when R is Artinian ring and . But before that, we need some auxiliary results about the topics.

Lemma (2.1.1):
Let  be an R-module such that every submodule  of  is a direct summand of . Then .
Proof:
Suppose that  and  is a finitely generated So  is a maximal submodule. So  where * is a submodule and hence
.
Hence . If K is a maximal submodule in , then  is simple. Thus  is a simple submodule of  (this means  is simple submodule).

Recall that any module  is indecomposable if and only if  and  are the only direct summands of  .

Lemma (2.1.2):
Let  be a semisimple indecomposable module. If  is a submodule of , then .
Proof:
Assume that  is a semisimple module. Suppose that . Therefore  is a direct summand of  (). Since  is an indecomposable module, so . Hence . Thus .
Remark (2.1.3):
By Lemma (2.1.1) and Lemma (2.1.2), if  and  is a semisimple indecomposable R-module, then .
Now we present a clear definition of the concept of semisimple module based on the submodules. See the following:
For a module , if the following conditions are hold, then  is called semisimple module:
1-   are simple submodules.
2-  are simple submodules.
3- .
4- .

Now from the above four conditions, we say that R is a semisimple ring if and only if every module of R is semisimple module.
Example (2.1.4):
The {0} is a semisimple module such that  are semisimples. Note that {0} is not simple module.

Recall that The socle  of an R-module  is the sum of all the simple submodules of .
Remark (2.1.5):
If , then  is called semisimple module (i.e. a module  is a semisimple if  is the sum of all its simple submodules).
Example (2.1.6):
 is a semisimple Z-module, because .
Example (2.1.7):
 is not a semisimple Z-module, because
.
Example (2.1.8):
Z is not semisimple Z-module, because  (note that there is no simple submodule).
Theorem (2.1.9):
Let  be a hollow module. If every submodule  of  is a direct summand of , then  is essential of  and hence  is - module.
Proof:
From definition of , we can say  is a direct summand of . So
.
We need to prove that . Suppose that . Let  and let
.
So J is a proper ideal of R and . Since J is a proper ideal of R, then there exist a maximal ideal I of R  is a simple R-module. But . So
 is a simple R-module. Since , then  is a direct summand submodule of . But , then  is a direct sum of .
Hence . So . So L is a simple module. Therefore .
Then . So  and this contradiction. Hence  and then . Therefore  is a semisimple R-module, since  is non zero hollow module so every non zero factor module of  is indecomposable. So . Thus  is -module.
Proposition (2.1.10):
Let  be an R-module and let . Then  is an intersection of essential submodule of  if  . Thus .
Proof:
Suppose that . Let . So , we have that . Let  and . We claim that J is a direct summand of K. Let B be a direct of J in . . So . Since , then  and hence
. Hence J is a direct summand of K. Since  and , then  is a direct summand of K. Hence . Now we must prove that . Let . Then . So . Hence  is a direct summand of K. Therefore F is a direct summand of K. Now , then F is a direct summand of T (every submodule of T is a direct summand of T).  So T is a semisimple submodule of  and hence . But , then . Hence  and . Thus  . Therefore .
Lemma (2.1.11):
Let R be a semisimple ring and . Then every R-module  is semisimple module.
Proof:
There is a free presentation
.
So  is a quotient of free module F over R. Clear F is copy of the ring R and R is a semisimple ring, this means F is a semisimple. Thus  is also semisimple module.
Theorem (2.1.12):
Let R be a ring. If  is a proper factor of projective R-module, then any submodule  of  is essential and hence  is -module.
Proof:
Let  be an R-module. We have a short exact sequence:
.
Since any module in this ring is projective, then  is also projective. 
Hence this sequence is splits. So  and  is submodule and isomorphic to . So R is semisimple. From Lemma (2.1.11),  is semisimple module, and we have every proper factor module of projective is indecomposable (i.e  is indecomposable). So by Lemma (2.1.2).  ( is -module).
Proposition (2.1.13):
Let  be an indecomposable R-module. If  is addition complement, then .
Proof:
From definition (1.2.9) of the radical, if this radical does not equal zero. So there exists . Then  is addition complement ;  is a small in . Since ; Rr is a small in , then Rr is a small in Rr  and this contradiction. . Suppose that B is addition complement submodule of  such that ; subset of . Let . Then  and this means  is a semisimple module. From our hypothesis  is indecomposable. So  ( is -module).
Corollary (2.1.14):
Let  are semisimple uniform R-modules. Then the direct summand of  is also semisimple  and so  is essential--module.

Recall that a ring R is called hereditary if every ideal I of R is projective.
Lemma (2.1.15):
Every injective module over a hereditary ring R has summand sum property.
Proof:
Let R be a hereditary ring. Then from definition of hereditary we have every  of injective module is also injective.  is injective and  and . Therefore L is injective. But  . Hence  is a direct summand of K. Thus  has a summand sum property.
Theorem (2.1.16):
Let R be a ring. If the following are true:
1. R is a hereditary ring;
2. ;
3.  is a projective module;
then  is -module.
Proof:
From condition (3)  is injective module. But from condition (1) R is a hereditary ring, then by Lemma (2.1.15), M has summand sum property. Let . Let F be a free module and . So  is a projective module and has summand sum property. Let  and .  So  is a direct summand of R. Hence R is a semisimple ring ( is semisimple module). Since ;  so  is indecomposable. Thus  is -module.
Corollary (2.1.17):
Let  be an R-module and . If the following are true:
1-  is Projective module;
2-  is a perfect module;
3- Every weakly injective module is injective;
then  is -module.


Proof:
Let  satisfy condition (1) and (2). Let  such that [] is all modules over R whose objects are submodules of ,  a module  is a w-projective. So  is injective. Hence  is injective ( is semisimple). Since this means M is hollow module so we obtain M is indecomposable. Thus  is -module.
Theorem (2.1.18):
Let  be any indecomposable module over Noetherian ring R and any direct sum of modules with summand intersection property has summand sum property. Then  is -module.
Proof:
Suppose that  is injective module. We have R is a Noetherian ring. Then  is a direct sum of indecomposable modules. But indecomposable modules have summand intersection property. So R is a semisimple ring. Hence  is a semisimple R-module with indecomposable property ( is -module).

There is a good relationship between radical of the ring R and semisimplicity property. First; Let R be a ring. We can present the meaning of  by the following:
.
Moreover;
.
Therefore for any ring R we have the following fact is true:
.
Now let us take
.
Also; if R is Artinian ring, this means there exists a minimal element:
.
But  when y is maximal ideal, so . Thus we easly present the following fact:
If R is an Artinian ring; the 
.
Proposition (2.1.19):
Let  be a simple module over the ring R. Then  is -module when R is Artinian ring and .
Proof:
If R is Artinian ring; then we have
 (by fact above).
Such that X is maximal ideal of R. The mapping from R into 

But () is a semisimple. Hence R is also semisimple. ( is a semisimple R-module). Since  is simple module so it is indecomposable module.  So any submodule  of  is essential . Thus  is a -module.

Recall that for any Artinian ring R, the  such that an element  is nilpotent if .
Therefore we obtain the following result:
Corollary (2.1.20):
For any module  over an Artinian ring R; if R has no  nilpotent left ideal, then  is -module.
Proof:
Since  is a nilpotent, then  (R has no non-zero nilpotent). So by proposition (2.1.19)  is -module.
Corollary (2.1.21):
Let  be an indecomposable R-module. If R is a left Artinian, then it has a minimal element ideal and so R is semisimple ( is semisimple module and hence it is -module).
Lemma (2.1.22):
Let  be an indecomposable R-module. If  is injective, then  is essential.  Moreover; if  is a simple and flat, then .
Proof:
Case 1: If  is injective module over commutative ring R. So R is a semisimple. Hence  is a semisimple module over R with  is an indecomposable. Thus , Lemma (2.1.2).
Case 2: Suppose that  is semisimple flat module, so  is injective. Thus by case (1); .
Theorem (2.1.23):
Let  be an R-module. Then  is a direct summand of simple submodule.
Proof:
Firstly, From definition of semisimple module we should prove that  is a direct sum of simple submodule.  If , then  and the family of simple submodule of  is empty, but the direct sum of an empty family of submodule is also empty. So  is a direct sum of simple submodule. If  , let γ=;  is non-empty independent family of simple submodule of . Since , then  contain a simple submodule say . Hence . Therefore by  lemma there exists a maximal independent family of simple submodule of M say {}. We claim that .
If not, then there exists a simple submodule  of  and . Hence . So . Then  is an independent family of simple submodule of  which is contradiction with maximal of {}. Hence . Thus  is a direct summand of simple submodule.
,𝑠𝑠 r if M is a simple and flate it is Essential-nt ideal and so R is semisimpleTheorem (2.1.24):
Let  be an indecomposable R-module. If every submodule of  is a direct summand of , then .
Proof:
We have  is a submodule and direct summand of . So  such that  is a submodule of  . We must prove that . If , let  and let
, I is a proper ideal of R and
.
Since I is a proper ideal of R, then there exists a maximal ideal A of R and
 is a simple R-submodule. So
 is a simple R-submodule… (2).
Hence . Therefore  is a direct summand of submodule of  (by hypothesis). But , So  is a direct summand of . Hence . Then  and so B is a simple submodule. Therefore  and .  contradiction. Thus  and then .  But  is a direct summand of simple submodule Proposition (2.1.10). Hence  is also a direct summand of simple submodule. Thus  is a semi-simple module (by definition of semisimple), and we have  is indecomposable module. So by lemma (2.1.2), .
Example (2.1.26):
Let Z be a Z-module. Then  is a simple submodule of Z such that p is a prime number. So for each  is a semisimple Z-module.  So  contains a submodule which is essential .
Example (2.1.27):
The Z-module  is semisimple small submodule of the Z-module. So  is essential in Z-module. 
Remark (2.1.28): [19]
If  is semimaximal, then  is a semisimple module .
Theorem (2.1.29): [19]
Let  be a proper submodule of . So  is a semi-maximal submodule if and only if there exists , A semisimple and  and semimaximal of B.
Theorem (2.1.30):
If  is an indecomposable P-module such that every submodule  of  is a closed, then  is -module.
Proof:
Since  is a P-module, so  is pseudo-injective.  But  is a closed submodule of .  Hence  is a direct summand of .  This means  is a semisimple module, also we have  is indecomposable module. Thus  is an essential in .
	Recall that An R-module  is anti-hopfian if  is non simple and all nonzero factor modules of  are isomorphic to ; that is for all
  [21].
Corollary (2.1.31):
Let  be anti-hopfian indecomposable R-module, if   is closed, then  is -module.
Proof:
Suppose that  is anti-hopfian R-module and . So 
. Hence  is also anti-hopfian. Therefore  is a p-module with  closed submodule and  is indecomposable module imply  is essential in .
Corollary (2.1.32): Let R be a P.I.D. If  is a cyclic and not isomorphic to RR,  is closed, then  is an essential in .
Proof:
Suppose that R is a P.I.D and  is cyclic R-module. So  is P-module with  closed submodule of  imply that  is essential in .
Example (2.1.33): Let  be an indecomposable right R-module;  and  is a simple. Then .


§2.2: Multiplication Module and Essential Property

In this section, we study the relationship between multiplication R-module and essential property of any submodule  of . We try to obtain  as an essential in . Before that we need to introduce some definitions and lemmas about the subject.

Definition (2.2.1): [3]
Let  be an R-module. Any submodule K of  is called prime if implies.
Definition (2.2.2): [3]
Let  be a submodule of a module . Any submodule  of  is essential  if there exists  such that , then .
Lemma (2.2.3):
If  is an multiplication R-module and let  be only one maximal submodule of , then .
Proof:
Suppose that  and 
.
Assume that . So . Hence . But . Therefore K proper in . We have  and it is multiplication module. Then K is a maximal submodule of  [17]. But  has only one maximal submodule . Hence .  So . Thus .

Theorem (2.2.4):
Let R be an integral domain. If  is divisible simple R-module has one maximal submodule, then  is essential in .
Proof:
Since  is a simple module, then it has only two submodules  and . If , then is an ideal. So  is multiplication module, from lemma (2.2.3),  because  has one maximal submodule. Thus  is essential in -module.
Theorem (2.2.5):
Let  be a module over local ring R. If  is:
1- Cyclic module;
2-  has only one maximal submodule; then  is -module.
Proof:
Assume that R is a local ring and it has one maximal ideal I. If  is a cyclic R-module, then  is multiplication module. So every submodule  of  has essential property in . Thus  is essential in .
Lemma (2.2.6): [18]
Let R be a ring and let  be a finitely generated distributive (D-module) R-module with . Then  is a multiplication R-module.
Theorem (2.2.7):
Let  be an R-module. If:
1-  is a cyclic module;
2-  has square free socle such that ;
3-  is a faithful module;
then  is essential submodule of .

Proof:
From condition (1), we have  is a cyclic module. So  is generated by one element . Hence  is a finitely generated.
Now condition (2) means:
.
We know that every quotient and submodule of a D-module is also D-module. If  such that  is a submodule and S has only two submodule are  and S (S is simple). So  is D-module. So from lemma (2.2.6),  is a multiplication module. Hence submodule  of  is essential .
Remark (2.2.8):
 R is called D-domain if any module over R is a D-module.
Lemma (2.2.9):
Let R be a Noetherian domain with quotient division ring B. If for all  and every ideal I of R is invertible, then R is a D-domain.
Proof:
We know that
if and only ifthen.
We also have
thenfor some.
Then
But
Then

Also by same way 
So if:
 two ideals of 
Then
Now setting, thenis invariant.
So every ideal is invariant, so R is also invariant. Thus by proposition (5) and theorem (6) from [14] R is a D-domain. Then  is a D-module.
Corollary (2.2.10):
Any module  have the following properties is -module:
1-  is finitely generated;
2-  is a faithful module;
3- All conditions of lemma (2.2.9) are hold;
then .
Proof:
From condition (3),  is D-module and by lemma (2.2.6),  is a multiplication module. So any submodule  of  is essential.
Corollary (2.2.11):
Let  be an R-module. If  satisfy the following:
1-  is local module;
2-  is simple module;
3- ;
4-  and P prime (maximal) ideal of  is an irreducible sub of  is proper;
then  and  is -module.
Proof:
From condition (3), let P be a prime ideal in R. Assume that A, B are proper subs of . From [37]
andand
But  is an irreducible sub of ⟶ the proper subs of  are linearly ordered. So  is D-module [Lemma (2.4), [37]]. From condition (2),  is a simple module. So  has only two submodules are  and it self . Thus  we have:
or
is not generated . Hence  is a cyclic. But every cyclic module is finitely generated with  imply, that  is a multiplication module. So .  Now from condition (1), we have  is local Module. By definition of local module, each proper submodule  of  imply . But  is a small of . Then  is a small of . So  is a hollow module. But every hollow module is lifting module [Corollary (2.8), [38]]. So M is a -module. Hence  is -module.












§2.3: Injective Module and C1-Module

In this section, we will connect between Injective R-module and essential property of any submodule  of . It is very useful to present the following lemma in order to provide a starting point for this section.

Lemma (2.3.1): Every semisimple indecomposable module  has .
Proof:
Assume that a module  is a semi-simple. Suppose that . Therefore (). But  is indecomposable R-module, means that . Hence . Thus .
Lemma (2.3.2):
Let a module  be an injective over a ring R. If  is indecomposable, then any .
Proof:
Since  is injective, then R is a semi-simple ring. So  is a semisimple module over R with indecomposable property. Thus  is essential.

Recall that A is divisible if any ;


Theorem (2.3.3):
Suppose that A is a divisible group. Then  over Z.

Proof:
We know that there are cyclic groups as a left ideal. If A is divisible and  is a homomorphism such that ; .
Let  and  is homomorphism that extend g. So A is injective Z-module. Thus any submodule  of A is essential in , where -module same A.
Example (2.3.4):
Q with additive as a group has submodule ,, because Q is divisible and so injective Z-module.
Example (2.3.5):
Let R be a not P.I.D. Then the quotient of injective R-module is not injective.
Example (2.3.6):
 is a divisible. So .
Example (2.3.7):
Z is not divisible. So .
Definition (2.3.8): [29]
If R is a ring and the

Sequence of homomorphisms of right R-modules , is an exact-seq.
,
so it is a short exact.

Definition (2.3.9): [29]
A is called a split exact seq. if and only if for every subsequence


is a direct summand of Ai.
Lemma (2.3.10):
If

 is split and ; then  is injective R-module.
Proof:
Since

is split exact,
.
Now we have

is split. So  is injective. So  is injective.
Example (2.3.11):
The {0} is injective module.
Example (2.3.12):
2Z and Z are injective.
Remark (2.3.13):
1- If , then  is injective.
2- From [34], every injective module  is projective such that a module  is called projective over a ring R if we have any diagram of R-module homomorphism
[image: ]Such that  is an exact and g is epimorphism (onto), so  homomorphism .
[image: ]
Before entering it to the explanation of the relationship between the projective module and the essential property, we need to clarify the concept of the free module.
If the following statements are hold, then the module  is a free.
1-  has a non-empty basis.
2- is cyclic module.
3-  copies.
4- There exists  and  any module K and  unique is a homomorphism;
.

Now we return to studying the relationship between the projective and the injective modules, using the free module.
Theorem (2.3.14):
Every free R-module  has .
Proof:
Let us take a diagram of a unitary R-module:
[image: ]
Such that g is an epi.  is a free on a basis X
.
But g is onto, then there exists
.
Since  is a free, then  given by  and
.
. So

.
From Remark (2.3.13),  is injective. Thus every . So  is -module.
Throughout, R is an abelian ring with 1 in R. All R-module  are assumed to be unitary . A module  is injective if for all R-module homomorphisms and such that is injective,
.

Example (2.3.15): [16]
If , then  and  are -modules and there is -module isomorphism . Hence both  and  are projective -modules.
Example (2.3.16):
Given a field K, every K vector space W is an injective K-module.
Example (2.3.17): [16]
Let R be any ring and I be an indexing set. Then  where each  is isomorphic to R is an example of free module.
 (Baer’s Criterion):
Suppose that  be an R-module. Then a module  is injective if and only if  is ideal; extends to .
Remark (2.3.18):
Suppose that any two R-modules. There exists another module  and  maximal of  and .
Definition (2.3.19):
 in last remark is maximal essential extension of  in . If  is essential and has no proper essential extension, then is a maximal essential of .

The following theorem explains the relationship between essential extension and injective module.
Theorem (2.3.20):
If  has no essential extension, then .

Proof:
Assume that  embedding in . So    is maximal and  Hence  is embedding  and is an essential extension. So it is an isomorphism. But . Since  is a direct summand of an injective module, then  is injective . Thus  is -module.
Theorem (2.3.21):
If  and a module  is faithful, then any  and so  is -module.
Proof:
Let . We need to prove that  is torsion-free. Assume that  is not torsion-free. So  is torsion  is torsion element,  such that c one of the regular element in R (non-zero divisors). , because . So .
Hence  and then .
So  is unfaithful module and this contradiction. Then  is a torsion-free . Hence  an   is a one to one (so  is injective). So . Thus  is -module.
Corollary (2.3.22):
If  is an anti-Hopfian R-module and . Then .
Proof:
Assume that  is an anti-hopfian. So  is integral domain and hence  is a commutative ring with 1 [10] imply  is a pure multiplication (every commutative with 1 is pure multiplication). Thus .
Corollary (2.3.23):
Let R be a P.I.D. If:
1-  is a finite generation module;
2-  is a torsion-free ;
then every submodule  of  is essential ().
Proof:
Suppose that  is generated by any finite set K. There is a maximal subset H of K and L is a submodule generated by  is free. Take
and.
Since
is torsion.
Let  (finite product). So .
Since L is free then  is a free. Since  is torsion-free then  has trivial kernel , So . So  is a free, then  is projective implys  is injective. Thus .
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	Chapter Three
Some Generalizations of
-module




INTRODUCTION

In this chapter we will introduce three types of generalizations of  -module. We will use some tools of generalization, such as duo submodule, prime or semi prime submodule and quasi-injective submodule. In first part we will study duo submodule on -module and prove if , were  as a submodule of  over ring R and , there exist , then  is a duo submodule of . In next part we will study -module  through the submodule of  which have two properties, namely prime and semi prime (P-(S.P)) submodule and prove that if any submodule  of multiplication -module  is a fully invariant in ,  subset of ,  subset of  for all  are submodules of . Then  is S.P-duo--module. Finally we will introduce a new generalization of -module. The main method adopted in this generalization is how to obtain a submodule  of  a module  having the characteristic Quasi-injective and we prove if  is pseudo-injective R-module over P.I.D, so it is a Q-injective. Were  any R-module  is said to be pseudo injective (briefly P-injective) if and only if every R-isomorphism of each submodule of  into  can be extended to an R-endomorphism of .






§3.1: Duo Submodule and -module

In this section, we will give high priority to some important results about the duality property of submodule. The main reason for choosing this property is that duo is one of the important applications of extending modules. Note that any module  will be chosen we will deal with it as a submodule in itself. Before giving the first result of this section we need to present the following definitions.

Definition (3.1.1): [19]
Let  be an R-module and let . If , then  is called fully invariant (FI) such that .

Note that if , this means that  is also a fully invariant as a submodule. Moreover;  and {0} are called duo submodules.
Definition (1.3.2): [35]
The right R-module  is called a duo module if every submodule of  is fully invariant.
Examples (3.1.3):
1- Simple module is Duo module.
2- Multiplication module with projective module is Duo module.
Lemma (3.1.4):
Consider  as a submodule of  over ring R. If  and , there exist , then  is a duo submodule of .


Proof:
Note that . Thus  is a duo submodule and so is duo--module.
Theorem (3.1.5):
Let  be a -module. Consider  as a submodule of . If  has (ACC) property on cyclic submodule, then  is a duo submodule and so  is duo--module.
Proof:
Assume that  has (ACC) property on cyclic submodule. Let
 and let  be a homomorphism. If , then  and so , . Hence ; n is positive integer. So
,
By hypothesis, integer.
There exists  such that
.
.

If , then  and so . ….C!
Therefore  and hence ..C!. So . Thus  is a duo submodule ( is duo--module).
Remark (3.1.6):
We can show that some submodules are not duo and hence  is not duo--module, for example:
If  subring of , then any right R1-module R2 is not a duo module because if . So  defined by:
  is an -homomorphism. We have , then  is not fully invariant submodule of R1-module R2.

Theorem (3.1.7):
Let  be a -module over R be a commutative domain and integrally closed. If  is a finitely generated torsion free uniform as a submodule over R, then  is a duo--module.
Proof:
Let  be a subring of K-vector space. Suppose that R is integrally closed and U be any finitely generated torsion-free uniform module as a submodule. Let . Since , k integral over R, then . So . Thus U is a duo submodule and then  is duo--module.
Definition (3.1.8): [28]
Let  be a submodule of an R-module . Then  is called an essential extension of  If  or , then .
Definition (3.1.9): [28]
A submodule  of an R-module  which has no proper essential extension in  is called a closed submodule of .
Definition (3.1.10): [28]
Any submodule  of  is called closed duo if  has no proper essential extension and , .

Now we study another property of submodule namely heart submodule , defined by the intersection of all non-zero submodules of .
 is a minimal submodule contained in every non-zero submodule when  is non-zero.

Recall that if M is any R-module, then the socle of M can be defined by


Remarks (3.1.11):
1-  for any R-module .
2-  if  has simple Socle.
Theorem (3.1.12):
Let  be a -R-module. Consider  be a heart submodule of . Then  is fully invariant and so  is duo ( is duo--module).
Proof:
From the definition of  we get  is a submodule of . Take any homomorphism , . To prove
.
If , then  is already an invariant submodule. Let . Therefore  is simple and hence 
. So
.
Then  is fully invariant. Thus  is a duo--module.
Theorem (3.1.13):
Let  be a -module. If  is intersection of all submodules of  every submodule is fully invariant, then  is duo--module.
Proof:
Assume that , then  has fully invariant submodule ( is duo) and is closed. Thus  is closed duo--module.
Now suppose that . Then
.
Then
.
So  is h-closed ( is closed duo--module).
Remark (3.1.14): [28]
Let  be an R-module and . We called  h-closed submodule of  if .
Corollary (3.1.15):
Let  be a -module and .
If  and , then  (h-closed) and so  is duo--module.
Proof:
Assume that  be a h-closed submodule of   and
. But . So

(By def. of ) .
Hence  is a h closed submodule of . Therefore,
 is fully invariant. Thus  is duo--module.
Example (3.1.16):
Let F be a field and  a vector space over F such that . Consider R subring of ;
.
There are only three submodules of R:

.
We have  and , therefore 0 and R are h-closed submodule and then  is fully invariant. Thus  is duo--module.

Remark (3.1.17):
Note that  and  are not imply  is duo--module, because , and


.
Also .

Example (3.1.18):
Let  be R-submodule of . Clear that  not complement submodule of , therefore it is not h-closed and so not fully invariant. Then  is not duo--module.

Example (3.1.19):
Let  and let be a submodule of . So 
 and then it is h-closed .
Thus  is duo--module.

The next theorem explains that a direct summand of h-closed submodule gives duo--module.
Theorem (3.1.20):
Let  be a -module. Then direct summand of h-closed submodules is fully invariant and so  is duo--module.
Proof:
Suppose that  is a direct summand of h-closed. So
.
Assume that  it is h-closed of   Then

Because . Hence  is h-closed submodule,
is fully invariant and so  is duo--module.

On the other hand, the socle of  is the largest submodule of  generated by simple modules. Or it is the largest semi simple submodule of .
Corollary (3.1.21):
Let  be a -module. If  has a socle not equal zero, then  is duo--module.
Proof:
Suppose that . Since  is a simple, then
. but  is a fully invariant, then  is duo--module.
Corollary (3.1.22):
Let  be a multiplication -module. If for every submodule  of ; R-monomorphism  can be extended to an R-endomorphism of  , then  is duo--module.
Proof:
Assume that  has a submodule  such that R-monomorphism  can be extended to an R-endomorphism of . Let  be a multiplication module over R. So  such that I is an ideal of R. Let  be an R endomorphism. If , then . Hence  . Then  is a fully invariant submodule of . Thus  is duo--module.

	Recall that a submodule  of a module  is essential in case  for every submodule .
Corollary (3.1.23):
Let  be a -module. If  R monomorphism from  into  can be extended to an R-endomorphism of , then  is duo--module.
Proof:
Let  be a monomorphism and . Then
. Since  is pseudo-injective, then there exists an R-homomorphism  extends f. Also, we have  is pseudo-injective, then there exists an R-homomorphism  extends g. Let us claim that . Assume that -. But . So
.
Hence
.
So

Therefore

Hence. Then ; which is contradicts with assumption, then . Hence
.
But
.
So
.
Hence  is a fully invariant. Thus  is duo--module.
From [23], any module  is called -multiplication module if for every submodule of , , where  is  all multiplication modules.
Theorem (3.1.24):
Let  be -module and . If  is an -multiplication module, then  is duo--module.

Proof:
Since  is -module, then  has a decomposition  such that  and  where  ( is a lifting). So  is -module. Assume that . Since  is an -multiplication module, then there exists  and  (). . Then if
, then L is fully invariant of  . Then  is duo--module.

Example (3.1.25): [23]
Let . Let  (proper), then  is a duo submodule.















§3.2:  P-(S.P) Submodule and (Extending) Module

In this section, we study C1-module  through the submodule of  which have two properties namely prime and semi-prime. Indeed these properties with another concept like fully invariant of any submodules explain the main objective of this study. Also, heart submodule of a module  and the socle  are studied with fully invariant property to obtain the same objective.  Several concepts have been used in this section for the purpose of reaching the main objective of the thesis, for example, heart submodule of  and socle of . Also, we will use the fully invariant property to achieve the same goal. Note that P ideal of a ring R is called maximal ideal if  and J also is ideal of a ring R then . So .

 Assume that K is a proper submodule of multiplication module .  So for every  , if , then  or .

From definition (1.1.10); a module  is called lifting or satisfies (-module), if for every submodule  of  there exists a direct summand K of  such that K is a coessential submodule of  in .

From definition (1.3.15); any proper submodule  is prime (briefly P-submodule) when if , , , then  and  is said to be semiprime (briefly S.P-submodule) if  and whenever   and  for n where , then .
Theorem (3.2.1):
Let  be a -module over an integral domain R. If  is simple (cyclic) and and satisfy , then  is prime-duo--module.
Proof:
Suppose that  is simple (cyclic) and generated by one element.
 Or .
So  is a multiplication R-module. So any  is a prime submodule with fully invariant property ( is duo submodule) and  S is prime ideal of a ring R and  imply that  is P-duo--module.
Recall that , this is called the residual of L by  in  such that  is a multiplication R-module and . Also,  is an annihilator of  in .
Proposition (3.2.2):
Let R be a semi-local ring If  is cyclic D1-module such that for any  are a fully invariant,  and , then  is P-duo--module.
Proof:
Since R is a semi-local ring, then R having just finitely many maximal ideals (I is a maximal ideal of a ring R if there are no other ideals existing between I and R). So from {lemma (3), [12]},  is a cyclic R-module and hence  is a multiplication R-module. But  and has fully invariant. So  is a P-submodule of . Thus  is a P-duo--module.ة from hen R having only finitely many maximal ideals.
Recall that if any submodule  of  is a P-submodule, this means  is prime module. Therefore we can introduce the following result:
Corollary (3.2.3):
Let  be a D1-cyclic R-module If  is a prime module and has fully invariant property, then  is a P-duo--module.
Proof:
The proof is very easy, because prime module gives every sub module of  is prime with same way in with fully property, we obtain  is P-duo--module.

Now we need to introduce two concepts namely heart submodules of   and the socle of the module  .  means intersection of all nonzero submodules of  and  is a minimal submodule contained in non-zero submodule when .

Recall that if M is any R-module, then the socle of  can defined by
.
On the other hand, the socle of  is the largest submodule of  generated by simple modules, or it is the largest semisimple submodule of . Also, if R be a module and , then  is called h-closed submodule of  provided that .
Theorem (3.2.4):
Let  be a -module. If  has h-closed submodule and
,  invertible element and ; . Then  is a P-duo--module.
Proof:
Suppose that  and  are maximal ideal of . Hence
.
Since  is not invertible element and hence  is invertible element. This implies that  is invertible element  and this contradiction.  Since  implies that  is not invertible element. Then R is local ring (R semi-local ring). Hence  is cyclic R-module and then is multiplication R-module. Since  have h-closed submodule, then  is fully invariant. We have  and , therefore  is a P-submodule.Thus  is P-duo--module.
Proposition (3.2.5):
Let R be a P.I.D. Let  be a -R-module. If  has h-closed submodule and I is prime ideal of R; then  is a P-duo--module.
Proof:
Clear. I prime ideal of R gives I maximal ideal. Same proof of Theorem (3.2.4), we obtain the required.
Theorem (3.2.6):
Let  be multiplication D1-R-module. If any submodule  of  is a fully invariant in ,  subset of ,  subset of  for all  are submodules of . So  is S.P-duo--module.
Proof:
Suppose that for some ideal B of a ring R; . So . But  and . Then
. Hence  is a semiprime submodule of  ( is a semi prime).We have  has fully invariant in ; where  be an endomorphism .So  is a duo submodule. But  is -module.  Thus  is S.P-duo--module.
Corollary (3.2.7):
Every semiprime submodules of a multiplication -module is 
 submodules and so  is S.P-duo--module.
Proof:
We know that h-closed submodules means intersection of all submodules. But h-closed  is fully invariant in  with prim property imply  is S.P-duo--module.
Corollary (3.2.8):
Let  be a -module. If  is a fully invariant and  over R is a field, then  is a P-duo--module.
Proof:
First, we claim R is not field. So  is a prime. Hence R is a domain. So  ( is a torsion free R-module) over R. Note that when R is not field this is means  ( is not simple module); such that .
If  and is not an invertible element of R. So Rxm is a prime and ; contradiction (because ) or , then  and this contradiction. Hence  is a prime submodule of . We have  is a fully invariant (duo submodule). Thus  is a P-duo--module.
Corollary (3.2.9):
Let  be a D1-module. If the following statements are true:
1- ; I proper ideal of R and ;
2- ;
3- ;
4-  is duo submodule;
then  is P-duo-C1- module.
Lemma (3.2.10):
 is a fully invariant submodule.
Proof:
From definition of , we get  is a submodule of a module . Take any homomorphism g in , . We need to prove that
.
If , then  is invariant submodule.
If . Therefore  is simple and hence
. So
,
then  is also fully invariant.
Theorem (3.2.11):
Let  be a D1-module. If  satisfy the following statements:
1-  is a multiplicatively closed such that ;
2- ;
3- ;
then  is P-duo--module.
Proof:
From condition (2),  is a multiplication module. Let . From condition (1),  (see [6]). So  is a proper prime submodule of . We have  is fully invariant submodule with condition (3),  is also fully invariant submodule ( is a duo submodule). Since  is a D1-module, then it is -module. Thus  is P-duo--module.
Theorem (3.2.12):
Let  be a D1-module and satisfy the following conditions:
1-  is semisimple module;
2-  is cyclic module;
3- Let .  For every , if  subset of P, then or ;
4-  is closed-duo-module;
then  is P-duo--module.
Proof:
Assume that  be any submodule of a semisimple module . By assuming that  is a direct summand of ; hence, it is a closed submodule. We have  is a closed-duo-module, then  is fully invariant. Since  is cyclic module, then  is a multiplication module with condition (3), we obtain  is prime submodule, and we obtained the result.








§3.3: On Q-Injective, Duo Submodules of -Modules

This section investigates modules having a submodules which is a duo and quasi-injective. We introduce a new generalization of C1-module.  The main method adopted in this generalization is how to obtain a submodule  of  a module  having the characteristic Quasi-injective. Also, we study duo property of a submodule  in .  We investigate the relationship between pseudo-injective module and Quasi-injective property of C1-module.  Finally, we introduce a new relationship between Quasi-injective and anti-hopfian module. Now we start with Pseudo-injective and Quasi-injective submodule. We study two important properties of  namely Quasi-injective and P-injective.  Via this submodule, we obtain a new characterization of C1-module.  Moreover; we should provide another property namely fully invariant of this submodule.  Note that Q-injective is a self injective.

Lemma (3.3.1): [40]
Let  be an R-module over P.I.D. If  is pseudo-injective module, so it is a Q-injective.

Now we need to find  such that  is Q-injective with fully invariant property.

From [39], any pseudo-injective module over P.I.D is a Q-injective (i.e. if  is a module on P.I.D, then  on P.I.D, but  is pseudo injective  is pseudo-injective and hence  is Q-injective).
Theorem (3.3.2):
Let R be a P.I.D. If  is a pseudo-injective C1-module over R, then any submodule  is a Q-injective and ; so  is Q-injective-duo- -module.
Proof:
Suppose that a module  is a pseudo-injective. Let us take . We have  any module on P.I.D. So also  on P.I.D.  But  is pseudo-injective, then  is pseudo-injective over P.I.D. Hence N is Q-injective with  imply  is Quasi-injective and fully invariant (duo) submodule of .

Now we introduce another method to obtain any submodule  of C1-module  and be Q-injective. This way depends on a new domain namely Dedekind domain (R is a Dedekind domain if it is integrally closed, Noetherian and if  is a maximal; p is prime ideal).  So if R is a Dedekind domain, then it is a UFD iff R is P.I.D.  See the next lemma:
Lemma (3.3.3): [41]
Let  be any R-module over Dedekind domain. Then  is Q-injective and so  is also Q-injective submodule.
Theorem (3.3.4):
Let  be a Pseudo-injective-C1-module over Dedekind domain. If  is stable, then  is Q-injective-duo-C1-module.
Proof:
Assume that  is Pseudo-injective and R is a Dedekind domain. From lemma (3.3.3),  is a Q-injective. So  is also Q-injective. But  is stable, so  is a fully invariant. Therefore  is a duo submodule of -module.
Lemma (3.3.5): [41]
Let  be an R-module. If the following statements are true:
1- R is Multiplication ring;
2-  and I is an ideal of R;
3- ;
then  is Q-injective and so  is also Q-injective.
Theorem (3.3.6):
Let  be a module. If:
1- R is a multiplication ring;
2- ;
3-  and  stable;
4-  is -module and Pseudo-injective;
then  is Q-injective-duo--module.
Proof:
Assume that  and R is multiplication ring. Then from [25],  (any submodule of torsion module is torsion). Since  is P-injective, then  is a Q-injective and hence  is P-injective and . Hence  is a Q-injective. Since  and stable, then  is a fully invariant. But from condition (4),  is - module. Then  is a Q-injective-duo-C1-module.

Corollary (3.3.7):
If  is -Pseudo-injective R-module, then  is Q-injective-duo--module such that  and .
Proof:
By theorem (3.3.6).

	Recall that any R-m  is called nonsingular if, for all  with  implies . Or 
 a right an ideal I of R such that  and  [5].
Lemma (3.3.8):
If  and  in Pseudo-injective module , then  is Q-injective.
Proof:
Let  and . Let  be an R-homomorphism. So  or .
Suppose that , so g can be extended to homomorphism .
Now if , so g is a one to one and can be extended to R-homomorphism from  ( is Pseudo-injective). Hence  is Q-injective.
Corollary (3.3.9):
Let  be a -pseudo-injective R-module. If ,  and ; then M is Q-injective-duo-C1-module.
Proof:
By lemma (3.3.8).
	Now we present another way in order to decide that any submodule  of R-module  is a Q-injective.  But before that we need to present some important definitions that are closely related to the mentioned way. Firstly, a concept of stable-Q-injective was explained in [40].
	Let . Then  is called a stable module. So if every  is stable this means that  is a fully stable module (F-stable) If  is stable and can be extended R-homomorphism () to an R-endomorphism (), then  is called stable-Q-injective R-module. Also, If R is an integral domain and  is an R-module, then an element  is called torsion element if  ∋ . [20]. So we define:
a torsion element
Note that:
1- If , then a module  is called torsion-module.
2- If , then a module  is called torsion-free-module.
Lemma (3.3.10): [40]
Let  be a stable-Q-injective R-module. If  is an  injective R-module, then it is Q-injective.
Theorem (3.3.11):
Let  be a -module. If  is a F-stable and stable-Q-injective; then  is Q-injective-duo--module.
Proof:
Let  and let  be an R-homomorphism of . So  is stable because  is a F-stable. But from stable-Q-injective of , there is an
 extends ϕ. Hence  is a Q-injective. Thus  is a Q-injective-duo--module.

Corollary (3.3.12):
Let  be a -module. If  and  be a homomorphism and  is a stable-Q-injective, then  is Q-injective-duo--module.
Proof:
By theorem (3.3.11).
Remark (3.3.13):
From definition of fully invariant submodule and definition of stable, we find that the two meanings are the same.

	Recall that a ring R is called Quasi-Frobenius (QF-ring) if every projective module is injective; or every injective module is discrete. From [29], every projective module is injective and then every injective module is Q-injective.

Corollary (3.3.14):
Let  be a -module over QF-ring. If  is a projective module and stable in R, then  is Q-injective-duo--module ( Q-injective submodule).
Proof:
Let R be a QF-ring. Since  is a projective R-module, then  is an injective module and hence Q-injective.  Therefore any submodule  of  is Q-injective. Note that  is stable module; so for any R-homomorphism , we get  ( is fully invariant). Thus  is Q-injective-duo--module.
Recall that a module  is called -module if for any , there exists  is a coessential sub of . Or if  and , then   and . So -module is extending.

Proposition (3.3.15):
Let  be an R-module over QF-ring R. If:
1-  is -module;
2-  is stable module;
3-  is a free-module;
then  is Q-injective-duo-C1-module.
Proof:
From condition (1),  is C1-module. From condition (2), there exists an R-homomorphism  ( is fully invariant). So  is a duo submodule. Condition (3), gives  is a free module. So if we take F is a free R-module on a set S. Suppose that  two modules over the ring R. Let  is a homomorphism.
we choose
Also,
andonto
Then

Since F is a free-R-module on S,  a unique homomorphism

To prove that  . Let . So

because F is generated by
Now



h is a homomorphism.

Now



homomorphism

.
g homomorphism. So . Then  is a projective and hence  is injective ( is a Q-injective). Then   is Q-injective. Thus  is a Q-injective-duo--module.
Lemma (3.3.16):
For a ring R, we have  is a semisimple if and only if R is a semisimple and so any module  over R is a semi simple module.
Proof:
We need to prove the following, 
(1)-   semisimple if and only if R is semisimple.
(2)-  is a semisimple module over R.
From [29], we can get the proof of (1).
Now we need to proof (2):
If  is a semisimple and if , then R is a semisimple as an epimorphic image of . So  as a sum of semisimple module is again semisimple.
Lemma (3.3.17):
Let R be a semisimple ring and  be an R-module. Then every submodule  of  is Q-injective.
Proof:
Since R is a semisimple ring, then every module  over R is a semisimple. So  is a direct summand. Hence  is injective R-module. But every injective R-module is a Q-injective. Thus  is Q-injective.
Theorem (3.3.18):
Let R be a semisimple ring and  is an R-module. If  is -module and stable; then it is Q-injective-duo submodules module.
Proof:
It is clear that from lemma (3.3.17),  is Q-injective. But  is a stable. Then  . So  is a fully invariant and hence  is a duo ( is a duo submodule). We have  is -module. So it is -module. Thus  is Q-injective of .

Corollary (3.3.19):
Let  be an R-module. If:
1-  is projective module;
2-  is a simple module;
3-  is Q-injective;
then  is Q-injective and duo submodule of -module.
Proof:
It is clear that projective module means extending or -module. Also, if  is a simple module, then  is duo module. ( N is fully invariant;  and  is an R-homomorphism). Now from condition (3), we have  is Quasi-projective. So  is a Q-injective and hence  is a Q-injective of -module.
	
Recall that any ring R is called V-ring if every simple R-module is injective [8].
Corollary (3.3.20):
Let  be a -R-module over V-ring. Then  is Q-injective-duo--module.
Proof:
It is clear by theorem (3.3.18).
	
The following are some new results about the relationship between Hopfian, Self-injective and Q-injective Submodule. From [27], a module  is called self-p-injective if  satisfy the following condition: every homomorphism from a projection invariant submodule of  to  can be lifted to .
Definition (3.3.21): [29]
A module  is indecomposable if and only if  and  are the only direct summands of  .
Example (2.3.22):
Z is indecomposable Z-module but Z is not simple Z-module (Z contains proper submodule 2Z).
	Therefore every simple module is an indecomposable but the converse is not true.
Theorem (3.3.23):
Let  be an indecomposable self-P-injective R-module. Then any - module is Q-injective-duo--module.
Proof:
From definition of self-p-injective, there exists K submodule of  such that K is fully invariant. Assume that  is an indecomposable module, so every submodule of  is projective invariant. Then  is Q-injective. Thus  is Q-injective-duo-C1-module.

Recall that any module  is called Hopfian if every surjective f in  is isomorphism and a non simple module is called anti-Hopfian if proper submodule of  is a non-Hopfian kernel such that a submodule  of  is non-Hopfian kernel (for ) if there exists an isomorohism  to  [19]. Or An R-module  is anti-hopfian if  is non simple and all nonzero factor modules of  are isomorphic to ; that is for all  [34].


Example (3.3.24):
Any module of semisimple Artinian ring with finite length is a Hopfian module.
Lemma (3.3.25): [4]
Let  be an R-module.  If  is anti-hopfian, then every submodule  of  is Q-injective.
Theorem (3.3.26):
Let  be -R-module. If  has exactly one non-zero proper submodule and  are simple modules, then  is a Q-injective of .
Proof:
From [21],  is anti-hopfian module. Since 1 and 2 are simple modules, then  is a simple module and so it is a duo module ( is a duo submodule). From lemma (3.3.25), the proof is completed.   
Corollary (3.3.27):
Let R be a Dedekind domain, and  is -module with . If  is a non-zero ideal of R and  is duo submodule of , then  is Q-injective in -module.
Proof:
From [21] and lemma (3.3.25).  




CONCLUSIONS

In this work we had two objectives, the main goal achieved in the two chapters is got a module namely -module (extending). Meaning we looked for conditions and algebraic structures that lead to obtain the submodules to be essential, and thus we obtained the -module (extending). The tools that helped to achieve this goal are semi simple module, multiplication module and injective module. These are some of the main proofs and results that we have proven in chapter two:
1. Let  be a semisimple indecomposable module. If  is a submodule of , then .
1. If  is an multiplication R-module and let  be one maximal submodule of , then .
1. Let a module  be an injective over a ring R. If  is indecomposable, then any .
The second goal achieved in the third chapter is got a generalization of -module by using the following tools: duo submodule, prime and semi prime submodules (P-(S.P) submodules) and quasi-injective submodules (Q-injective). These are some of the main proofs and results that we have proven in chapter three:
1. Let  be a -module. If  has a socle not equal zero, then  is a duo--module.
1. Let  be a -cyclic R-module. If  is a prime module and has fully invariant property, then  is a P-duo--module.
1. Every semi prime submodules of a multiplication -module is  submodules and so  is S.P-duo--module.
1. Let  be a Pseudo-injective--module over Dedekind domain. If  is stable, then  is Q-injective-duo--module.
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المستخلص

المقاس  يسمى C1 الممتد اذا كان لأي مقاس جزئي  في  يوجد جمع مباشر لمقاس جزئي آخر B في  بحيث B يكون جوهري ل في .
لذلك في هذا العمل كل مقاس جزئي  من  يكون جمع مباشر.
الهدف الرئيسي الاول في هذا البحث هو الحصول على المقاس الممتد من النوع C1. نركز على الشروط والتراكيب الجبرية التي تقود الى الحصول على المقاسات الجزئية بحيث تكون جوهرية. الادوات المتوفرة لدينا التي تؤدي الى الحصول على هدفنا هي المقاس البسيط، المقاس الضربي و المقاس الغامر. أما الهدف الثاني الرئيسي هو أجراء تعميم للمقاس C1 باستخدام الادوات التالية:
المقاس الجزئي الثانيوي، المقاس الجزئي الأولي وشبه الأولي واخيرا المقاس الجزئي شبه الغامر.
وفي النهاية نقول كل النتائج في هذا العمل اعتمدت على مفاهيم اساسية في المقاسات الجزئية.
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