[image: C:\Users\hardi\Desktop\m.fras\news_767483131027071049.png]                 Republic of Iraq	
       Ministry of Higher Education
            and Scientific Research	
               University Of Anbar
College of Education for Pure Sciences
         Department of Mathematics



On Injective Modules and Related Topics


A Thesis Submitted to the Council of the College of Education for Pure Sciences,
University Of Anbar in Partial Fulfillment of the Requirements for the Degree of Master in Mathematics

By
Fawzi Noori Hammad
B.Sc. in Mathematics - College of Education for Pure Sciences
University Of Anbar - 2013

Supervised By
Assist. Prof. Dr. Majid Mohammed Abed     

1442 A.  H                                                                                                           2021 A. D

[image: C:\Users\matrix\Desktop\تنزيل.png]





 ﴿فَتَعَالَى اللَّهُ الْمَلِكُ الْحَقُّ ۗ وَلَا تَعْجَلْ بِالْقُرْآنِ مِن قَبْلِ أَن يُقْضَىٰ إِلَيْكَ وَحْيُهُ ۖ وَقُل رَّبِّ زِدْنِي عِلْمًا﴾



[image: ]

الاية 114 
سورة طه


اهداء
إلى أبي الرجل المثالي أطال الله في عمره ليظل عونًا لي وقدوتي، ومثلي الأعلى في الحياة؛ فهو من علَّمني كيف أعيش بكرامة وشموخ.
الى أمي التي فارقتنا بجسدها، ولكن روحها ما زالت تُرفرف في سماء حياتي.
إلى إخوتي.... سندي وعضدي ومشاطري أفراحي وأحزاني.
إلى زوجتي.... أسمى رموز الإخلاص والوفاء ورفيقة الدرب
إلى ابنائي..... فلذات الأكباد.
إلى جميع الأخلاء؛ إلى جميع الباحثين، وطلبة العلم.












شكر
لابد لنا ونحن نخطو خطواتنا الأخيرة في الحياة الجامعية من وقفة نعود إلى أعوام قضيناها في رحاب الجامعة مع أساتذتنا الكرام الذين قدموا لنا الكثير باذلين بذلك جهودا كبيرة في بناء جيل الغد لتبعث الأمة من جديد ...
وقبل أن نمضي تقدم أسمى آيات الشكر والامتنان والتقدير والمحبة إلى الذين حملوا أقدس رسالة في الحياة ...
إلى الذين مهدوا لنا طريق العلم والمعرفة ...
إلى جميع أساتذتي الأفاضل.......

كن عالما .. فإن لم تستطع فكن متعلما ، فإن لم تستطع فأحب العلماء ،فإن لم تستطع فلا تبغضهم

وأخص بالتقدير والشكر:

الدكتور ماجد محمد عبد
الذي نقول له بشراك قول رسول الله صلى الله عليه وسلم:
إن الحوت في البحر ، والطير في السماء ، ليصلون على معلم الناس الخير
كما أنني أتوجه له بخاص الشكر ، إلى من علمنا التفاؤل والمضي إلى الأمام، إلى من رعانا وحافظ علينا، إلى من وقف إلى جانبنا عندما ضللنا الطريق.....
الدكتور عبد الرحمن سلمان جمعه
وكذلك نشكر كل من ساعد على إتمام هذا البحث وقدم لنا العون ومد لنا يد المساعدة وزودنا بالمعلومات اللازمة لإتمام هذا البحث :

Acknowledgements 
Praise should be first to Almighty Allah for all the strength, patience and insistence He bestowed on me, which enabled me to complete the present study. Thanks to him until He is pleased. Heavy debt of gratitude and profound thankfulness must go to my supervisor Assist. Prof. Dr. Majid Mohammed Abed for his professionalism, fruitful suggestions, invaluable and knowledgeable remarks, precious advice, insightful supervision, constant encouragement and accurate revisions, which have contributed a lot to the development of the present work and paved the way for its completion. My special thanks must also go to my wife for providing the academic support, and also for sharing me the good and bad times during the preparation of this study. I am wholeheartedly grateful to whoever contributed academically, directly or indirectly, in producing the final form of the thesis
  Fawzi Noori .H

Supervisor Certification
      I certify this thesis entitled On Injective Modules and Related Topics submitted by Fawzi Noori Hammad, has been prepared under my supervision at the University of Anbar, College of Education for Pure Sciences / Department of Mathematics, as a partial fulfillment of the requirements for the degree of master in Mathematics.                                                                                          
Signature:
Name:  Majid Mohammed Abed 
Scientific degree: Assistant Professor 
Address: College of Education for Pure Sciences / University Of Anbar
Date:      /       / 2021
In view of the available recommendations, I forward this thesis for debate by the examining committee,
Signature:
Name:  Alaa Adnan Auad
Scientific degree: Assistant Professor 
Address: Head of Dept. of Mathematics / College of Education for Pure Sciences / University Of Anbar
Date:      /     / 2021


 Linguistic Certification
           
       I certify that this thesis entitled “On Injective Modules and Related Topics” by Fawzi Noori Hammad, has been done under my linguistic supervision. It has been amended to meet the style of Academic English language. 
     



Signature:
Name: Fuod Jassim Mohammed
Scientific degree: Instructor
Address: College of Education for Humanities / University Of Anbar
Date:      /      / 2021









Table of Contents

Item                                                                                       Page no.                                                                                   
	List of Publications                                                           I
List of Symbols                                                               II                             
Abstract …………………………………    …             IV 
  

	Introduction        1        .....................................................  
………………………… …

	Chapter One: Basic Concepts


	

	Basic Concepts       ……………………………………………         6
                     

	Chapter Two: SOME MODULES AND INJECTIVE PROPERTY


	    
	 Introduction …………………………………………………      15 

	     
	§1: A New Results of Injective Module With Divisible Property…….   16 
     

	    
	§2:  Noetherian, Artinian Regular Modules and Injective Property……  24

 









I

	Chapter Three: INJECTIVE MODULE OVER SOME DOMAINS

	      
	Introduction………………………………………………………  34 

	     

	§1: Study Injective module over Dedekind domain……….…. 35
       
§2:  Injective modules and Euclidean Ring…………….…….  45

§3: Some Rings Give injective module………………………..  49


 Conclusions…………………………………………….………. 62


	        
	

	
	References …………………………………………………  63




                          



List of Publications
1. A New Results of Injective Module with Divisible Property. In Journal of Physics: Conference Series (Vol. 1818, (2021, March). No. 1, p. 012168). IOP Publishing.‏

2. Noetherian, Artinian Regular Modules and Injective Property, at the Journal of Al-Qadisiyah for computer science and mathematics, (2021), 13(1), Page-161.

3. Study Injective Module Over Dedekind Domain, at the AIP Conference Proceedings, (2021, March). (Accepted).

4. Some Rings Give injective module. (2021), IEEE, Conference Proceedings. (submitted).  







List of Symbols
	
Symbol
	Meaning

	
	Submodule

	⨁
	direct summand

	
	
Arrow

	
	The group of all homomorphism from M into N

	
	Annihilator

	
	Small submodule

	C!
	Contradiction

	≤ess
	Essential submodule

	
	Isomorphic

	
	Equivalent

	Rad(M)
	Radical of M

	
	External homomorphism

	 
	The kernel of a homomorphism 

	                    
	Torsion

	                      
	The image of a homomorphism 

	                        <   >
	Generate

	                      
	Polynomial ring

	                       D.V.R
	Discrete valuation ring



















IV







Abstract














 

ABSTRACT
  The main objective of this work is to study injective modules and related topics. Due to the relations between injective and divisible modules, a notion of several properties about both modules was studied.       We introduce all of the key definitions used in the thesis, as well as some findings about the injective module a pear. Every injective module is divisible, but the inverse requires an additional condition P.I.D. Also, if the ring R is semi simple, and  is a semi simple R-module, then  is injective. Also, if  is a cyclic and the regular module is injective. Also, if  is regular with N≤ is a finitely generated submodule, so  is injective. Here, we study several relationships between injective modules over the Dedekind domain. We prove that every divisible module  over D.V.R is injective. Also, any pseudo injective module with R is a Dedekind leads to  is an injective. Several facts about the relationship between the injective module and the Euclidean ring are satisfied here. And we find that every divisible module on the Noetherian valuation ring is injective. Also, there are some connections between (D.V.R) and the injective module.
  Finally, we investigate the injective module in relation to other rings, such as the Noetherian ring, the local ring, the D.V.R, and the hereditary ring. We prove that if  is an R-module and  is a maximal ideal of R with quotient ring  of R is a field, then  is an injective module. Also, if R is a D.V.R, so any-divisible module over R is injective.
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INTRODUCTION
  In 1970, Stevens ̈om introduced the notion of injective modules, and generalized the homological properties from Noetherian rings to coherent rings, and in this process, finitely generated modules were replaced by finitely presented modules. Recently, as extending work of Stenstr ̈om’s viewpoint, Gao and Wang introduced the notion of weak injective modules. This class of modules was also investigated by Bravo, Gillespie, and Hovey independently. In this process, finitely presented modules were replaced by super finitely presented modules. The fact shows that weak injective modules play a crucial role in the process of generalizing homological properties from special rings to arbitrary rings.
  Let R be a commutative ring with identity and let  be a unitary R-module.  is called injective R-module provided that 
 1-  is a submodule of Q such that Q is a module.
 2-  and  s.t   is  an internal direct. See [15]. Or Any module  is injective if the short exact 

 is split. 
  In our work we study injective module and some modules and some domains in detail were we investigate their basic definitions. 
This thesis consists of three chapters. The first Chapter contains all the essential definitions used in the thesis. 
The second chapter consists of two section.   In the first section; we study an important concept namely divisible module, uniform module, non-singular module, semi simple module, P-injective and Q-injective modules. Some new results and properties have been studied in this notion. Every injective module gives divisible but the converse needs another condition P.I.D. Further more, we prove that if R be a P.I.D and  is an injective R-module and   then   is also injective. We prove for any field K and every divisible  on  K–module, then  is injective module. Also we showed if  be a divisible module and  is a projective module, then the homomorphism from  into is also a divisible module. In addition, we get if R be a P.I.D.  If   is a uniform and   non-singular and P-injective module then  is injective module. Any R-module  is called semi simple if  is direct sum of simple submodule we present a good relationship between semi simple and injective-modules through  let R be a ring. If R is semi simple and  is semi simple R-module, then  is injective module. 
In the second section; we present new results about injective module depending other concepts, namely Noetherian, Artinian, hollow, semi hollow and regular modules. We showed that every Noetherian or Artinian Regular module over abelian ring R with unity is injective module. Further, we found if R be a (QF) and perfect ring or finite–dimensional ring. If  is a regular R-module, then is injective. Any ring  is called (quasi-Frobenius) if every projective module is injective; or every injective module is discrete. We get every cyclic regular R-module over QF-ring is injective. Let be regular module over P.I.D. If  is acyclic module, then it is a Noetherian and is injective module. Let be a regular R-module. If  is semi hollow and Rad() is a Noetherian module, so  is injective. If proper f-generated submodule of is a small in  (P. f-generated N<<), so  is called semi hollow module such that  is hollow if P-submodule N is small in . We showed the relationship between Noetherian module and injective module. If N≤ is f-generated, then  is a Noetherian. We get if  and  be an R-modules over (QF)-ring and let : →  be an onto  homomorphism such that  is a regular and  is f-generated, so is an injective module. 
The third chapter consists of three sections. In this chapter we will get injective module through some domains and from Euclidean ring and hereditary rings. In the first section; we present several results which give injective module over  Dedekind domain.  We prove Every finitely many prime ideals  in a  is P.I.D. And Let  be a  and it is a UFD. If every element of  is divisible, so M is injective module. We explain the relationship between valuation ring and Dedekind domain. We prove every valuation ring is a . Let  be an integral domain with no invers. If  is a oetherian local  P.M.I, then  is a . We prove if  a valuation ring and UFD and it is  a oetherian local ring and  =< a > so   is divisible module then  is injective module. An ideal  in the ring is namely fractional if it is a submodule of H, there is 0≠S ∋ S⸦. Also, if  is an abelian integral domain with 1 and it is a field of fractions, so we say F(D) is the set of non-zero fraction ideals of D such that D is an integral domain. Let D be an integral domain. hen D satisfies generalized domain G(D) if and only if for all ∈F(D), =  is invertible. We get that the module  is an injective from definition Dedekind domain and (GD) with another condition on a module. Let ∈F(D). If =  Ɐ ∈F(D), with  is a divisible D-module, then  is an injective module. We showed if D be a completely integrally closed; Ɐ ∈ F(D), = If  is adivisible module, then  is an injective module. And we use a generalized of Dedekind domain in order to obtain module  is an injective. Any integral domain D is called generalized (GD) if Ɐ  an ideal in fractional ideals of D equal  ; so = is invertible. Also, for binary operation ⁎, we say that ⁎-operation same v-operation. Therefore, the map.→ on the fractional ideals F(D) is v-operation. Also we prove  be an  –module and Ɐ  is divisible element so D is  ∋  is invertible and v-ideal. 
 In the second section, we study another ring namely Euclidean ring in order to obtain injective module. But this goal needs some additional conditions with Euclidean ring such as divisible module. By van der Warden, we say R is an Euclidean ring if R is integral domain such that the division Algorithm is true. We can rewrite  this definition in another way (if ∃:R{0}→+{0} ∋ δ() greater than and equal  and , s=0 or   ∈ R;  ∈R). We prove every divisible over Euclidean domain is injective module. Also we showed  if  be divisible  R-module and R is (D.V.R) ∋ :R\{0}→N is Euclidian then  is injective module. 
In the third section; we study injective module over some other rings for instance Noetherian ring, local ring, D.V.R and hereditary ring.  We prove that over  Noetherian ring, if  is-divisible, so  is an injective module.  Also, if  is an -module and  is a maximal ideal of  with quotient ring  of  is a field, then  is an injective module.  We prove if   ;Ɐ  and , then  is injective module. Any ring R is called hereditary (semi-hereditary) if each ideal (finitely generated ideal) of R is projective. And we prove if  be semi-hereditary ring. Then every quotient module of injective module is injective. Also if  is a D.V.R, so any -divisible module  over  is injective. Finlay let   be any module over a semi prime ring . If  is a lattice and [b) has a complement in (), , then  is an injective module.
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CHAPTER ONE
Basic Concepts
















 
(1.1).Baisic Conceptes
  In this chapter, we present the basic definitions and some results which have several relationships with the study. 
 Definition (1.1.1).[22]. Suppose that R is a ring and 1 is its multiplicative identity. A left R-module  consists of an abelian group (, +) and an operation⋅  :  ×  →  such that for all  in R and  in , we have:
1- 
2
3
4-
Examples. (1.1.2).[22].
1- Any ring R is trivially an R-module over itself.
2- If S is a subring of a ring R any left R-module is also a left S-module with the restricted scalar multiplication.
3- Any matrix ring of a ring R is a R-module under componentwise scalar multiplication.
4- The vector space V is an R-module.
Definition. (1.1.3).[22]. Let  R-module A submodule of  is a subset  satisfying.
1- N is a subgroup of  and 
2- For all  and all  we have .


Examples. (1.1.4). [22].
1- Any module  is submodule of itself called the improper submodule and the zero submodule consisting only of the additive identity of  called the trivial submodule. 
2- A left ideal I is a submodule of R viewed as an S-module where S is any (not necessarily proper) subring of R.
Definition (1.1.5). A module  is injective if:  is a homomorphism and is a homomorphism, Then there exists  is a homomorphism such that 

Definition (1.1.6). [16]. Let  be an R – module. If the next conditions are true, then  is called injective module.
1-  is a sub-module of Q s.t Q is a module.
2-  and  s.t   is  an 

internal direct. So Any module  is injective if the short exact sequence

is split such that the meaning of exact sequence and split can explain by the following: 
 
 (1) A pair of module homomorphism  
                                      M1 M2 M3
is called exact sequence at  if  =  
(2) In general, we can say a finite sequence of module homomorphism 
                       
is exact if () = ()  :    ∀ i=1,2,3,----n-1
Definition (1.1.7). [22]. Let be a submodule of an R-module . Then  is called direct summand of  if there is a submodule of  such that and . And write 

Definition (1.1.8).[22].  Any module  is called free if it is has a basis that is generating set consisting a linearly  independent  element.

Definition (1.1.9). [14]. Let  be an module over integral domain R and  is called torsion element if  such that  the set of all torsion elements in  denoted by 
T(. if T()= then  is called torsion module and if T()=0 then  is called torsion free module.

Definition (1.1.10). [22].  is called a flat module if for every monomorphism   is also a monomorphism.

Definition (1.1.11). [22]. An R-module  is called cyclic if it is generated by a single element

Definition (1.1.12). [27]. A ring R is coherent ring if and only if every direct product of flat module is flat and P-coherent(P-coh) if every principal ideal (P.I) is f-presented.
Definition (1.1.13). [38]. (Baer’s criterion): Any module  satisfy (Baer’s criterion) is injective if every ideal  and every morphism 
,  with f(x)=mx, .
Definition (1.1.14). [16]. Any module  is called divisible if
   Or; if every element of  is divisible.
Definition (1.1.15). [38]. R is a left P-coherent if and only if any direct product of torsion-free right R-modules is torsion-free.

Definition (1.1.16). [19]. An R-module  is called uniform if every submodule of  is an essential in .

 Definition (1.1.17). [11]. If  is a non-empty subset of R, then we denote its annihilator in   and define it to be the set of elements  such that 

Definition (1.1.18). [22]. A submodule  of  is called essential, if whenever , then  for each submodule  of .

Definition (1.1.19). [19]. An R-module  is called nonsingular if  

Definition (1.1.20). [32]. An R-module  is called pseudo-injective(P-injective) if every submodule  of , each R-monomorphism  can be extended to an R-endomorphism of . 

Definition (1.1.21). [21].  is called Quasi-injective(Q-injective) if for each submodule  of , and each R-homomorphism  can extend to an R-endomorphism of .

 Definition (1.1.22). [38]. A module  is called simple, if  and it   has only submodules {0} and .

Definition (1.1.23). [19]. Any R-module  is called semi simple if  is a direct sum of simple submodule. 

Definition (1.1.24). [42]. Any module  is called regular if Ɐ, g∊(,R), then(mg)m=m.

Definition (1.1.25). [42]. If R has finite direct sum of ideals, so R is called finite dimensional.

Definition (1.1.26). [5]. A module  is called finitely generated(f-generated) if it has a finite set of generators. In other word;  is finitely generated if  .

Definition (1.1.27). [8]. A ring R is called hereditary (semi-hereditary) if each ideal (finitely generated ideal) of R is projective.

Definition (1.1.28).  [22]. An R-module  is called Artinian if  satisfies the descending chain condition (DCC) on submodule of .

Definition (1.1.29). [18]. The ring R is called  domain if R is an integral domain and every f-generated. ideal of R is projective (invertible).

Definition (1.1.30). [35]. A module  is said to be discrete if it is lifting and has the property D2 (If N ≤ , such that  is isomorphic to a direct summand of , then N is a direct summand of ).

Definition (1.1.31). [29]. An R-module  is called projective if and only if for any  :C→V such that C,V are any R-modules and for any homomorphism   a homomorphism   such that    .
Definition (1.1.32). [22]. An R-module  is called Noetherian if M satisfies the ascending chain condition (ACC) on submodule of M.

Definition (1.1.33). [36]. An integral domain  is Dedekind if 0≠ is a proper ideal factors into prime ideals.

Definition (1.1.34). [41]. G-Dedekind domain carries same meaning of Dedekind domain; so an integral domain D is (GD) if for each A∈F(D); = is invertible.

Definition (1.1.35). [36].  field F is an abelian ring such that has trivial prime ideal. Or:  is a Dedekind domain if it is: 
1-  is integrally closed.
2-  is a oetherian ring; if 0≠ is maximal ∋  is prime ideal.

 Definition (1.1.36). [2]. Let  be a domain. So  is a valuation ring if it is not field; so∉. 

Definition (1.1.37). [41].  n integral domain D satisfies generalized of D or (GD) if Ɐ ∈F(D)→=is invertible such that   is namely invertible if ∃  is a fractional ideal and then = D.

Definition (1.1.38). [40]. n ideal  of F(D) is namely v-invertible if: ∃ ∈F(D)∋ =D.

 Definition (1.1.39). [41]. We say D is completely integrally closed (C.I.C) if an ideal ∈F(D) is v-invertible.

Definition (1.1.40). [13]. For binary operation ⁎, we say that ⁎-operation same v-operation. Therefore, the mapping:→ on the fractional ideals F(D) is v-operation.

Definition (1.1.41). [21]. Any integral domain D is namely  type if it has a collection  F={ of prime ideals such that,
1- D=∩.
2- Ɐ ;  is a valuation domain.
3- 0≠ and  not unit of D belongs to only a finite number of .

 Definition (1.1.42). [6]. D is called Mori domain if any set of the integral is a v-ideals of D and satisfies (ACC), such that any ideal ∈F(D) is v-ideal if =.

Definition (1.1.43). [25]. Let D be an integral domain and let (⁎) an operation on D. We say D is (⁎)-oetherian domain if D has (ACC)on all ideals of D,  (Quasi(⁎)-ideals). Or D is (⁎)-oetherian domain if 0≠ is (⁎)f-finite.

Definition (1.1.44). [17]. Let D be an integral domain and (⁎) is operation on D. Then D is called -(⁎)multiplication domain.(P.(⁎). M. D) if Dm is a valuation such that m is a  in S; ≠S=  ideals of D (-(⁎)f –maximal ideal).

Definition (1.1.45). [3]. Any ring R is called Euclidean if it is an integral domain such that R satisfies division algorithm.

Definition (1.1.46). [34]. We say the function :K→Z is (D.V.R) if:
1-  is onto.
2-  ()=+.
3- ≥ min{,.}.                    
 Definition (1.1.47). [33]. For a module  over a ring  and for an ideal as a module of ;  is called -injective if :  is a homomorphism, then there exists an elements  and  such that the image of  is  (in other words  can be extended to homomorphism of  into ).

Definition (1.1.48). [12]. Any -module  is called divisible if  = such that  and  is -divisible if  . (-divisible give divisible over commutative ring). 

Definition (1.1.49). [7]. Any ring  is called local if  has a unique maximal ideal. In other word; every ideal is contained in some maximal ideal.


Definition (1.1.50). [22]. The principal ideal I=<a> is called projective if and only if there exist  such that   and 

Definition (1.1.51). [4]. Any ring R is called a multiplication ring if all ideals are multiplication. Such that an ideal A is multiplication if every ideal B⊆A, ∃ an ideal C s.t B=AC.

Definition (1.1.52). [20]. Any set   is called saturated in R  if . Also an element F in  is completely irreducible if:  F= So F= And F is called prime if:
  or  Therefor  is completely prime if: .

Definition (1.1.53). [9]. We say that an integral domain, R, is a UFD if every nonzero nonunit in R can be factored into irreducible elements, and if we have  ··· =  ··· with each irreducible in R then; (a) n = m and   (b) there is a  ∈  such that  = for all 1≤  ≤n where each  is a unit of R
14
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SOME MODULES AND INJECTIVE PROPERTY



 


 

SOME MODULES AND INJECTIVE PROPERTY
Introduction.
This chapter introduces various concept namely divisible module, uniform module, non-singular module, semi simple module, P-injective and Q-injective modules. A module  is called a divisible module if   Or; if every element of  is a divisible. We found that every injective module gives divisible but the converse needs another condition P.I.D. Also, some new results have been studied. Also, we showed if  be a divisible module and  is a projective module, then the homomorphism from  into is also a divisible module. We present a good relationship between semi simple and injective-modules.  Also we get if R be a P.I.D. If   is a uniform and   non-singular and P-injective module then  is an  injective module. In the last section, we provide several relationships between some concepts namely Noetherian, Artinian, hollow, semi hollow and regular modules and injective module. We prove that every Noetherian or Artinian Regular module over abelian ring R with unity is  an injective module. 







§1: A New Results of Injective Module With Divisible Property
In this section, we will present new results that clarify the relationship between divisible module and Injective module.  If the short exact is splits, this means that  is injective. Also a divisible module over P.I.D is injective.
Now we present the meaning of injective module in more depth way.
Definition (2.1.1). [16].  Let  be an R–module. If the next conditions are true, then  is called an injective module.
 is a sub-module of  s.t  is a module.
2-  and s.t   is  an internal direct.

Equivalent Definitions:

Definition (2.1.2). Any module  is injective if the short exact 



is split s.t the meaning of exact sequence and split can be explained by the following: 

(2) A pair of module homomorphisms  

                                       M1 M2 M3

is called exact at  if  =  In general, we can say that a finite sequence of module homomorphism 
                       
[bookmark: _gjdgxs]
is exact if () = ()  :    ∀ i=1,2,3,----n-1

(2) An infinite sequence of module homomorphisms

                  …..  →……..

is exact if () = (); 

Remark (2.1.3). The exact sequence is homomorphism if and only if f is a module monomorphism 
                                      0  →
Also;
                           →0
 is an exact sequence of homo. If and only if    is module epi.
Definition (2.1.4). An exact sequence 
                    0    0
and if for  divisor in the ring R with  , then  is divisible.
Lemma (2.1.5). [16] Let R be a P.I. D. If  is a divisible R- module, then  is injective.

Example (2.1.6). If Z is P.I.D injective Z-module; Z is a divisible module over Z.
Corollary (2.1.7).  Let R be a P.I.D if  is an injective R-module and  then   is also injective.
Proof.
Since  is divisible; so   is divisible with R P.I.D imply  is injective.

Theorem (2.1.8).   Every divisible module  over a filed K is injective module.
Proof. 
 Suppose that an ideal normal of K (  ) and  so every ;  = (K) . Therefore I = K and hence {0} = (0) and  only Ideal's in K. Hence  is a P.I.D.   But  is divisible module. Then  is an injective.

Theorem (2.1.9).  Let  be a divisible module. If is a projective module, then the homomorphism from  into  is also a divisible module. 

Proof. 
 Suppose that (,) and ( , ).  IF
  divisor (non–zero divisor in R). In order to prove that (,)  is divisible we need to show that .  Suppose that ϫ. be a homomorphism from  into and define by:
 .  But we have is divisible.  So ϫ is onto also we have  is a projective module. Then  is injective.  Let ∊ . So
 () = (()) =  () and hence  . Thus  (, ) is divisible.

Recall that A right –module M and an element  is called singular element of  if . The set of all singular elements is denoted by  . We say that  is singular (resp. nonsingular) if  (resp. )

Corollary (2.1.10).  Let  satisfies (ACC) over P.I.D.  If Z() subset Z(R), then M is an injective R–module.

Proof. 
If Z (R) be the zero divisors of R; Z() is a zero divisors of .  Suppose that = R\Z (R) and = R\Z (). We know  let    ∊   Since  satisfies (DCC), then  is an Artinian module So.  ….
Hence  =  ; . Now if , then
  =  n+1 ∋∊. Then  ( –  ) =0. Since ∊Г2 and   – =0, then = .  Therefore.  =   ,  ∊ Thus  is divisible. But R is a P.I.D, then  is injective. 

Corollary (2.1.11).  Let  be a divisible R-module. If  has no zero-divisors, then  is injective. 
Proof. 
 Suppose that a nonzero element in R. So .  
Hence   and then =0. But  has no zero–divisors. So Hence  is an injective module ) then  is injective.  Because if  ,   ab   and hence 

Theorem (2.1.12). Let  be invertible element of R in  If  is torsion–free module, then it is divisible (  is injective).

Proof.  
Suppose that  is a divisible module and  Then 
. [14].  So   in  thus  is injective.

Remark (2.1.13). We know that a direct divisible over R is also a divisible module. Therefore it is easy say the following statement is true:

From [27], Recall that a ring R is coherent if  is a f-generated ideal of R presented and we call R is P-coherent ring if  is a principal ideal of R presented and if we have a direct product of copies of a ring R is a torsion free, then R is a P-coherent ring. And let  be invertible. So the direct sum of torsion-free modules is also injective.


Theorem (2.1.14). Let a direct of P.I.D R is a torsion if 
:  →   is an isom., then  is injective.

Proof. 
 Since a direct of a P.I.D is torsion-free, R is a P-coherent. But   is an isom.  So, β ∊ ∋ ( β+ im(f) = β g = 1m.
Hence  ≈  F. Then  is divisible with R is P.I.D implies that  is injective.

Corollary (2.1.15). [22]. Let R be a ring with unity if  and  are two R-modules then there exists a one to one mapping  :  → .

Corollary (2.1.16). [22]. Let G1 be a commutative group. If G2 is an abelian group, then there exists a mapping β: G1 → G2 is one to one such that G2 is a divisible.

 Proposition (2.1.17). [22].  An abelian group G embedded in a divisible commutative group. Moreover; If D is a divisible commutative group;  is injective.

Example (2.1.18).  We have Z is a PID injective Z-modules are divisible Z-modules (divisible abelian groups).

Remark. (2.1.19). [39]. Consider D being an finite subset of  a vector space V s.t D is a basis of V, so every non trivial, f-generated torsion-free is not divisible and we can find a T: V →inj(V )  T  is injective and surjective.

Corollary (2.1.20).  If we have a torsion-free Z-module V.  Then inj (V) is a submodule of divisible module (V ).
Proof. 
Set E = inj(V ). Set D = divisible of the module (V). If a object in the E and a in the D by [26], mult E = mult D).

Definition. (2.1.21). [27]. A left R-module  is called D-injective if for every divisible left R-module G and N is D-flat if  for every divisible left R-modules N and G.

Proposition (2.1.22). [39]. By Wakamutsu’s Lemma, any kernel of a D-cover is a D-injective and  is D-flat iff  is D-injective by
   for every divisible left R-module N.

Definition (2.1.23). [19]. An R-module  is called uniform if every submodule of  is an essential in . 

Definition (2.1.24). [19]. An R-module  is called nonsingular if   

Definition (2.1.25). [32]. An R-module  is called pseudo-injective(P-injective) if every submodule N of , each R-monomorphism 
 can be extended to an R-endomorphism of .  

Recall that any module  is called Quasi-injective(Q-injective) if for each submodule N of, and each R-homomorphism  can extend to an R-endomorphism of . [21].

Lemma (2.1.26). [22]. Every Q-injective module over P.I.D is an injective module.

Now depending on the last definition and lemma 2.1.26; we can present the following proposition. 
Proposition (2.1.27). Let R be a P.I.D. If 
1-  is a uniform module;
2- is a non-singular module;
3-  is a P-injective module. 
Then  is an injective module.
Proof.
Assume that  is a non-singular and P-injective R-module. Suppose that K≤M and  be a homomorphism. We have  is a uniform () with non-singular property ; so ker( or ker(.
Case 1: If ker(, then the mapping  can extend to homomorphism:
Case 2: If  then  is (1-1) and can extend to R-homomorphism from  Hence  is Q-injective. But every Q-injective is injective over P.I.D(lemma 2.1.26).

Recall that any R-module  is called semi simple if  is a direct sum of simple submodule in the next theorem, we present a good relationship between semi simple and injective-modules.
Theorem (2.1.28). Let R be a ring. If R is semi simple and  is a semi simple R-module, then  is an injective module.
Proof.
We know every module over R is a homomorphism image of a direct sum of copies. So  is a semi simple R-module, because:
Let  be an R-module → is epimorphism. Hence  is a direct summand of , then =+. So                  =≈N.Therefore N is semi simple (every submodule of semi simple is simple). Now let  be an extension of  so  is a semi simple module. So  is direct summand of , because every module can embed in an injective module ( is injective module).

§2:  Noetherian, Artinian Regular Modules and Injective Property
In this section, we provide that several relationships between some concepts and injective module exist. We investigate, if  is a cyclic and regular module is injective. Also, if  is regular with N≤ is finitely generated submodule, so  is injective. Finally, some relationships about injective module have been studied in details. We present some new results about the relationship between Noetherian, Artinian and regular rings and injective module. We should start with the following definitions.
We need to introduce a basic preliminary in order to proceed towards the main objective of the current study. 
Definition (2.2.1). [42]. Any module  is called regular if Ɐ, g∊(,R), then(mg)m=m.
See the following lemma:
Lemma (2.2.2). Every Noetherian or Artinian Regular module over abelian ring R with unity is an injective module.
Proof. 
Any module  fulfills all the conditions in theory, this means that  is a finite direct sum of projective module have only two submodule are {0} and . Since R is a commutative ring with identity element, so  is a flat module if and only if it is injective and a finite direct sum of injective is also injective.
Definition (2.2.3). [29].  An R-module  is called projective if and only if for any  :C→V such that C,V are any R-modules and for any homomorphism  g:→V ∃ a homomorphism  h:→C such that fh=g.
Definition. (2.2.4).  [42]. A ring R is called a finite–dimensional if R has finite direct summand of ideals. 
Theorem (2.2.5). Let R be a (QF) and perfect ring or finite–dimensional ring. If  is a regular R-module, then is injective.
Proof. 
Let R be a perfect ring. Let T=direct limits of projective-module. Then T projective (see [24]). But  is a direct limit of    ∋    finite submodules. So  is a projective. But from [29], for a QF-ring. every projective module is an injective module. Now if R has no infinite direct sums of ideals. Let  be regular and Г={∑  Rmα : mα∊} is a partially ordered and   Rmα ≤   Rmβ  {mα }  ⊆ {mβ }.So  =  Rmα is a maximal in Г (By Zorn’s Lemma). Then ∩Rm≠0, If , suppose that. Rm≈ ;  is an ideal of R. So have no infinite direct sums of . But Rm=Rn1…… Rnt ∋  simple,  ≠0 Ɐ. so  =(Rn1…… Rnt) ∩N⊇. Hence  and then = Therefor  is a projective. Thus it is an injective module.
Lemma (2.2.6). [42]. Every f-generated regular R-module is a projective. 
Recall that for all , ∊ ∋ is a some of several generators of . So we can present a definition of finitely generated module  by the following way:
Definition (2.2.7). [5]. A module  is called finitely generated(f-generated) if it has a finite set of generators. In other word;  is finitely generated if  .

Example (2.2.8).[5]. Any f-dimensional vector space is an f-generated over a field K.
Proposition (2.2.9). Let  be a regular R-module. If ≅, then  is an injective module.
Proof.
 Since ≅ ,  , so there is a homomorphism.
              : Rn→ ≅ ∋ (r1,.....,)→ (r1,.....,)+N.
Take  =(0,….,0,1,…,0) ∋ (1 being at the  place).Hence    generate Rn, 1≤  ≤n. so  () generate  over R, (1≤  ≤n).Therefor  is f-generated module. But  is regular module. So  is projective (Lemma 2.2.6). Thus  is injective module.
Corollary (2.2.10). Every cyclic regular R-module over QF-ring is injective.
Proof.
  Since  is cyclic regular R-module then it is  f-generated and by (Lemma 2.2.6),  is injective.
Corollary (2.2.11).  Let  and  be R-modules over (QF)-ring and let : →  be an onto homomorphism such that  is a regular and  is f-generated, so is injective module.
Proof.
 Suppose that and are two modules over the ring R. Also suppose that is f-generated module. To prove that  is injective. Since is a f-generated. R-module, so has a generating set {m1,….,}. Therefore, we need to show that is generated by the set  {(m1),…,(mk)}. Ɐ m2∊ , we have  is onto,  m1∊ ∋ (m1)=m2.  But  is a f.g module, m1=r1a1+………+, r1,…..,∊R. So m2=(r1a1)+………+() =(a1)+……k). Hence =<(a1), …….k)>. Then is a f-generated with regular property imply  is projective and hence is injective.
Theorem (2.2.12). Let be a regular module over P.I.D. If  is acyclic module, then it is a Noetherian and is an injective module.
Proof.
Since  is a cyclic, then it is a f-generated. So  have generators m1,…...mk. Hence ,∃  defined by   
(b1,……,)=b1m1+……,+,
then  , But R is a P.I.D, so R is a Noetherian R-module. We have  as a regular module. Thus  is injective (Lemma 2.2.2).
Corollary (2.2.13). Let  be a regular R-module. If  and  are Noetherian ∋ N is a submodule of , so is injective module. 
Proof.
 Assume that ≤. So  in  is  f-generated. Hence  is also f-generated. Let k1,…… ∊ generate  in  and let b1,……,  generate . Ɐ  , r1k1+……+ , ∊R. So K-∑∊. Then -∑=∑, ∊R. Hence =∑+∑ .(K f. g in ) therefore  is a Noetherian module with regular property implies  is an injective module (Lemma 2.2.2).

  Recall that any R-module  satisfies the maximal condition for submodules if ≠ Г of submodules have a maximal (Г⸧ H0 ∋ ,  number containing H0).  Therefore it is  easy to present a definition of Noetherian R-module, any module  satisfies the maximal condition(ACC) is Noetherian.
  The next theorem shows the relationship between Noetherian module and injective module; but before that we need to present the following lemma:
Lemma (2.2.14). If every submodule of an R- module  is f-generated, then  is a Noetherian.
Proof.                                                                                                                          Suppose that N≤ is a f-generated assume that H1⊆ H2 ⊆H3⊆…. is a submodules of .  Take    H=∪, =1,……,∞. So H≤ and hence H is a f-generated.  Let H=Rh1+……+. All hi in one of Hi,  m ∋ h1,…….hn ∊Hm. But H=, . So  is a Noetherian module.

Theorem (2.2.15). Let  be an R-module. If  is a regular module and has N is a f-generated submodule of , then  is injective. 


Proof. 
By Lemma (2.2.14),  is Noetherian-module (N≤ is an f-generated). But  is a regular module. Then from(Lemma 2.2.2),  is injective.
Theorem (2.2.16).   Let  be a regular module and let 
  0→→→→0 be an exact seq. If  and  are Noetherian, then  is an injective module.
Proof.
 Suppose ≤, = and assume that  andare Noetherian.                          
Let   H1⊆ H2 ⊆….....,   ⊆⊆⊆……  of   and ,  m ∋  =Hm∩  and +=+, n ≥ m. So =∩(+) = ∩(+)= +(∩) by Modular law, Let H, Y, L ≤ and Y⊆ H. So H∩(Y+L) = Y+(H∩L)).= +(∩) = . So is Noetherian module with regular property, we get  is injective. 
Example (2.2.17). Any module over a division ring is injective, because a division ring R has only 2 ideals 0 and R itself. 
Proposition (2.2.18).  Let  be a regular module. If:
1. S1 is the set of f-generated submodules of  is Noetherian, 
2. ≠N1 is f-generated and N1 ≤  ∋ N1 has maximal element,
3. N ≤  is an f-generated.
 Then  is injective

Proof.
 Let S1≠ be a set of f-generated (S1 ≤ ) If S1 has no maximal element, so any s∊S1   {S2∊S1: S2 ⸧ S1, S2≠S1 } ≠,thus we get (ACC)of submodules which is infinite.
 Now let N ≤ , there is a maximal element N1. then N1=N.  Now let 
H1 ⸦ H2⸦…….  Be (ACCof submodules of . So ∪ ⸦  is a f-generated and all generating elements in .
Thus =Ɐ . So  is a Noetherian module But every Noetherian module is Artinian with regular property  is an injective module. (Lemma2.2.2).
Recall that if proper f-generated submodule of is a small in  (P. f-generated N<<), so  is called a semi hollow module such that  is hollow if P-submodule N is small in . Therefore we present the following theorem.
Theorem )2.2.19(. Let be a regular R-module. If  is semi hollow and Rad() is a Noetherian module, so  is injective.
Proof.
Assume that   is semi hollow-module. Let Radical of  not equal . there are Max(N) ∋ N≤. This means that  is also module. Hence Rad() is a maximal and Rad<<.  Hence  is a simple module and hence is Noetherian.  Since 
                              0→Rad()→→ →0 
is a short exact seq. Then  is a Noetherian ( is Artinian-module) with regular property implies  is an injective module.
It is possible to rely on the previous example to discuss its content in another way, follows:
Proposition 2.2.20.  Let R be a division ring if:
1-  is a regular module over R.
2-   is a divisible-module.
 Then  is injective. 
Proof.  
Assume that R is a division ring and  is a divisible-module. Let
 N such that K is a basis for N. So  a basis k1  of k1  K. Assume that k2 = K1k and N1 is a span of k2. Then N1⨁N= . Hence  is a semi simple ( is Artinian). But  is a regular. Thus  is injective. 
Example )2.2.21(. Any regular module  of the ring R which has only two ideals {0} and R is Artinian, because R has only two ideals {0} and R implies R is division and hence  is Artinian with regular property we get  is injective.
Proposition )2.2.22(. Let ,  and  are three modules if
1- 0→→ →→0 is short exact of R-modules.
2-  and  are Artinian modules. 
3-  is a regular module. 
Then   is injective.

Proof.
Take a chain  such that are submodules of . From the projecting to , () is stabilized, so if 
f:→ , the  from chain submodules of  . Hence it is stabilizes. Then  is Artinian module with condition (3), we get  is injective (Lemma 2.2.2).
 Remark )2.2.23(. [22].  Every homomorphic image of Artinian ring is Artinian.
Theorem )2.2.24(. Let R be an Artinian ring. If  is a f-generated. R-module and regular, so  is an injective module. 
Proof.
We know that ≅  such that N≤ and n+. But  is an Artinian ring, so a direct sum of  Artinian modules. Hence  is an Artinian module (Remark 2.2.23). But  is regular. Thus it is injective module. 

Definition )2.2.25(. [17]. The ring R is called  domain if R is integral domain and every f-generated. ideal of R is projective (invertible). 
In the Theorem(2.2.27), we study some conditions over  domain in order to get injective module. 

Remark )2.2.26(. Any ideal I is injective if II-1=R ∋ I-1={ ⊆ R: and (R) is the field of fractions is the smallest field can be embedded. 
Recall that if R2 be a unitary extension ring of R1. We say R2 is a p-extension of R1 if Ɐ r1∊ R2 satisfies R1[X] one whose coefficient is a unit of R1(whose coefficients generate a unit ideal of R1).
Theorem )2.2.27(. Let R is a ring. If
1. R is a prufer domain Krull domain 1, 
2.  is a divisible R-module, 
3.  is Artinian R-module.
Then  is injective.
Proof.
 Over pruferdomain any module is linearly compact and divisible is injective or, Artinian module is linearly compact with divisible property  is injective. 
Proposition )2.2.28(. Let be an R-module. If:
1.  satisfies (DCC),
2. Every element  is a divisible,
3. R is integrally closed domain with quotient field K,
4. K is a p-extension of R. 
Then  is injective. 
Proof.
Assume that K is P-extension of R. and Let I⋌ be a maximal ideal in the ring R1. Let H=all elements f in R1[X] ∋ =R1. So H is a regular multiplicative in R1[X].  Hence H= R1[X] - ∪ I⋌[X]. So if I1 is an ideal of R1[X]⊆∪ I⋌[X]. then I1 contained in one of I⋌[X]. So {I⋌[X]} is the set of prime ideals of R1[X]. Hence R is a  domain. Thus  is an injective module because from condition (1),  is Artinian and by condition (2),  is a divisible module.
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INJECTIVE MODULE OVER SOME DOMAINS
Introduction.
In this chapter we introduce how we get injective module through some domains and also from Euclidean ring and hereditary rings. In the first section we present several results which give injective module over . One of these domains is the Dedekind domain. We proved that any element of -module  is divisible and let  be a Dedekind domain and If is a finitely many prime ideals, so is an injective module. We take another domain which is a unique factorization domain (UFD). We showed if  be a  and it is a UFD and If every element of  is divisible, so  is injective module. From Krull domain, Mori domain we will get that   as injective. In section two we satisfy several facts about the relationship between injective module and Euclidean ring. We get every divisible module over Noetherian valuation ring is injective. In addition, there are some, connections between (D.V.R) and injective module. In the last section we present a main relationship between some rings (hereditary ring, local ring and D.V.R) and injective module. 







§1: Study Injective module over Dedekind domain
In this section, we study injective module over Dedekind domain. Some results have been obtained about this relationship. Before getting deeply into the relationship between injective module and Dedekind domain, we need some definitions and lemmas related to the topic.
Definition (3.1.1). [37]. Any ring R is called Dedekind if it is an integral domain and every 0≠ is a factors into product of prime ideals.
To understand , we need to define some concepts, such as filed, and integral domain. An ideal I of the ring R is a prime ideal if  ∈ R then either  or  for all .  Also, in [14], any ideal I of Z is a f-generated Z-module is called fractional ideal and is denoted by (FI), if for every maximal ideal,  is principal ideal over the ring  is invertible.

Lemma (3.1.2). [1]. Every 0≠f is invertible; f is fractional ideal. 
Examples and remark (3.1.3). 
1 Every P..D is a .
2.  is a P.I.D if and only ifevery fractional ideal f is principle.
3. If  is Dedekind domain, so  is UFD  if and only if   is P.I.D.
4. A localization of a Dedekind domain of multiplicative set is a .  
Lemma (3.1.4). Every finitely many prime ideals  in a  is P.I.D.

roof.
Let 0≠ is a prime ideals. If 0≠ is an ideal so, ∃ ∋ is a P.I(= <a>) and hence is a relatively prime to  But S≠ ∅ ∋ S is the set of prime factors of . Hence =  and thus <a>= ==
Lemma (3.1.5). Let  be a  and it is a UFD. If every element of  is divisible, so  is an injective module.
Proof.
We know that any commutative ring is P.I.D, because  is a UFD. But P.I.D with divisible module  indicates that  is injective.
Theorem (3.1.6). Let  be a  with nonzero fractional ideal . If  is a divisible R-module such that  is an integral domain, then  is an injective module.
roof.
We know that there is 0≠ fractional ideal and =. By defining the fractional ideal, there is 0≠ an element in  and  is an integral ideal.  Assume that =. herefore  = and hence  is a P.I. in . ence  is P.I.D. But  is a divisible. Thus  is an injective module. 
Corollary (3.1.7). Let any element of -module  be divisible and let  be a Dedekind domain. If is a finitely many prime ideals, so is injective module.
roof.
Let  be all prime ideals. If 0≠ is an ideal, then ∃ 0≠ and  is P.I, (;  is a relatively prime to . The factors of  =φ. So =. Hence (= = =. Then  is a P.I.D, but every element of is divisible (=), , . Hence  is a divisible module.   is injective.
  The next lemma explains the relationship between valuation ring and Dedekind domain. Now we start with a clear definition of valuation ring.
Definition (3.1.8). [2]. Let  be an integral domain. So  is a valuation ring if it is not field; so∉. 
Lemma (3.1.9). Let  be an integral domain and with no invers. If  is a oetherian local  P.M.I, then  is a . 
roof.
  Take the maximal ideal =(S) in . We need to show =< a >. (principal). We have is an f-generated. Then, ∃ n is a maximal ∋  ⸦. Ɐ , so b∉; b= u ∋ u is unit and hence b(But this true for all b and since ⸦, =. Thus  is a local and P.I.D. But every ..D is Dedekind domain. 
Lemma (3.1.10). Let  be an integral domain has no invers. If  is a local such that 0≠ is invertible  a . 
roof.
Since any invertible ideal is a f-generated, then   is a oetherian ring. We must prove that  is a maximal where = <  > ( i.e.  is principal). But from Nakayama̕s lemma; . If and  s   with  (s∉);   sand M = (S).   is a principal.  But  from lemma (3.1.9); we have  is ..D.   is a . 

Theorem (3.1.11). Let  be a ring If:
1.  a valuation ring and UFD;
1.  is a oetherian local ring; 
1. =< a >;
1.  is a divisible module. 
Then  is injective module. 
roof.
Since  is a oetherian valuation  an ideal   by finitely many elements. ence one of them contains all others and be . hen  is a P..D. ( is Dedekind). But  is UFD and  is a divisible module. So  is injective. 
Corollary (3.1.12). Every V.R is a . 
roof.
Clear. Every D.V.R is P.I.D and hence is a Dedekind domain
Corollary (3.1.13). Let  be a ring. If:
1- is D.V.R;
2- is divisible; 
 is UFD.
Then  is an injective module
roof.
Since every D.V.R is a Dedekind domain and every D.V.R is a P.I.D,  then from condition (3) and condition (2); we get  is injective module. 
Example (3.1.14). [22].   is a fraction field . So is P.I.D with maximal ideal is D.V.R. Thus Dedekind domain. 
Recall that an ideal  in the ring is namely fractional if it is a submodule of H, there is 0≠S ∋ S⸦. Also, if  is abelian integral domain with 1 and it is a field of fractions, so we say that F(D) is the set of non-zero fraction ideals of D such that D is an integral domain.
Definition (3.1.15).n integral domain D satisfies generalized of D or (GD) if Ɐ ∈F(D)→=is invertible such that   is namely invertible if ∃  is (FI) and then = D.
Now If each fractional ideal in R , so  is a . Therefore; from the definition the Dedekind domain and (GD) with another condition on a module, we can get  is injective. However before that we need to present the next definition. 
Definition (3.1.16). Let D be an integral domain. hen D satisfies generalized domain (GD) if and only if for all ∈F(D), =  is invertible. 
Theorem (3.1.17). Let ∈F(D). If =  Ɐ ∈F(D), with  is a divisible D-module, then  is an injective module.
Proof.
Ɐ ∈F(D), =  , so ()- 1= , because
 =(()v)-1 = (()v)-1 =()-1.  Hence  is invertible in F(D). Therefore is (GD) and so D is a Dedekind with  is divisible imply  is injective module.

Proposition (3.1.18). Let D be a completely integrally closed; 
Ɐ ∈ F(D), = If  is a divisible module, then  is injective. 
Before start with proof of proposition 3.1.18, we need to define some concepts.
Definition (3.1.19). [40]. n ideal  of F(D) is namely v-invertible if: ∃ ∈F(D)∋ (=D.
Definition (3.1.20). [41]. We say that D is completely integrally closed (C.I.C) if an ideal ∈F(D) is v-invertible. 
Now we start with proof of proposition (3.1.18).
Proof of proposition 3.1.18 
  Let ∈F(D). So D is (C.I.C). (by definition). Hence ()v=D ([10]). But if D is a C.I.C, then (= Ɐ  ∈F(D). hen (=()v = Ɐ ∈F(D). So  is invertible. Therefore D is Dedekind domain. Butis divisible, so  is an injective module.
  Now we use a generalized Dedekind domain in order to obtain that module  is injective. From definition of invertible concept, we can present the following information. 
Any integral domain D is called generalized (GD) if Ɐ  an ideal in fractional ideals of D equal  ; so = is invertible. Also, for binary operation ⁎, we say that ⁎-operation same v-operation. Therefore, the map.→ on the fractional ideals F(D) is v-operation.
Definition (3.1.21). [23]. Any integral domain D is namely  type if it has a collection  F={ of prime ideals such that,
1. D=∩,
1. Ɐ ;  is a V.R,
1. 0≠ and  not unit of D belongs to only a finite number of .
Remark (3.1.22).[41]. Ɐ ∈F(D), is said to be v-invertible if ∃ ∈F(D) ∋ =D. So Ɐ ∈F(D), we say that  is v-invertible and hence D is a completely integrally closed. Note that, D is called a Mori domain if any set of the integral is a v-ideals of D and satisfies (ACC), such that any ideal ∈F(D) is v-ideal if =. 
  From([31]), an integral domain D is a Mori if and only if  ∈F(D),∃ a f-generated. ideal ∈F(D)∋ and =. Therefore
1-Completely integrally closed with  domain give(GD).
2-Mori domain and Mori domain with Completely integrally closed give  domain 
Example (3.1.23).  (GD) give Completely integrally closed.
Lemma (3.1.24). [41]. Every  domain is a completely integrally closed.
Theorem (3.1.25).  Let  be an  -module. If: 
1. Ɐ  is divisible element.
1. D is  ∋  is invertible and v-ideal. 
hen  is injective.
roof.
Suppose that D is  domain. Hence D is completely integrally closed. Therefore D is a (GD) (proposition 3.1.18). Now if an element   such that it is divisible, then  is a divisible module over D. But from the definition of (GD); we obtained D is a Dedekind domain. Now  is  divisible over Dedekind domain; this means  is injective module.
Example (3.1.26).  [41]. Any divisible D-module over D is the entire function is injective. 
  Note that from a proof of proposition (3.1.18), we say if D is a completely integrally closed, so D is (GD). Then the converse is true in general (see the following result):
Corollary (3.1.27). Any (GD) is completely integrally closed. 
roof.
Suppose that we have (GD). So Ɐ ∈F(D), 
(=)v= (D=D. Also, every 0≠∈D is v-invertible. Then D is a C.I.C. 
Theorem (3.1.28). [41]. Let D be an integral domain. Then D is completely integrally closed if and only if D is a (GD). 
There is another way to prove that D is a domain. This way start with some definitions for example;(⁎)-finite ideal, 
G⁎-Noetherian domain, (⁎)-Dedekind domain and P(⁎).M. domain. oetherian ring. 
Let D be an integral domain and Let (⁎) be an operation on D. If ∈F(D), so  is (⁎)-finite if ∃ ∈F(D)∋⁎=⁎ and  is invertible. ([37]).
Definition (3.1.29). [10]. Let D be an integral domain and let (⁎) an operation on D. We say D is (⁎)-oetherian domain if D has (ACC) on all ideals of D.  (Quasi(⁎)-ideals). Or D is (⁎)-oetherian domain if 0≠ is (⁎)f-finite.
Example (3.1.30). Any oetherian domain is (⁎)-oetherian domain. Also every Mori domain is (⁎)-oetherian domain.
Definition (3.1.31). [41]. Let D be an integral domain and (⁎) is an operation on D. Then D is called -(⁎)multiplication domain.(P.(⁎). M. D) if Dm is a valuation such that m is a  in S; ≠S=  ideals of D (-(⁎)f –maximal ideal).
Definition (3.1.32).[41].  If D is (⁎)-oetherian domain and .(⁎).M.D, so D is called (⁎)-Dedekind.
Lemma (3.1.33). [10]. Every (⁎)-finite is (⁎)-Noetherian domain. 
Lemma (3.1.34). Every (⁎)-oetherian domain and P.(⁎).M. domain is (1)-Dedekind domain (Dedekind and v-operation).
(2)- (⁎)-Dedekind with v-operation is  domain.
Corollary (3.1.35). Let D be an integral domain. If:
1.  is (⁎)-finite Ɐ  ideal of D.
1. Each element  is a divisible element ∋  is an D-module.
1. D is P.(⁎).M.D. 
 hen  is injective.
roof.
Since  is a (⁎)-finite, then Ɐ ∈F(D), ∃ ∈F(D) ∋ ⁎=⁎.  Hence  is an invertible ideal such that  is subset of .  Therefore D is (⁎)-oetherian domain. In other words,
                                       0≠ ∈ D, so ∃  ∋ ⁎=⁎ and 
 is a finitely generated ideal. We have D is a P.(⁎).M.D. Then D is a (⁎)-Dedekind domain
(i.e. D is v-operation). Now D is (⁎)-Dedekind with v-operation; this means D that is  domain. Hence D is a completely integrally closed and then it is a (GD). Thus Dedekind with condition (2); implies that  is an injective D-module.
Recall that in [32], An R-module  is called pseudo-injective(P-injective) if every submodule N of , each R-monomorphism
  can be extended to an R-endomorphism of .  Also, in [21],  Any module  is called Quasi-injective (Q-injective) if for each submodule N of , and each R-homomorphism  can be extend to an R-endomorphism of .
Lemma (3.1.36). [28]. Every P-injective module over Dedekind domain is Q-injective.
Proposition (3.1.37). Let R be a Dedekind domain and P.I.D. If  is a P-injective; then it is an injective module.	
Proof.
Let H≤. Since  is a P-injective and every P-injective is Q-injective (see lemma 3.1.36). But R is P.I.D; with Dedekind Property that is an injective module. 




§2:  Injective modules and Euclidean Ring
  In this section, we satisfy several facts about the relationship between injective module and Euclidean ring. The main result is that every divisible module over Noetherian valuation ring is injective. Also, there are some, connection between (D.V.R) and injective module. We prove that every divisible module over (UFD) is also injective.
Definition (3.2.1).   By van der Warden, we say that R is an Euclidean ring if R is integral domain such that the division Algorithm is true. 

Remark (3.2.2).   We can rewrite Definition )3.2.1(in another way (if ∃:R/{0}→+{0} ∋ δ() greater than and equal  and
 , s=0 or   ∈ R;  ∈R).
Lemma (3.2.3).  If  is is a divisible module over P.I.D, so  is injective module.
Proof.
  Suppose that  is a divisible R-module. Let f:→ be an R-homomorphism, where is a left ideal of R since R is a principal ideal ring, = for some , since  is divisible, there exists an m∈ such that =tm define g: → by =. Then g is R-homomorphism Note that every 
                 ,  Thus  is injective.

Lemma (3.2.4). Every divisible over Euclidean domain is an injective module.
Proof.
  Suppose that R is an Euclidean domain. Let ⊲ R. Hence={0}=(0) or 
let 0= ∋ d( least, so any ,we obtain  and =0 or
 d() < d(. But  =-  ∈ . Since d( is a minimal and and =0,  and =(. Hence R is a P.I.D. But  is a divisible module. Thus  is an injective module. 
The following shows that divisible Z-module over the integer numbers is injective module;
  Suppose that ⊲Z. if ={0}, so (0) and  is a principal ideal. Assume that ≠{0} and  is the smallest integer ∋  is a positive in  We must prove that =(. Since ∈, so (⊑. If ∈, then for some  belong to Z, 0 ≤ r ≤ -1. Hence =; . Since  is the smallest positive in , hence r=0. So  and ∈(. But  is a divisible module Thus  is injective.
  Recall that any filed is an Euclidean ring and this leads to the following result:
Theorem (3.2.5).  Let K be a field. If  is a K-divisible module, so  is injective. 
Proof.
The proof of this statement is easy, because; if ⊲K ∋ 0≠∈, so every ∈K and hence:  =)∈.
  Hence =K. therefore only ideals of K are {0} = (0) and K= (1). Then K is P.I.D (is injective because it is divisible).
Theorem (3.2.6).  Let R be an Euclidean ring. If 
1-  is a divisible R-module. 
2-  is a maximal ideal of R. 
Then  is  –injective module.
Proof.
  Suppose that ⊲R ∋  is a maximal ideal of R. Suppose that ∈ and  ≠0. To prove that ,∃  ∈ ∋ (=.
Let = <> ∋  is an ideal. So  and  ().
We have  is a maximal ideal. So =R (Definition of maximal ideal). Then . Hence    1=   Ɐ y ∈R, .  Therefor 
=()+==()().
Hence   is a field. Then  is an Euclidean ring, with  is divisible module imply  is injective.
Example (3.2.7).   Any divisible module  over  is injective because  is a field.
  Recall that a domain R is a valuation ring () if R is not field and , ∉R ∋ K is a field. Therefore we can define discrete valuation ring ( on K by the following:

Definition (3.2.8).[33].  We say the function :K→Z is (D.V.R) if:
1-  is onto. 
2-  ()=+.
3- ≥ min{,.}.                    
Remark (3.2.9). [2].  An integral domain R which is (V.R) of (D.V) on K is a (D.V.R) and hence every (D.V.R) is an Euclidean domain.
Proposition (3.2.10).  Let  be an R-module. If: 
1-  is divisible module;
2- R is (D.V.R) ∋ :R\{0}→N is Euclidian. 
Then  is an injective module.
Proof.
Suppose that  ∈ R\{0}. From condition (2) ≤. If ≥, so )≥0 and ∈R. Take the following equation:
                       a=)b+0 ∋ ≥…………..(⁎)
                        a= 0b+a ∋ <…………..(⁎⁎)
If (⁎) and (⁎⁎) satisfies Euclidean norm, so ∃  ∈R a=, then 
 or <. Hence R is an Euclidean domain. But from condition (1)  is a divisible module. Thus  is injective.
Corollary (3.2.11). [ 9]. Let R be a ring. If:
1- R is UFD has a unique irreducible element. 
2-  is a divisible R-module.                                              
Then  is an injective module.
§3:  Some Rings Give injective module
  In this section we study injective module over some other rings, such as Noetherian ring, local ring and Hereditary ring.
Definition (3.3.1). [33]. For a module  over a ring  and for an ideal as a module of ;  is called -injective if :  is a homomorphism, then there exists an element  and  such that the image of  is  (in other words  can be extended to homomorphism of  into ). 
Remark (3.3.2). Every module  is injective if it is an -injective such that is a right ideal (in other words any -injective module is injective).
  Note that if  is a finitely generated, so it is clear that every f-injective module is injective over Noetherian ring  ( is f-injective module if it is -injective).  Also, any f-injective module  over Noetherian ring  is injective. By the next lemma, we can start with the main goal of this thesis, which is how to get the injective module.
Lemma (3.3.3). Let  be a Noetherian ring. If  is a f-injective, then it is injective module.
Proof.
  Suppose that  is a Noetherian ring. So every ideal of  is a f-generated. Hence every f-injective module is injective. 
Definition (3.3.4).[40]. Any -module  is called divisible if  such that  and  is -divisible if  . (-divisible gives divisible over commutative ring). 
Theorem (3.3.5).  Let  be a Noetherian ring. If  is-divisible, so  is an injective module.
Proof.
  From [30], Lemma 3.3.3, every -divisible module is an -injective. But every -injective is f-injective. We have  is a Noetherian ring. Hence  is a finite generated ideal. Thus  is an injective module. 
Corollary (3.3.6). If   Ɐ  and , then  is injective module.
Proof.
Suppose that →M ∋   
    and  =.  Take  is a restriction of to  and  respectively. Hence 
∃ , ∋= Ɐy∈and  . Since   coincide with   on , so ((= ∈( and (  ∋  =. Assume that 
=. Hence  . Thus  is -injective. Therefore  is injective module (Remark 3.3.2).
  We need to introduce more results about the relationship between injective module and this goal achieved by studying in the three rings in depth; Noetherian rings, D.V.R and local rings.    
Remark (3.3.7).  If  is a finitely generated ideal of  so it is normal  is a Noetherian and vice versa and more, so when the ring is a P.I.D, we get same result. 
Proposition (3.3.8).  Let be a finitely generated ideal of . If  is -divisible, then  is injective  –module ( is injective over the ring ).
Proof.
  The main goal of proof is how to prove that  is a Noetherian ring. We have  is a finitely generated ideal in . So  is a Noetherian ring. Suppose that  is also an ideal in  . We take the following set: 
                                               
It is clear that  is an ideal of . Then  is finitely generated and we say:
                                                   =(,………).
Assume that can be write by the following 

If   in , so and hence t can be written as:
                                             +………; Ɐ . 
 Hence  can be write it by +………. So  is a Noetherian ring. Thus  is injective module (See Theorem 3.3.5).
Note that from (Hilbert Basis Theorem); if  is a Noetherian ring (every ideal of  is finitely generated), so also  is a Noetherian. Therefore we can introduce the following result:
Corollary (3.3.9). [22]. Every -divisible module over  is injective module.
Definition (3.3.10). [7]. Any ring  is called local if  has a unique maximal ideal. In other words; every ideal is contained in some maximal ideal.
  Now from the definition of Noetherian ring and local ring, we can combine both concepts in order to obtain  is injective module. See the following proposition:
Proposition (3.3.11).  Let  be an -module. If.
1-  is -divisible.
2-  is an irreducible element in . 
3- is a unite; .
Then  is injective module. 
Proof.
  First, the unique maximal ideal  is principal. Suppose that = and . So every element in -{} is a unique and if =,  then  is also a unit, Hence, therefore  and . Thus the uniqueness is true. Hence  is local ring. Let  ∋  is an ideal. If so ⊆ is maximal ideal. Take n is a maximal element such that  and  We define the following set by:
                            .
  Note that  is an ideal and ). Now if S is a unite otherwise , so  Hence any 
ideal of  is not equal zero and take the from ), . Then all ideals of  is finitely generated. Therefore  is Noetherian ring. But from condition (1);  is -divisible. Thus  is injective -module. 


Definition (3.3.12). [22]. A ring  is called D.V.R if:
; :
1- 
2- is a unit.
3- .
4- .
Now from Definition 3.3.12; if  is Noetherian and local ring, then  is D.V.R. So: 
Corollary (3.3.13).  If  is a D.V.R, then any -divisible module  over  is injective.
Proof. 
By Definition )3.3.12( and proposition )3.3.11(.
Example (3.3.14).  If  is a ring and is the all non unit, so any I-divisible module  is injective, because if  non unit ideal of , then  is a local ring and we know that  is a Noetherian if  is a Noetherian ring.
Example (3.3.15).  If  is -divisible over the ring  and  is a finitely prime generated ideal of  , then  is injective over  where = and  is all equivalence classes of fraction ;  is the complement of  and  has no zero divisors.
Example (3.3.16).   is local ring such that it is a maximal finitely generated ideal (is the localized at the prime ideal (I) and  and I not divisible .
Example (3.3.17).   If  is a domain and  Then 
. So  is a local ring and any ideal of  is finitely generated, then  is a Noetherian ring. Such that =  is a multiplicative set ( is called with  and ).
  Now we study injective module over hereditary (semi hereditary) rings.
Definition (3.3.18). [8]. Any ring  is called hereditary(semi-heredity) ring if every quotient module is injective (f-injective).
  Recall that any f-injective module is injective implies that  is a Noetherian ring. Moreover; any f-injective over Noetherian ring  is injective.
Theorem (3.3.19). Let  be a semi-hereditary ring. Then every quotient module of injective module is injective.
Proof. 
[bookmark: _Hlk81047608][bookmark: _Hlk73886684]Suppose that  is f-injective and  be a homomorphism. Also,  such that  is a f-generated right ideal of . 
Such that i is inclusion mapping. Then is finitely generated and projective. Hence  ∋ h=. Note that  is f-injective. So ∃ : → ∋ =. Also , so ==h=. Hence 
f-injective. Then the quotation module of injective is also f-injective and hence is injective.
  Recall that a ring R is regular ring if for each  there exists  such that  [20].
Lemma (3.3.20).  Every regular ring  is a semi-hereditary self-injective. 
Proof. 
  We know that f-generated right ideal of  is generated by an idempotent because  is a regular ring. Hence  is a semi-hereditary. Suppose that  an idempotent element. Suppose that  . Then   =. Also,  Hence  is f-injective. Thus  is injective and  is a self f-injective.
Theorem (3.3.21). Let  an -module. If  is a maximal ideal of  and the quotient ring  of  is a field, then  is an injective module.
Proof.
Let  and }. Since  is a field, then  is not contained in any maximal ideal I containing r. Let , so C is also not contained in any maximal ideal of . We know that. Also since, so  is a direct summand of . Now  is idempotent of . Also,  If =1-. Then  is a regular ring. By Lemma 3.3.3    is semi-hereditary self injective and hence  is f-injective. Thus  is an injective module. 
Remark. (3.3.22). [29]. Any ring  is called (quasi-Frobenius) if every projective module is injective; or every injective module is discrete.
Definition (3.3.23). [22].  Any module  is called free if it has a basis that is generating set consisting a linearly independent elements. 


[bookmark: _Hlk74163875]Proposition (3.3.24).   Let  be a ring. If: 
1-  is a local ring. 
2-  is a  ring.
3-  is a flat module.
 Then  is injective.
Proof.
  First, we need to prove that  is a free module. Assume that  is not free. Suppose that  is a flat module. Let  be a minimum number of all elements such that m generating  and t is the minimum of  and the sum of  Not that  is a minimum base of . There is  and we assume and 
                    , ).
        So      and ; ∈R, .
 If  so    Since  is a minimal, then  is a unite of . If , then 
For  then   as . For , 
so 0 such that . Hence 
                    ( ,…,).  C!
  So  is a free module. Therefore  is a projective. But  is local and  ring. Then every projective module is injective. 
Proposition (3.3.25).  Let  be any module over a semi prime ring . If  is a lattice and [b) has a complement in (), , then  is injective module.
Proof.
  Suppose that  is a semi prime ring and [) has a complement in (). So by [ Lemma 4], (Lemma 1 in ,  =. Now in  and = in  Hence (). So  is a regular ring. Thus  is a semi hereditary ring and hence  is injective (see Theorem 3.3.21).
Example (3.3.26). The integer number  is a semi prime ring so it is a regular ring ( is semi prime ring). Hence any module over is injective. 
In the next result, we study the relationship between Noetherian ring and semi prime ring.
Corollary (3.3.27).  Any semi prime ring  is Noetherian and local ring such that () is a Boolean algebra and then every -module  over  is injective.
Proof.
  Because  is a semi prime ring and  is a Boolean algebra. From proposition 3.3.8,  is a regular. If P is a prime ideal in , then
  is a saturated set. () is a Boolean algebra then by (Lemma 4 in  )∋. So . But prime ideal gives principal. Then  is Noetherian and local. So every module  over   is injective. 
Definition (3.3.28). [14].  Let  be a module over integral domain R and  is called torsion element if  such that  the set of all torsion elements in  denoted by 
T(. if T()= then  is called torsion module and if T()=0 then  is called torsion free module.
Definition (3.3.29). [4]. Any ring R is called a multiplication ring if all ideals are multiplication. Such that an ideal A is multiplication if every ideal B⊆A, ∃ an ideal C s.t B=AC.

Proposition (3.3.30).   Let R be a semi prime ring, if b is  is a non unit in R and any completely irreducible saturated set is completely prime, then R is a Noetherian and a regular ring. 
  Recall that from [19]; any set   is called saturated in R  if. Also an element F in  is  completely irreducible if:  F= So F= And F is called prime if   or  Therefor  is completely prime if . Now we return to prove proposition 3.3.30 
Proof.
Take R is a semi prime ring and  is a non unit and every completely irreducible saturated set is completely prime. To prove )is dual semi-complemented. Suppose that . So ∃ b is a non unit. Then  It is clear that   and  (semi-prime property). Hence  is dual semi-complemented. Now from the condition (every completely irreducible saturated set is completely prime, Theorem 3 and Lemma 5 in[20]; we obtain that  is a Boolean algebra. Also from R is a semi prime and Theorem 2 in [20]; we get R is a Noetherian and regular rings.
Corollary (3.3.31).   If any ring R satisfies all conditions of proposition 3.3.30, then every R-module  is injective. 
Proof.
See proposition )3.3.30(and corollary )3.3.27(.
[bookmark: _Hlk74163937]Proposition (3.3.32).   Let R be a ring. If:
1- R is multiplication ring or hereditary ring; 
2- R is P.I.D;
3-  is P-injective module.
 Then  is an injective module.
Proof.
Assume that  and P-injective module over multiplication ring or hereditary ring. Suppose that H≤M. We have , so from [27]; any submodule of torsion module is torsion (H is torsion submodule). Also, we have  is P-injective, then H is P-injective submodule in . Now H is torsion and P-injective submodule over multiplication or hereditary ring. Hence H is Q-injective ( is injective). But R is P.I.D. Thus  is injective module.
Corollary (3.3.33).  If  and P-injective, then any  over P.I.D is injective.
Now we introduce another ring which has a good relation to injective module namely P.P-ring. We say that R is a P.P-ring if is P.I. of R is projective module. Also, we know that R is a (QF) ring if every projective module is injective. 
Lemma (3.3.34). [33].  Let R be a ring. If 
1- R is a P.P. ring;
2-  is a free module;
3- N≤ is acyclic. 
Then  is a projective module.
Theorem )3.3.35(.   Let R be a ring. If:
1- R is a P.P-ring;
2- R is a QF;
3- N submodule of free module . 
Then  is an injective module.
Proof.
From conditions (1) and (3)  is a projective module. But from condition (2) R is a QF. So  is an injective module. 
From[32]; the following statements are equivalent for any R-module :
1-  is a divisible module.
2-  is an I-divisible module.
3-  is an f-divisible module.
Therefore; the following result is true:
Corollary )3.3.36(.   Let R be a ring. If:
1- R is a P.P-ring;
2- R is a P.I.D;
3-  is I-divisible module.  Then  is an injective module.
Proof. 
Clear. From[33]; we have R is a P.P. ring and  is I-divisible module. So  is f-divisible. But every f-divisible module is divisible. We have R is P.I.D. Then is an injective module.
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Conclusions
In this thesis we worked on how to obtain the injective module through some modules as well as some characteristics such as Including divisible module, Noetherian and regular module, Quasi-injective module, uniform module, non-singular module, semi simple module and semi hollow module.  There are some of the main proofs and results that we have proven in chapter two:
1- Let R be a P.I.D if  is an injective R-module and  then   is injective.
2- Let  be a divisible module. If  is a projective module, then the homomorphism from  into is also a divisible module.
3- Let be a regular R-module. If  is semi hollow and Rad() is a Noetherian module, so  is injective.
Also we got the injective module through some domains, including Dedekind domain and UFD, as well as some rings, including Euclidean ring, semi-hereditary ring and semi prime ring. There are some of the main proofs and results that we have proven in chapter three:
1- Let  be a  and it is a UFD. If every element of  is divisible, so  is an injective module.
2- Let  be an integral domain and has no invers. If  is a oetherian local  P.M.I, then  is a .
3- Every divisible over Euclidean domain is injective module.
4- Let  be a semi-hereditary ring. Then every quotient module of injective module is injective.
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الملخص

الهدف الرئيسي من هذا البحث هو دراسة العلاقة بين المقاس الغامر وبعض المفاهيم ذات العلاقة مثل المقاس القابل للقسمة والمقاسات الأرتيرنية والنيوثرية والمنظمة, قدمنا خواص مهمة حول المقاس الغامر وكذلك اعتمدنا على التعاريف الاساسية في الفصل الاول والتي استخدمت في النتائج. لدينا كل مقاس غامر هو قابل للقسمة ولكن العكس يحتاج الى شرط الحلقة تكون ساحة مثاليات رئيسية (P.I.D). النتيجة المهمة الاخرى هي اذا كان المقاس  شبه بسيط على حلقة شبه بسيطة فأن  تكون مقاس غامر. كذلك حصلنا على اذا كان المقاس يحمل صفتين المنتظمة والدوار فيكون غامر. وايضا  اذا كان  منتظم وN  مقاس جزئي  منه ومنته التولد فيكون ال   مقاس غامر. 
الجزء المهم الاخر هو دراسة العلاقة بين المقاس الغامر وحلقة ديدكند حيث كل مقاس قابل للقسمة على حلقة (D.V.R) يكون غامر.  وكذلك كل مقاس غامر كاذب مع R  ديدكيند يحقق ال  M مقاس غامر.
الجزء الاخير من الدراسة تمثل بكيفية الحصول على المقاس الغامر اذا كانت الساحات تحمل الصفات التالية:
ساحة اقليدية – ساحة نيوثرية.
ومن هذا الجزء درسنا المقاس I-divisible وعلاقته مع المقاس الغامر.
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