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Student name: Noor Mahmoud Ibrahim

Thesis title: Electricity-Theft Detection in Smart Grids based on
Deep Learning

Abstract

Electricity theft is a major concern for the utilities. With the advent of smart meters,
the frequency of collecting household energy consumption data has increased,
making it available for advanced data analysis, which was not possible earlier.
Indeed, using Smart Grid (SG) networks, which are recently upgraded networks of
connected objects, can greatly improve the reliability, efficiency, and sustainability

of the traditional energy infrastructure.

The SG infrastructure produces a massive amount of data, including the power
consumption of individual users. Utilizing this data, machine learning, and deep
learning techniques can accurately identify electricity theft users. This thesis
presents a Convolutional Neural Network (CNN) based model for automatic
electricity theft detection that can achieve high performance classification and

detection.

The work considers experimentation to find the best configuration of the sequential
model (SM) for classification, beginning with two layers and ending with four
layers. The best performance has been obtained in two layers’ architecture with the
first layer consists of 128 nodes and the second layer is 64 nodes, where the
accuracy reached up to 0.92. This enables the design of high-performance

electricity signals’ classifier that can be applied several applications.

Designing electricity signals classifiers has been achieved using CNN and the data
extracted from electricity consumption dataset using SM. In addition, the Blue
Monkey (BM) algorithm is exploited to reduce the number of features in the dataset,
where these values are used to build models with high performance. In this respect,
the emphasis of this thesis has been on reducing the required number features in the
dataset in order to achieve a high performance electricity signals’ classifier model.
The experiments have justified the high performance of the proposed systems,

where combining both the CNN and BM algorithms requires only 666 features

vii



compared to 1035 features using CNN alone. This demonstrates the superiority of
the CNN and BM model over the CNN model in terms of reducing the features of

the model while the accuracy remaining the same.

Keywords: Smart Grid (SG), Deep Learning (DL), Convolutional Neural
Network (CNN), sequential model (SM), Blue Monkey Algorithm
(BM), electricity consumption dataset.
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Chapter One General Introduction

Chapter One:

General Introduction

1.1 Introduction

The grid of electrical energy is one of the most essential and complicated artificial
schemes in the new society. With the most recent advancements in observing,
communication, control, and sensing, the inheritance energy grid is currently
changed alongside the trip to a smart grid. Smart Grid (SG) is the ever-growing
dispersion of renewable and divided source of power, which is intended to attain
flexibility, self-healing, effectiveness, and sustainability. The idea of SG is being
recognized over the application of pretend infrastructure covering the inheritance
power grid [1]. The cyber-infrastructure allows the group and study of data from
lots of different dispersed endpoints, for example, units of determination of phasor,
smart meters, and breakers of the circuit.

Usually, these grids contain some improvements that will develop the
dependability, effectiveness, and the delivery of continuous source of energy to
households and industries. Besides, SG contains different resources of renewable
energy such as (power of wind, solar, and others), distributed storage (DS), and
distributed generation (DG) [2-6]. The term of the system of smart metering
explains a smart electric instrument that determines the data of using of energy,
providing more accurate details than a conventional meter, and drives and obtains
data by two-way connection [7]. Consequently, grids of smart metering operate
with smart sensors permitting companies to run and regulate the SG, supplied with

the technology of communication and information [8].

Electrical energy has become essential in a human's life. Losses of electrical energy
regularly happen for the duration of production, distribution, and transition of
electrical energy. The losses of electrical energy can generally be classified into
Non-technical losses (NTLs) and technical losses (TLs) [9]. Electricity-theft is one
of the most serious NTLSs.

There is a large group of investigations on detecting electricity-theft. Traditional
ways of detection of electricity-theft contain physically examination problematical

meter set up or disconfirmation, associating the irregular meter readings with the

1



Chapter One General Introduction

regular ones and observing a line of the transition of the by-passed power. These
ways are ineffective, tremendously time-consuming, and costly. The presence of
SGs brings chances in resolving of electricity-theft. SGs are comprised of
conventional networks of power, grids of communications linking smart devices
(for example, smart sensors and meters) in networks, and calculating services to
sense and regulate networks [10]. Information and energy move in smart networks
attach companies of service and employers. In this way, smart sensors or meters
may collect a variety of data, such as network status information, using electrical

energy, funding information, and cost of electrical energy [11].

As a result, the emphasis of this thesis is on proposing an effective technique for
detecting electricity-theft in order to address all the concerns raised above.
Specifically, a Convolutional Neural Networks (CNN) have been initially
suggested with a recently proposed nature-inspired metaheuristic optimization
algorithm called the Blue Monkey (BM) algorithm model to recognize the thieves
of electricity and study the data of consumption of electricity. The CNN part
consists of several convolutional layers, a pooling layer and a completely connected
layer. Principally, the CNN component can capture the periodicity of electricity
consumption data. This model combines the strength of the CNN component and
the BM algorithm to aid in the detection of electricity-theft. The primary study
donations of this thesis can be reviewed as:

e Originally, this work suggests a deep algorithm model consisting of CNN and
the BM algorithm to examine electricity-theft in smart networks. To the best
of our knowledge, it is the first research to suggest such a deep algorithm
model (Mixing CNN with the BM algorithm) and carry it out to study
electricity-theft in smart networks.

e Wide-scale experiments have been conducted on a huge accurate electricity
consuming dataset. Furthermore, the results of these experiments show that
our model (CNN & BM) outperforms several other existing models.

e The proposed model has several merits, including the simplification of the
novel knowledge brought via the CNN model and the accurateness in

detection electricity-theft.
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1.2 Methods of Power Theft in Power System

Losses of non-technical and technical nature are happening solitary in distribution
and transition but not in production. It is very problematic to discover non-technical
losses happening in the system. There are several techniques of electricity-theft
(electrical energy) [12]. Some of them are straight attaching from the line, inserting
foreign substances into the meter, digging punctures in the electro-mechanical
energy meter. Electromagnetic meters are hardened via putting a too viscous fluid,
inserting film, and utilizing rigid magnets, for the interruption of the disc. The
electricity-theft is occurred via showing meter to mechanical shock and utilizing
the external phase beforehand meter stations. As a consequence, subscribers get

free energy without any record.

In other methods, it is possible to substitute the chain of energy at the meter
connector box, and the amperage doesn’t permit over the present coil of the meter;
therefore, the meter doesn’t record the consumption of energy. Electricity-theft
becomes an infamous problematic in power systems. There are different control
approaches for the electricity-theft, but it is still not easy to decrease or eliminate
the problem. The most common types of electricity-theft are [12]:

e Inserting foreign substances into the meter.

e Direct attaching from the line.

e Rearranging energy meter reading.

e Varying the stations of leaving and arriving at the meter.

e Utilizing rigid magnets as neodymium magnets.

e Digging punctures into electromechanical energy meter.

e Destructive the pressure coil of the meter.

e Inappropriate or illegitimate standardization of energy meters.

e Putting a too viscous fluid.

e Injection film.

¢ Revealing the meter to mechanical shock.

The employed techniques for controlling power theft include [12]:
= Recognition and Detection based on a system of High Voltage Detection
System (HVDS).
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Utilizing neural grids/ model of Support Vector Machine (SVM).

Utilizing smart meter/nefarious meter insertion.

Advanced metering infrastructure (AMI).

Electricity-theft Power control Automatic Meter Reading (AMR) by a

system of Power Line Communication (PLC).

Intelligent modelling system for detection of line losses in allocation

scheme of power.

The comparison of the above-mentioned controlling methods in terms of system

reliability, economy and system efficiency is shown in Table (1.1) [12].

Table (1.1): Comparison of control methods in terms of system reliability, economy, and

system efficiency [12].

No. Ways of Controlling Accuracy of System Economy Efficiency of
System
1 Detection & ldentification Normal Less Less
according to System of
HVDS
2 Using a Neural Network Good Mathematical Moderate
model cost
less
3 Using Smart Meter Perfect (complete) Extraordinary Extraordinary
4 AMI(Advance Metering Perfect(complete) Moderate Moderate
Infrastructure)
5 Using PLC (Power Line Good Normal Extraordinary
Communication)
6 Intelligent System Perfect(complete) Extraordinary Extraordinary

1.3 Smart Grid (SG)

The electricity network is considered as an SG that can smartly mix the actions of

whole employers linked to its producers, customers and those that do both to

proficiently provide maintainable, financial, and safe sources of electricity [13]. A

smart network uses advanced products and facilities together with technologies of

communication, control, smart observing, and self-healing to [14]:

Permit customers to show a portion in improving the system procedure.
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Preferable service the procedure and connection of producers of wholly
technologies and sizes.

Meaningfully decrease the ecological influence of the entire scheme of the
source of electricity.

Deliver customers with superior information and source selection.

Supply improved dependability levels and source security.

Therefore, the primary purposes of the SG are [14]:

Deliver a user-centric method and permit novel facilities to arrive at the
market.

Deliver availability to an opened market and foster antagonism.

Allow request side partaking (Demand Side Response (DSR), Demand Side
Management (DSM).

Allow distributed generation and employment of sources of renewable
energy.

Confirm best utilizing of a central production.

Study the features of the group.

Preserve source security, interoperability and confirm integration.

Found novelty as an inexpensive driver for the renewal of electricity
networks.

Consider suitably the influence of ecological limits.

Notify the political and controlling features.

The Smart Grid components are Supervisory Control and Data Acquisition
(SCADA), Phasor Measurement Unit (PMU), Flexible AC Transmission System

(FACTS), Advanced Conductors devices, electric power generators, electric power

substations, transmission and distribution lines, controllers, smart meters, collector

nodes, and distribution and transmission control centers. Figure (1.1) depicts the

key components of SG [15].
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Figure (1.1): Components of the smart grid [15].

1.4 Detection of Electricity Theft based on CNN

Electricity-theft can be damaging to power network sources and cause financial
losses. Smart networks can assist in resolving the problems of electricity-theft
possessing the obtainability of massive data produced from smart networks. The
data examination on the smart networks data is useful in detecting of electricity-
theft due to the irregular pattern of electrical energy consumption of thieves of
energy. Nevertheless, the current approaches have poor accurateness of detection
of electricity-theft as most of them were based on one dimensional (1-D) data of
electricity consumption and failed to arrest the electricity consuming periodicity
[16].

Thus, it is more prudent to propose an enhanced technique of detection of
electricity-theft based on the model of Convolutional Neural Networks (CNN) to
treat all worries mentioned above. The CNN can exactly recognize the non-
periodicity of electricity-theft and the periodicity of regular electricity using based
on two-dimensional (2-D) data of electricity consumption. Consequently, the model
of CNN can attain great working in the detection of electricity-theft. The CNN is
made up of several convolutional layers, a pooling layer and an entirely attached

layer.
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1.5 Related Works

In this section, a thorough literature review on some related issues of the Smart Grid
(SG) is presented. Firstly, some critical works on SGs are mentioned. Secondly, a
survey on electricity theft detection techniques is given. Then, some related works
on deep neural networks are reviewed. Next, a survey on the deployment of (CNNs)
for detection of electricity theft is given. Finally, the related work on the BM

algorithm is introduced.

A. Smart Grids

Lately, matters of privacy and security have been the issues of comprehensive
research since the national economy, public security, and safety depend
significantly on the grids of energy. Though weaknesses of privacy and security are
always being appeared in the protocols, technologies of the grid, and devices
utilized in the importance of fears to system-level safety, the systems of energy,
fears to privacy are not continuously completely understood in grids of SG
metering, and threats or theft by facilities. Next, we explain new survey papers in
this domain and indicate exceptional contributions and the distinctive features of
them. These contain some survey papers that have been shown on the matters of
privacy and security in the field of SG.

In 2011, Line et al. compared the security requirements between SG
communication network and telecommunication networks [17]. Then they listed
the overall cyber security challenges, for example, trust models, connectivity,
management of security, the privacy of consumers, software vulnerabilities, and
human factors. Solutions to these challenges were also proposed.

In 2012, Deng and Shukla surveyed the vulnerabilities and countermeasures,
especially for the transmission subsystem within SG [18]. They focused on the point
of weaknesses of technology of Phasor Measurement Units (PMUs) and Wide Area
Measurement System (WAMS). They divided the attacks into four group traffic
analysis attack, denial of service attack, malicious data injection attack, and great-
level implementations attack. Those authors presented the basic of PMU, case
approximation with PMU, and how that can be utilized to inverse attack.

In 2013, Wang and Lu examined challenges of security in the grid of SG,
containing Home Area Networks (HANs), Advanced Metering Infrastructures
(AMls), subsystems of distribution and transmission [19]. They showed the
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necessities of security and estimated network fears with matter studies. The study
principally considered cryptographic countermeasures containing verification and
managing of the key in different fields of SG. Their paper contained detailed logical
study together with some conventional protocols (e.g., distributed network
protocol) in the fields of energy. However, since 2013, techniques of
comprehensive new and progressive safety have been presented, and those must be
discovered.

In 2013, Baig and Amoudi classified the SG cyber-attacks and countermeasures
through five categories: Supervisory Control and Data Acquisition (SCADA),
Injection of Data and Replay Attacks, Smart Meter Attacks, Network-based
Attacks, and Physical Layer Attacks, which span home area networks, grids of the
neighborhood, and extensive area grids [20].

In 2014, Komninos et al. presented SG and smart home safety study [21]. Those
authors generally assumed the communication amid the environments of SG and
smart home are categorized their hazards of safety. The paper studied some
representative fears and estimated theoretical influences from SG to smart home
and conversely. They delivered a review of the presented literature as the
countermeasures of safety and contained the SG’s current doings from 2009 to
2013. Komninos et al. studied several papers from the point of view of safety
countermeasures, including privacy, the critical study of these systems was not
explained.

In 2014, Mohassel et al. explained a study on (AMI) advanced metering
infrastructure [22]. They studied the main ideas of AMI. They showed the physical
and cyber safety challenges containing privacy briefly. Their paper included partial
but necessities of security and privacy in the grid of AMI. Nevertheless, those
authors do not contain detailed threat model, and explanation on modern schemes

of security and no expressed the privacy maintaining systems.

B. Electricity Theft Detection (ETD)

The current methods are studied of electricity theft detection in the literature, which
use consuming data of smart meters to discover deceitful consumers. Observing of
load profiles of consumers for marks of electricity-theft in conventional power

schemes has attracted the concerns of academics to this point.
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In 2010, Nagi et al. applied a data removal technique alongside with Support
Vector Machine (SVM) classifier to detect irregular manners [23]. The average
daily consumption of consumers over two years was estimated, and the long-period
trend in consumption of energy was utilized to detect deceitful consumers. This
technique can detect unexpected variations in load profile. Also, the detection, the
delay is around two years.

In 2011, Angelos et al. utilized six months using reports, five characteristics
containing maximum consuming, mean consumption, inspection remarks
summation, standard deviance, and the mean consumption of the neighborhood to
produce a usual form of consumption of power for every consumer. K-means based
fuzzy clustering was achieved to collection consumers with the same profiles. A
categorization of fuzzy was then completed, and Euclidean spaces to the group
centers were determined. Customers with ample spaces to the cluster centers were
assumed potential cheats. Gathering the consumers and depending on long-period
measurements limited the accurateness of this ETDS and produced long detection
delay. Possessing more detailed metering info in Advanced Metering
Infrastructures, Consuming Form-Based Energy Theft Detector (CFBETD) may
deliver a much better working with a much shorter delay [24].

In 2011, Depuru et al. incorporated a neural network model to calculate factors of
Support Vector Machine to decrease the time of training of the classifier, and a data
encoding technique was projected to develop the classifier speed and effectiveness.
Their way is only active in detecting electricity-theft attacks that produce in zero
using reports since in one-step of the encoding process, the metering data is changed
into double values. So, the suggested method of classification can’t detect a

widespread choice of kinds of attack [25].

C. Deep Learning and Convolutional Neural Networks (CNNs)

This subsection, presents a survey on some earlier work related to CNNSs.

In 2013, Abdel-Hamid et al. explained the CNN innovative in the variability of
domains associated with forming appreciation from image treating to voice
recognition [26]. The most advantageous feature of CNN is decreasing the factors
number in Artificial Neural Networks (ANNSs). This attainment has encouraged
both designers and academics to approximate bigger models to resolve difficult

jobs, which wasn’t probable with classic Artificial Neural Networks.
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In 2016, Mallat extended earlier presented tools to progress a mathematical
framework to analyze the properties of general CNN architectures [27]. At a
significant level, the extension was attained via substituting the requirement of
invariants and contractions to translations via contractions along with adaptive
collections of local symmetries. Additional, the wavelets were substituted via

adapted filter weights same to deep learning models.

In 2017, Albawi et al. described the term Deep Learning or Deep Neural Network
that denotes to Artificial Neural Networks (ANN) with several layers [28]. Over the
final rare decades, it has been measured one of the most influential apparatuses and
has become very prevalent in the literature, as it is capable of treating a massive
quantity of data. The attention in possessing deeper unobserved layers has newly
initiated to exceed working of classical approaches in various domains, particularly
in form recognition. One of the most general deep neural grids is Convolutional
Neural Networks. It had taken this term from linear mathematical process amid
matrixes named convolution. Convolutional Neural Networks have several layers;
containing assembling layer, convolutional layer, ultimately linked layer, and non-

linearity layer.

In 2017, Xu et al. presented the prime variance amid regular neural grids and
convolutional neural networks, where convolutional neural networks have an
automatic feature extractor, which comprises of a complication layer and a down
sampling layer (or pooling layer) [29]. A complication layer contains a pair of
feature charts, and each has some neurons. Generally, the factors of the
complication kernel are adjusted arbitrarily, i.e., utilizing it identified initialization

procedures and would be modified for the duration of the stage of training.

D. Convolutional Neural Networks for Electricity Theft Detection

In this subsection, an emphasis is given to review some recent papers that have
been conducted on using CNNs for electricity theft detection.
In 2012, Krizhevsky et al. explored the use of CNNSs for the task of detection [30].
Motivated via the numerical model method, the periodicity of consecutive data is
of considerable significance for the classifier, and the series might have monthly,
weekly, yearly periodicity or seasonal. Aimed at the detection of electricity-theft,
the form of electrical energy consumption is very noticeable for various users. So,

an adequate explanation of the periodicity can be beneficial to develop the

10
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accurateness of the detection of electricity-theft. Concretely, they suggested
adjusting the multi-scale Dense Net, which can automatically capture the short-term
and extensive-term periodic characteristics of the consecutive data.

In 2016, Bhat et al. investigated three deep learning methods for detection of
electricity-theft, specifically, CNNs, Long-Short Term Memory (LSTM), recurrent
neural networks (RNNSs), and loaded autoencoders [31]. Nevertheless, the detectors
working was examined by utilizing synthetic data, which didn’t permit a reliable
valuation of the performance of detector associated with shallow architectures.
Furthermore, the working of the suggested detectors was examined in contradiction
of only two kinds of attacks, i.e., bypass attack (decreasing the reported consuming
of energy to 0) and partial decrease attack (dropping the reported consuming of

energy via some fraction [31].

E. Blue Monkey Algorithm (BM)

This subsection highlights previous work related to the Blue Monkey (BM)
algorithm. In 2019, M. Mahmood and B. Al-Khateeb introduced a Forty-three of
well-recognized trial functions, which utilized in the optimization area are utilized
as standard to examine the BM algorithm [32]. Additionally, confirmation of BM
via a relative working examine with Gravitational Search Algorithm (GSA),
Artificial-Bee-Colony (ABC), Particle Swarm Optimization (PSO), and
Biogeography-Based Optimizer (BBO). The attained outcomes established that BM
algorithm is modestly associated with the selection of metaheuristic algorithms. BM
is capable of joining towards the worldwide optimum over difficulties of

optimization too.

1.6 Problem Statement

Electricity-theft is considered as an illegal manner of theft electrical energy from
networks of power. This harmful manner can be completed via bypassing the
electricity meter, hacking the meter, or interfering the meter reading. The data-
driven methods of detection of electrical energy theft have taken broad
consideration in recent times because of electricity-theft can produce in the irregular
forms of consuming of electrical energy and the obtainability of smart-meter

readings and consuming of electrical energy data from smart grids.

11
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The irregularity of consuming electricity data for energy thieves is discovered,
which can be possibly caught via machine learning tools. A preliminary
examination is carried out on consuming of electrical energy data. Afterwards
statistically examining the consumption of electrical energy data of both thieves of
energy and usual consumers, can find that the electricity consumption data of
energy thieves are typically less non- frequent or frequent, associated with that of
usual consumers. This monitoring can facilitate to classify the irregular using of

electricity and the periodicity of the electricity consumption.

Nevertheless, it is challenging to examine the periodicity of the electricity

consuming data because of many reasons as:

1) It is problematic to study the periodicity of the electricity consuming data
because it is 1-D time series data with an enormous size,

2) The electricity consumption data is frequently incorrect and loud,

3) Several traditional methods of data investigation, for example, ANN and Support
Vector Machine (SVM) can’t be straight carried out to the consuming of
electricity data because of the calculation difficulty and the restricted
simplification ability. To face the above challenges, has been suggested using
CNN.

1.7 Aim of Thesis
The main objectives of this work are like this:

e Design a deep learning-based system for the detection of electricity-theft in
smart grids to reduce the theft of electrical energy and reduce the abnormal
consumption of electricity.

e Conducting experiments to test the best configuration of the sequential
model for electricity theft detection to choose the best configuration of the
CNN.

e Employ an optimization algorithm (BM) to reduce the extracted features in

order to speed up the performance of the designed system.

12
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1.8 Contributions

Using the Blue Monkey (BM) algorithm to reduce the selected features in order to
speed up the designed system, and use reduced features set to build and train models

of CNN theft detection to get better performance.

1.9 Thesis Structure

The remaining chapters of this thesis are arranged as follows:

Chapter Two provides the background of Electricity Theft Detection (ETD)

systems that use CNN.

Chapter Three offers a full description of the proposed system in terms of
algorithms, as well as measures used to implement the approaches
of ETD system and achieve the desired goal.

Chapter Four presents the results are obtained through experimentation with the

proposed approaches. Indeed, those results are discussed.

Chapter Five presents the main conclusions of this research in addition to some

suggestions for future works.
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Chapter Two:

Theoretical Background

2.1 Introduction

Smart grids bring chances in resolving of electricity-theft. Smart grids comprise of

communications grids, conventional power networks joining smart devices like
smart sensors and meters in networks and calculating services to sense and regulate
grids. Information and energy moves in SGs attach employers and usefulness firms.
In this behavior, smart sensors or meters can receive data, for example, status
information of grids, using electricity, financial information and electricity fee. The
data of SGs is supportive for us to project systems of request-response managing,
estimate the fee of electricity and timetable the electrical energy in more gainful
method [16].

The electricity loss is a significant problematic challenged via firms of power
wholly over the world. Regularly, losses happen for the duration of electricity
distribution, generation, and transmission. The losses of electricity can be usually
classified into losses of Non-technical and technical [9]. One of the significant Non-
technical losses is electricity-theft. This lousy behavior contains bypassing the
electricity meter, hacking the meter, or tampering the meter reading [33].
Electricity-theft can produce in the weighty load of electrical schemes, the flowing
electricity, the hazards to public security and the massive proceeds loss of power
firm, for example, electrical and fires shocks. Several methods for detection of Non-
technical losses (NTLs) have appeared which can be categorized into three main
classes: Data-oriented methods, network-oriented methods, and hybrid methods
according to each technique's learning method. However, the most common and

most promising of these techniques is ETD based on Deep Learning.

2.2 Types of Energy Losses

The energy loss in distribution and transmission in electrical energy is a significant
problematic challenged via firms of power over the world. Generally, the losses of

energy are categorized into losses of Non-technical and technical [9].
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The technical loss is ingrained to the electricity transference, which is produced via
interior activities in the parts of the power scheme, for example, the converters and
transition liner [34]. The Non-technical loss is definite as the variance amid
technical losses and overall losses, which is mainly produced via electricity-theft
that happens over physical attacks as meter reading tampering, line tapping, or
meter breaking [35].

These manners of electricity fraudulence might bring around the income loss of
power firms as the losses produced via electricity-theft are computed approximately
$4.500 million yearly in the USA [36]. It is estimated that international utility
corporation loses more than 20000 million annually in the formula of electricity-
theft [37]. Additionally, electricity-theft manners can impact the security of the
power system. For example, the weighty load of electric systems produced via
electricity-theft might cause fires, which intimidate the safety of people.
Consequently, the correct electricity-theft detection is essential for the safety of the
power grid and stableness. With the application of the advanced metering
infrastructure in SGs, services of power attained huge quantities of consumption of
electricity data at a significant smart meter's frequency, which is useful for
electricity-theft detection [38, 39].

Nevertheless, the grid of advanced metering infrastructure unlocks the door for
several novel electricity-theft attacks. These attacks in the advanced metering
infrastructure can be thrown in different ways, for example, cyber-attacks and
digital tools. The significant ways of detection of electricity-theft contain humanly
observing illegal line diversions, associating hateful meter records with the
generous ones, and checking complicated apparatus or hardware. Nevertheless,
these approaches are expensive and consumption of time tremendously for the
duration of complete confirmation of whole meters in a scheme. These manual
methods can’t avert cyber-attacks too. To resolve the difficulties stated above,
several methods have been suggested in the preceding years. These approaches are
principally classified into models of artificial-intelligence-based, state-based, and

game theory based [40].
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2.3 Methods of Detection of Non-Technical Loss

Electricity-theft has been a primary matter for several years. Distribution System
Operators (DSOs) have been testing to perceive electricity-theft; nevertheless, the
phenomenon maintains, whereas modest meter check ways can’t sufficiently
recognize maximum states of fraudulence [41].

In this section, the utmost latest and features research directions on NTL revealing
are studied with their main features in brief. NTL uncovering systems are
prearranged in three big groups: network-oriented, hybrids, and data-oriented.
Relied on the prime perception behindhand detection of NTL, ways of data and
network-oriented are more categorized to subgroups. Apart from classifying the
different ways, the researchers focusing on size, types of data, algorithms, features

estimation metrics, and reply times of detection system of NTL.

2.3.1 Classification of Ways of Non-Technical Loss Detection

According to a review of scientific papers on detection NTL, there is no single
conventional procedure keeping an eye on for identifying fraudulence. Researchers
assume many ways from various domains of knowledge with the utmost mutual
ones, in addition to distribution network analysis, there are anomaly detection,
machine learning, and cyber-security.

The different systems of detection of NTL are prearranged in three big groups:
network-oriented, data-oriented, and hybrids. What differentiates data-oriented
from ways of network-oriented is the utilizing of data of power grid (such as
topology or measurements of the network). Ways of data-oriented make utilize of
customer associated data solitary (such as type of consumer, consumption of
energy). Hybrids are ways that utilize data from the two groups. Figure (2.1) shows

these prime groups.
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Figure (2.1): NTL detection methods categorization [41].

Data-oriented techniques are further classified to unsupervised and supervised.
Ways that make no utilizing of labels are unsupervised, whereas ways that make
utilizing of both labels (recognized positive/fraud and negative/not-fraud classes)
are supervised. However, unsupervised methods does not use labels. Methods with
single label are classified as unsupervised and typically fall under the unsupervised
anomaly detection domain. These methods are applied when one of the two classes
(e.g. fraud class) consists of tiny samples. Various fraud detection applications can
found, for example (credit card fraud) apart from NTL detection. Both labels are
known in this state; however, the lack of positive label (fraud) prevent supervised
learning methods utilization.

Because they are founded on the analysis of network and the physical principles
that define such schemes, network-oriented techniques usually disregard labels.
These ways are divided relying on the prime perception/algorithm utilized, i.e.
assessment of the state, flow of load, or exceptional sensors for detecting of
fraudulence.

Hybrid techniques use conceptions from entire classes stated above. Such as, an
estimation of the state way might be utilized on the level of Medium Voltage (MV)
to detect NTL at Medium Voltage (MV)/ Low Voltage (LV) converter level. A way
of arrangement of supervised can be utilized for pinpointing NTL at the customer
level, afterwards detecting portions of the network with NTLSs.

Briefing, the factors related to the detection of NTL are [41]:
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Concept and Category: The group and subgroup a particular work follows
Figure (2.1).

Algorithm(s): The prime algorithms utilized for detecting of NTL. In
extreme cases, more than one algorithm can be utilized. For every work,
even if they are solitarily utilized for comparing researches, nevertheless,
wholly algorithms stated are arranged in a list.

Type of data (s): The data requisite in various ways. This is a precarious
factor when scheming a way of detection of NTL or selecting from current
ones.

Size of the dataset: Size of data set is considered small if it contains less
than 100 customers, medium for 1000 to 10000 customers, and big for more
than 10000 customers. The size of the data set is significant, as it delivers
feedback on the scalability of systems of detection of NTL.

Features: In several cases, raw data are first treated to extract features to be
utilized for arrangement. There is no hint of which features must be utilized,
though several studies utilize features for detecting of NTLs. It is possible
to summarize features and related them with the type of data and algorithms,
therefore making it is easier to select suitable features either utilizing field
proficiency or feature choice algorithms. Table (2.1) shows the most
important features used for detection of NTL.

Metrics: Working metrics are utilized to evaluate the working of ways of
detection NTL under different conditions and to relate systems. Some of the
metrics are stated in the literature. It is possible to deliver a filled list of
metrics, below an exclusive identifier, together with the aim for must (or
mustn’t) be utilized. Table (2.2) displays the descriptions of such metrics.
Response time: It is the time needed for a system of detection of NTL to
respond if a customer perpetrates fraudulence. This mustn’t be mixed up
with the time of classifier to generate an outcome specifying the
comparative input data (which is hugely relied on device and coding). The
time of response relies on the time required to attain the data of input.
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More detailed information about algorithms, dataset size, and response time for

various data-oriented, network-oriented, and hybrid techniques for ETD can be seen

in Appendix A.

Table (2.1): Classifications of prime features utilized for detection of NTL [41].

Feature

Characterization

Standard Deviation, Average,
Min/Man,

Typical statistics estimated for a definite time.

The factor of Energy / Power

This factor is definite as the mean of active (kW) to consuming of reactive energy (k\VAr).
Measurements of Immediate energy are requisite for this estimation. Great-solution (equal / less
to 15.0 min) data should be utilized for a good assessment. The factor of power is the reactive
energy (kVVArh) expended in an interval of time to the active power (kWh) expended in the

identical interval.

Factor of Load

The ratio amid the mean active power consuming (kW.h) to the extreme active power consuming
(kW.h) for a definite interval of time (such as 30 days).

Streaks

The number of times the consuming curve reaches exceeding and underneath an average line

(definite as a moving mean of the consuming curve).

Daily consuming to

contractedenergy

The summation of consuming of active energy in an interval (kW.h) to the tapered power (kW)

Pearson coefficient

The Pearson coefficient of the consuming of the curve of active energy in a definite (usually big)
period of time. The measuring of the Pearson coefficient shows how well a linear equation

defines the relationship amid time and consuming of active energy.

Billed-consuming power

coefficient

The variance of power billed (kW.h) to expended active energy (kW.h) to the contracted power

(KW).

Predicted kWh

A calculation of the consuming of active energy (kW.h) specified via several models of

prediction or the variance of this calculation and the calculated value.

Wavelet coefficients

The variance of the Wavelet coefficients estimated from the curve of consuming to be categorized

and the Wavelet coefficients of preceding year's consuming curves.

Coefficients of Fourier

The variance of the coefficients of Fourier determined from the consuming curve to be
categorized and the coefficients of Fourier of preceding year's consuming curves. Furthermore,
the stage of the 1* five coefficients of Fourier of the consuming of the curve of active energy can

be utilized.

Coefficients of Polynomial
fit

The variance of the polynomial coefficients that greatest fits the consuming curve to be ordered

and the polynomial coefficients that greatest fits preceding years’ consuming curves.

Euclidean distance to mean

consumer

The Euclidean distance of consuming of active energy curve to a consuming curve estimated as

the average consumption of whole customers in the set of data.

The slope of the curve of

consumption

The slope of the linear equation that greatest adjusts the curve of consuming of active energy time

series.
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Parts of Principal Component
Analysis

The parts that are estimated from (PCA) Principal Component Analysis or (KPCA) Kernel
Principal Component Analysis on the curves of consuming active energy. Not entirely of the

components required to be utilized. The average of definite components might be utilized.

Fractional arrangement

dynamic errors

Features that explain the variance amid summarized meter utilizing and actual time-consuming

time sequence.

Ratio of Mismatch

The variance amid consuming estimated in the transformer of MV/LV and the summation of

smart meter estimations and calculated technical losing to the minimal substation power.

Rates of Seasonal consuming

Overall consumer consuming (kW.h) in a definite season (such as winter) to the mean consuming
of consumers on the similar substation at the identical season (such as winter).Overall consumer
consuming (KW.h) in a definite season (such as winter) to consuming (kW.h) of a different season

(such as summer).

Coefficients of Transform of

Discrete Cosine

The k significant coefficients of Converting of Discrete Cosine.

Consuming drop associated

to preceding

A decreasing of x% in consuming for the duration of an interval of time of length T in contrast to

a previous period of time of the similar length or associated to the mean.

Calculated readings

Some of the meter readings that are calculated via effectiveness because of incapability to enter

the meter.

Table (2.2): List of metrics utilized to estimate ways of detection of NTL [41].

Metric

Definition

Accurateness

Accuracy = TP+TN/TP+TN+FP+FN

Detection rate (DR)

DR = TP/TP+FN

Precision Precision = TP/TP+FP
FPR FPR = FP/FP+TN
TNR TNR = TN/FP+TN
FNR TNR = FN/FN+TP

F1 score Flscore = 2TP/2TP+FP+FN

(Area Under Curve)

(AUC) The area under the (Receiver Operating Curve) ROC of the double
classifier.

Rate of Recognition

Rec.Rate=1—0.5 (FP/N + FN/P)

Rate of Bayesian Detection

BDR = P(I) - DR/P(I) - DR+P(-l) - FPR

Support

According to rule founded schemes. Definite as the data number on which a

rule carried out to the overall of data number.

Time of Training (s)

This time (S) is necessary to train a system of detection of NTL.

Time of Arrangement (s)

The time (5), it takes a system of detection of NTL to categorize a case in

point.
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Undetected attack cost

Definite as the cost of the foulest probable unnoticed attack.

Mismatch of energy balance

Definite as the variance amid the totality of customer level active energy and

substation level active energy

Rise of the average bill

Definite as the rise of the mean bill if the NTLs were dispersed amongst

whole customers.

Cost of Normalized labour

Definite as the fee for studying wholly states categorized as NTL via the

system of detection.

Index of Anomaly coverage

Definite as the ratio amid irregular customers underneath RTUs and the

whole number of irregular customers.

Cost of RTU

Definite as the overall fee of obtaining RTUs

Deviance of Minutest detected

Definite as the minutest deviance (from a pre-identified usual profile) that

can be detected.

Reduction in robbed of electricity

The reduction of robbed electricity once a definite FDS is exercised.

2.3.2 Descriptions and Classification of Data Types

In this part, the different types of data have been utilized in literature are

prearranged in broad groupings. The prime aim for this classification is to confirm

that investigators are not limited to definite types of data to choose their algorithm,

but they are capable of selecting their system of detection of NTL relying on the

available data. Figure (2.2) shows the data type of the pyramid.
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Figure (2.2): Data kind classification for implementations of detection NTL [41].
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In the beginning, data prearranged relying on the place of their physical resource.

Data relating to a region such as (topology of the network) are categorized as “Level

of Area” data, whereas data relating to singular customers such as (estimations of

active energy) are categorized as “Level of Customer "data. In the case of data

belonging to the two groups mentioned above, it can be extra categorized as a series

of time and static data. Data can then be ordered in extra granular groups, as shown

in Table (2.3).
Table (2.3): Data used for detection of NTL [41].
Level of Series of Great resolution estimations of energy active/reactive with a resolution of time
Customer Time Power equivalent or lesser than 10.0 min.
Moderate-resolution estimations of energy active/reactive with a resolution of time amid
Power 15.0 min. and 60 min.
Little resolution estimations of energy active/reactive with a resolution of time of 30
Power days or extra
Data of network of non-power data of network of Smart meter (voltage, alarms line
Smart meter resistance, amperage)

Static Customer practical data supplying practical features of the substructure of customer
installed power(kW), (request contracted (kW), level of voltage,
converter of power (kVA), applications number, stages number,

remote system usage for heating of space.
Customer non- Data expressing the behavior of the customer, e.g. review remarks,
practical geographic region, the action of finance.
Level of Series of Spectator meter data measurements of power, voltage, and amperage of a meter mounted
Area Time on the side of LV of the secondary converter of the network of
distribution to deliver overall feeder estimations
Data of Remote power, voltage, and amperage from RTUs set up in the network of
technical unit (RTU) MV or LV
Average of consuming Mean consuming of the observed region
of area
Ecological generally temperature, but also might contain other parameters
Static Construction of The topology of the network of LV or MV (may contain length and
Network type of line). structure of Network associated data, such as the
converter to which a customer is associated or the practical damages
fraction
Region practical Data that describe a region from a practical point of sight (fraction
of atypical customer per converter, number of converters in the
region, a fraction of atypical customers in the region)
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Region non-practical

Data that describe a region from a typical/financial point of opinion
(fraction of residences with a group of waste, mean earnings, a
fraction of borrowed residences, a fraction of literates, activities of
movement opposite to fraudulence in the region, fraction of
residences with water, mean number of residents, fraction of

residences with roadways)

2.3.3 Algorithms Utilized in ETD Systems

Systems for detecting fraudulent differ; in the meantime, they employ various data

in various ways. Some systems show a modest construction, whereas others are

extra difficult. NTL detection methods are classified as Data-Oriented, Hybrids, or

Network Oriented. Each method can include several algorithms that are at the core

of the fraud detection process.

A. Data-Oriented Techniques

These techniques are exclusively founded on machine learning and data analysis

methods. They can be categorized into unsupervised and supervised. Figure (2.3)

shows the unsupervised and supervised cases by the following aspects [41].
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Models

Figure (2.3): Data-oriented methods outline [41].
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e Choice of model and processing of data: Assuming a group of raw data, the
model utilized for detecting of NTL must be selected. The obtainability of
categorized data orders the ways of selection, whether unsupervised or
supervised, whereas data superiority/variability orders the algorithm to be
utilized. The selection of the algorithm might reject several portions of the
raw data (level of choice of data). The subsequent level contains cleaning
of data (generally in the procedure of discovery of knowledge) and if
essential, feature abstraction too.

e Modelling: This procedure is various for models of unsupervised and
supervised. Unsupervised models don’t utilize categorized data in the level
of training, but solitary for assessment. Supervised techniques divide the
group of data into trial and training. Afterwards describing the group of
training (usually with cross-validation) choice of feature is regularly utilized
for preparing the model. Choice of this factor makes use of metrics that can
be estimated because of the obtainability of the label.

e Application: Modern data (not being a part of the group of “Raw Data”) are
utilized for confirming procedure and working of the model. Outcomes of
the arrangement are extra managed for generating a doubtful list (a list
includes the possibility of every customer obligating fraudulence). The level
can be a part of the procedure of pilot of the model of NTL detection or its
model. The procedure of Pilot on real-life places is of great significance in

the state of response via physical meter inspections is obtainable.
The supervised methods include [41]:

e Optimum Path Forrest (OPF).

e Rule induction.

e Artificial Neural Network (ANN).

e Decision trees (DT).

e Nearest neighbor (k-NN).

e Support Vector Machine (SVM).

e Bayesian classifiers.

o Generalized Additive Model (GAM).

While the unsupervised methods include [41]:
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e Self-Organizing Map (SOM).
e Clustering algorithms.

e Expert systems.

e Statistical control.

e Regression models.

o Outlier detection.

e Game-theoretic approaches.

B. Network-Oriented Techniques
Network-Oriented techniques pull data attained from sensors of the grid of
distribution (next to smart meters) and take benefit of the physical rules that manage
the entire electric network, to detect fraudulence. To one side from sensor data, they
make utilize of network associated data, as the topology of network and customer
converter/phase connectivity. Several studies utilize tools of the flow of power to
measure the NTL size and to recognize its resource via examination the energy
balance with a spectator meter. Additionally, many methods utilize assessment of
the state of distribution and detection of insufficient data, as these methods tend to
be more exact, even if not continuously probable to the appliance. The usage of
sensors dedicated to detecting fraudulence is planned too. Algorithms of sensor
placement have been explored, to compute the smallest sensors number and their
place in the grid confirming detection of fraudulence. This category includes [41]:

i.  Load flow approach

ii.  State estimation approach

iii.  Sensor network approach

C. Hybrid Methods

For detecting NTL with greater accurateness, Hybrid methods assume a grouping
of techniques and algorithms termed above. In this respect, one possible direction
is to utilize spectator meters organized with SVMs. The SVM production is
substantiated with the spectator meter utilized to estimate the active power balance
of the relation network. The algorithm calculates the active power balance
discrepancy and the technical losses of the network. Suppose the discrepancy

surpasses the predefined beginning, and the SVM generates a positive yield (or

25



Chapter Two Theoretical Background

number of positive yields as the system categorizes every day consuming as
fraudulence or not). In that case, the customer is categorized as malicious and
should be more examined [42].

Another direction is to combine Remote Terminal Units (RTUSs) to discover NTL.
The grid of distribution is primarily distributed in sub-networks relying on
obtainability of RTU and dependability. The planned background identifies sub-
networks with NTLs utilizing estimations from RTU sand smart meters and
managing power of the network of distribution runs to estimate technical losses. In
the case of divergence, the ratio surpasses a definite beginning, and meter damaging
is supposed [43].

A various method is utilizing state assessment and analysis of variance (ANOVA).
Smart metering data (power and voltage), RTU data (voltage angle and size of the
High Voltage/Medium Voltage (HV/MV) substation secondary) and construction
of network are requisite. An estimator of distribution state is applied by utilizing
the collected smart meter consuming (per Medium Voltage/Low Voltage (MV/LV)
transformer) as pseudo-measurement. The normalized residual trial is utilized for
localizing irregular consuming at LV converter stage. Consequently, the problem
of detection of NTL turns into a problem of detection of insufficient data, where
significant overweight errors show possible NTL. The outcomes from ANOVA can
be fed back to the state assessment unit for substituting better estimations instead
of insufficient data [44].

In [45] the opposite process is projected, where irregularity detection (unsupervised
outlier detection founded on a Gaussian distribution) is first carried out for
computing the irregularities density (i.e. how often and to what amount fraudulence
happens) per converter. To regulate the weight matrix of the estimator of state, this
density is utilized, which computes transformer loading by utilizing load forecasts
as pseudo-estimations. Losses of non-technical and technical types can be then

calculated at the level of the converter.

2.4 Matters of ETD Progressive Metering Substructure in SGs

In the new society, the grid of power has converted to be a requisite. The
conventional grid of power, which is unexpectedly still based on the projects more
than one hundred years ago, can no longer be appropriate for society in the current

days [46]. With the improvement of communication systems and information
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technology, several countries have been reforming the old system of power into the
smart grid, which is introduced with a two-way method of communication, the
response of request real-time, outstanding dependability, sanctuary, and self-
handling.

Inside the SG, the Advanced Metering Infrastructure (AMI) shows a significant role
and is related to the everyday life of society most nearly [47]. The AMI updates the
system of metering of electricity via by replacing mechanical meters with smart
meters, which deliver two-way communications amid energy consumers and Utility
Corporation. People cannot only read the meter data distantly with the AMI, but do
several customized control and applied fine-coarse request-reply too [48].
Additionally, the real-time data gathered from the smart meters can develop the
dependability of the grid of distribution by averting line overcrowding and
production overloads [49]. The utility corporation can deliver dynamical electricity
fee and quicker identification of outage thanks a lot to the AMI. Therefore, AMI
has tempted excessive attentiveness from several participants, controllers,
containing utility corporation, energy marketplaces.

Technologies of AMI are quickly surpassing the conventional technologies of
reading of meter. Many smart meters are prepared in the domiciliary entirely over
the world, for example, above 4.7 million smart meters utilized for advertising and

other targets in Ontario, Canada [50].

2.4.1 Security Requirements

The AMI is a hierarchical construction and consist of many various networks
interconnecting with each other. This can be depicted, as shown in Figure (2.4).
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| Wide Area Network (WAN) |

~

Collector W

Collector 3

Figure (2.4): A simple AMI architecture [9].

Various shareholders in the AMI may have their specific requirements of security.
Such as the consumers care about their secrecy of information and regular using of
electrical energy; whereas the purpose of utility corporation to avoid the consumers
from electricity-theft and deliver steady energy source.
Generally, those sensitive matters that want to be preserved in AMI can be
categorized as [9]:
= Controller data: The command of control should be collected and applied
via the smart meters totally and fittingly.
= Smart meter data: The smart meters data must not be reached via every
illegal person.
= Information of Bill: The fee of electrical energy and the paid bill must not
be operated in illegal persons.
= Personal information of Customer: The information contains a summary of

daily using of electricity, information about credit card of consumer.

Therefore, the necessities of security for AMI can be categorized as follows [9]:
1. Integrity: Data transferred in AMI should be accurate and fittingly reflect
the resource data deprived of any illegal handling.
2. Privacy: The persons can’t conclude any secretive information from the

available metering data.
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3. Confidentiality: Sensitive information must solitary be gain access to via
legal persons.

4. Non-repudiation: The persons can’t reject reception everything, for
example, price of converted electrical energy, that they have collected; and
can’t explain that they have directed some data, i.e., the quantity of electrical
energy they have expended, which they don’t drive.

5. Availability: Data in AMI must be available via official entities when

they want the data.

2.4.2 Methods of ETD

Classification of techniques of detection for electricity-theft are presented in
advanced metering infrastructure. The technique of ETD in AMI is categorized into
three categories, relying on the plans of detection utilized in the working. These are
the game theory-based, state-based, classification-based techniques, as shown in
Figure (2.5).

Energy-theft detection technologies

I Classification-based

[ Support Vector Machines (SVM)
[ Fuzzy classification

[ Neural network

AutoRegressive Moving Average-Generalized Likelihood Ratio (ARMA-GLR) detector

P2P computing
I State-based

[ Sensor monitoring*
[ Physical monitoring

[ RFID monitoring

Mutual inspection

State estimation-based

Game theory-based

Figure (2.5): ETD methods in AMI [9].

A. Classification-based detection methods

Among the methods of electricity-theft detection are the classification-based
detection methods that are defined as the categorization of load profile of electrical
energy consumption of a consumer or a set of consumers during an interval of time,
are considered of the most extensively utilized methods.

The primary process for classification-based detection of electricity-theft comprises
of seven portions that are exposed in Figure (2.6). They include optimization of
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factor and classifier training, data acquisition, extraction of feature, categorization,
processing of data post, suspected consumer list production, and data preprocessing
[9].

The prime concept of this procedure is to identify irregular manners of using energy
from whole forms of using of energy founded on a trying dataset, including cases
of the attack and normal class.

‘ Data preprocessing ‘ Feature extraction - Classification ‘ Data postprocessing

| Classifier training  QOpline/offline

I
I
| l {raining | .
Suspected customer list
Parameter optimization M)  Detection model |
|

Figure (2.6): Main process for classification-based energy-theft detection [9].

B. Methods of state-based detection

State-based detection utilizes observing state to develop the rate of detection. The
observing state can be resulting from networks of wireless sensor RFID, Advanced
Metering Infrastructure, typical inspection, etc. Meanwhile networks of wireless
sensor are simple to apply and inexpensive, they are general to help detecting
electricity-theft [9].

In this respect, people investigated an Advanced Metering Infrastructure Intrusion
Detection System (AMIIDS). It utilizes a mixture of information to fuse the sensors
and data of consuming from a smart meter to more exactly detection of electricity-
theft [51]. Indeed, it was shown that smart meters physical attack could be extended
to a network attack via the addition of incorrect data. As a response, it is possible
to use a customer attack model that reduces the number of compromised meters
deprived of being exposed via preserving a snowballing load at the point of
accumulation to which several homes are coupled [52].

Other proposals considered using schemes that apply the technology of Radio
Frequency Identification (RFID) to assist the source companies of electrical energy

to cope with their ammeter account managing and avoid electricity-theft [53].
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Another state-based detection method is to use a paradigm change from the
traditional technique of recognizing the illegitimate customer, via physical
monitoring of the distribution feeder or assessment of the form of a load of wholly
consumers. Suppose the calculated non-technical losses exceed 5.0% of the energy
of distributed. In that case, the exterior control position will direct a controller sign
to the smart meter Internal Control Station to cut the electrically powered deliver to

the real consumers [54], [55].

C. Game theory-based detection methods

These methods have recently proposed and deliver a modern perception to resolve
the matter of electricity-theft [56, 57]. It has shown that the electricity-theft and
losses of combat as a non-zero summation Stackelberg game with an unfettered
distributor. The distributor works as a frontrunner, and the consumers work as a
supporter. The distributor can organize AMIs to develop the effectiveness of billing
and the observing, therefore decrease the overall amount of non-technical losses
because of theft. The effectiveness of stolen electrical energy detection rises with
the equal employment of AMIs [56].

Another proposal has introduced to express the problem of detection of electricity-
theft as a game amid the electrical energy thief and the distributor. For electricity
thieves, they need to reduce the like cover of being detected to theft an amount of
electricity which is definite previously. They can attain it via varying their function
of the probability density of using electricity for the duration of the interval of
measurement.

Oppositely, the distributor desires to capitalize on the possibility of detection of
energy theft and regulate the optimum employment acquired via setting up of AMI.
The Nash balance of the game is initiated as a function of probability density that
protectors and assailants should select, so that direct measurement of AMI.
However, the methods of detection based on game theory are not well-developed
until now [57].

D. The comparison of methods
As the improvement of AMI offers different technologies that can be utilized to
detect the electricity-theft so that it deserves much thanking. It is possible to show

the assessment of the three types of systems of ETD mentioned above. Table (2.4)
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shows the result of the assessment, from the point of vision of the rate of detection,
procedure, cost, and false positive.

These methods of detection for electricity-theft possess their exclusive
characteristics as follows [9]:

e The systems of detection based on game theory deliver a novel viewpoint
to resolve the energy-theft. The electricity theft detection problem is
expressed as a game amid the electricity thief and the utility of electric.

e The methods of detection based on the state can decrease the false positive
and the rate of detection by the assistance of definite devices.

e Regularly schemes of detection based on classification take benefit of the
data of consumption of energy gathered from the AMI. Technologies of data
mining and machine learning are utilized to produce a worthy classifier

founded on several example datasets.

Table (2.4): Assessment of systems of detection of energy [9].

System Procedure Rate of False- Cost
detection positive
Classification- based | Artificial intelligence/ Moderate Moderate Moderate

Machine learning

State-based Observing of state via | Extraordinary Little Extraordinary

definite device

Game theory-based Game Theory Extraordinary | Moderate Little

2.5 Deep Learning and Neural Networks

Deep learning (DL) is a machine learning research area that is founded on a specific
kind of learning mechanism. The characterization of DL is according to the effort
to generate a learning model at many levels, and the most profound levels take as
input the outputs of preceding levels, converting them and continuously abstracting
more. This vision on the levels of learning is motivated via the method; the brain
processes information and learns, replying to exterior effects [58].

Neural networks are a set of algorithms stacked up together in a manner analogous

to the human brain [59]. These networks interpret data through machine perception,
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labelling of data or by clustering the data. The patterns recognized by these
networks are structured in a vector into which the data of any kind be it images,
sound, text, must be translated. The layers in the neural network are made up of
nodes which mimic the functioning of a neuron in the human brain. These nodes
are nothing but the area where computations happen. A node combines the inputs
from the data with the weights which amplifies or dampens the input, hence giving
the input a significance value with regards to the task which the network wants to
learn (See Figure (2.7)).

Inputs  Weights Net input Activation
function function

@ output

Figure (2.7): Basic Neural Network Structure [59].

CNNs in essence, are neural networks that use the convolution operation (in place
of a completely connected layer) as one of its layers [60]. CNN's are a beneficial
technology that has relied on difficulties where the data of input on which forecasts
are to be prepared has a recognized grid-like topology like a time series (a 1-D grid)
or an image (a 2-D grid) [61].

Currently, CNNs has controlled the machine vision space. The CNN comprises of
a layer of output, layer of input, and several invisible layers. Usually, the invisible
layers comprise of pooling layers, convolutional layers, and layers of normalization
and wholly attached layers (Rectified Linear Unit-ReLU). Extra layers can be

utilized for further complicated simulations, as shown in Figure (2.8).

The CNN construction has exposed excellent working in several computer vision
and machine learning tasks. CNN trains and expects at an abstract level. This model
of CNN is utilized lengthily in new implementations of machine learning because
of its continuing record-breaking efficiency. Linear algebra is the principle of how
these CNNs operate. Multiplication of matrix-vector is at the core of how data and

weights are signified.
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Figure (2.8): Typical CNN architecture [62].

2.6 The Blue Monkey Algorithm

The Blue Monkey (BM) algorithm is a recent algorithm development of
metaheuristic founded on the working of blue monkey groups in nature. The BM
algorithm classifies how many males in one collection. Usually, external the season
of the breeding, the collections of BMs have solitary one mature male like other
woodland guenons. Furthermore, it associates patas monkeys (Erythrocebus patas)
[32]. The mathematical model and the motivation of the BM method are discussed

in the following subsections.

A. Division of collection

The blue monkey algorithmic program simulates the behavior of the Blue Monkey
in nature. Each group of the unit of monkey’ region wanted to move through the
area of search, all mentioned for modelling as communications. The Monkeys once
being classified into teams who initiate to try to find locations of nutrition at long
spaces region and more powerful monkey not amongst the conventional visibility
choice. The male possesses slight to no communication with the young others. The
young males must leave as quickly as probable, so that become more effective, Due
to the regional nature of the male. They will go into a fight with the prevailing male
of another family. If they win to lose that male, they can be the frontrunners of this
family; therefore, they can suggest deliveries of food, location to live and
socialization for young males. Usually, the collections of BMs possessing one male

and a large number of babies and females [63].
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B. Location update
The update location of every BM in the collection relies on the superlative location

of BM in that collection, and this manner is defining via the subsequent

calculations:

Ratei+1= (Ratei*0.70) - (Wi-Wieader) *rand*(Xpest-Xi) 2.1
Xi+1= Rateixa*rand+Xi 2.2
Where:

Xbest: 1S the location of leader and rand is an arbitrary number amid [0.0,1.0]
X: is the location of monkey

Wi: is the weight of monkey at which wholly weights are arbitrary numbers amid
[4.0, 6.0]

Rate: is the rate of power of monkey
Wieader: the weight of the leader

Furthermore, to modernize the kids of blue monkey, the following equations are

utilized:
Rate" (i+1) = (0.70*Rate™) + (WM eader-WE) * rand* (X Npest-X ) 2.3
Xen i+1) = XMi+Ratec" ¢+1) * rand 2.4
Where:

X is the location of the child
W eader: is the weight of leader child

Wei: is the weight of the child at which wholly weights are arbitrary numbers amid
[4.0, 6.0]

Rate": is the power rate of child

XMpest: is the location of leader child and “rand” signifying a random number amid

[0.0,1.0]. The location must be modernized in every repetition.
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C. Algorithm: Blue Monkey Optimization

1- Initialize the blue monkey and children population bi (i=1...n).

2- Initialize Power Rate (Rate) and Weight (W), where (Rate ¢ [0, 1]), (W ¢ [4, 6]).

3- Distribute the blue monkeys randomly into teams (T), while all children in one team.

4- Calculate the fitness of children and all blue monkeys in each group.

5- For each group, select the worst value and the best value of fitness and store it in Current
Best. While children select the best fitness.

6- t=1.

7- While (t< maximum number of iterations)

8. Swapping the worst fitness in each group by the best fitness in children group.

9- Update Rate and X position of all blue monkeys in each group by Equations 1 and 2.

10- Update Rate and X position of children by Equations 3 and 4.

11- Update the fitness of all blue monkey and children.

12- Update Current Best:
if New Best is better than Current Best Then Current Best=New Best.

13- t=t+1.

14- End While.

15- Return the optimal blue monkey.

2.7 Summary

In this chapter, the energy losses are typically classified into technical losses (TLs)
and Non-technical losses (NTLs) have been discussed. One of the main parameters
of the NTLs in networks of distribution is electricity-theft. The most common
methods of NTLs detection are explained and categorized into three groups: Data-
Oriented ways, Network-Oriented methods, and Hybrid methods. Each category
can further be classified into many techniques. These methods have been explained.
Next, related ETD issues in the AMI structures are also explored. Furthermore, DL

and CNNs are briefly reviewed. Finally, the BM algorithm has been explained.
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Chapter Three:

The Proposed Electricity Theft Detection System

3.1 Introduction

This chapter focuses on the design and implementation aspects of the proposed
electricity theft detection system. A realistic electricity consumption dataset
released by State Grid Corporation of China is used to train and test the models.
This work is intended to identify electricity theft from the power consumption
pattern of users, utilizing CNN-based deep learning and Blue Monkey techniques.
This classifier model is trained utilizing a dataset consisting of daily power
consumption data of both normal and fraudulent users in a supervised manner by
several steps. First, the data is prepared by a data-preprocessing algorithm to train
the model. The preprocessing step also involves synthetic data generation for better
performance. At the next step, the proposed model is hyper-tuned and finally, the
optimized model is evaluated via the test data. The overall system is depicted in
Figure (3.1).

B K/ Convolutional Layers /\
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3 v
§ | / Pooling Layers /
.% ‘
§ \/ Fully Connected Layers /j
v
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v

BM for Enhancing ETD Template and Features Reduction

v

Classification (Prediction) Neural Network

Figure (3.1): Architecture of the Proposed Model (CNN & BM).
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3.2 Electricity Consumption Data

The research is performed on a series of real consumer electricity usage data, made
accessible by the State Grid Corporation of China (SGCC). The Meta data
information for this dataset is presented in Table 3.1. This dataset consists of 42,372
rows and 1,035 columns. The first column includes costumers' 1D, and the second
column includes pointer of prediction called "Flag" while the days' columns start
from the third column up to the column (1,035). The Meta data types in the dataset
are set of characters, numbers and missing or erroneous values called non-numeric
(NaN). The numbers and missing or erroneous values represents the amount of
electricity consumption (electricity signals) for each consumer for more than two
years. In addition, the Meta data in the flag column are (zero and one) and it is
referring to type of consumers (normal or thief), where the numbers of zeros in
"Flag" column represents the normal consumer of electricity and the total number
of them is (38,757). While the numbers of one in "Flag" column represents the
thieves and the total number of them is (3,615). Finally, this means that the number
(42,372) represents electricity consumers' data on electricity usage within 1,035
days (from Jan. 1, 2014 to Oct. 31, 2016), as shown in table (3.1).

Table (3.1): Metadata information of the electricity theft dataset.

Description Value
Time window of data collection 1%t January 2014 — 31" October 2016
Total number of consumers 42372
Number of normal users 38757
Number of aberrant user or electricity thieves 3615

In fact, Figure (3.2 (2)) gives an indication of energy utilization of usual use by a
consumer in a month (i.e., August 2016). We observe that the data on electricity
usage fluctuates day by day. From this 1-D data, it is difficult to catch the main
features of electricity thieves and regular customers. However, will noted that the
electricity usage of this consumer is seasonal if we plot the data in a 2-D way every
week as seen in Figure (3.2 (b)), in which the electricity consumption peaks every
week on day 3, while it often on day 5 in every week reaches the bottom (the
exception is on the 2nd week, when there is the lowest consumption on day 6). In

fact, we can have comparable results for the entire dataset (i.e., electricity
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consumption data with 1,035 days). Showed only an excerpt of data from the entire
dataset without too many repetitions. If aligned the energy usage data of all the 35

months together, will find that there is a level for most normal customers.
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Figure (3.2 (a)): Electricity consumption (kwh) by date.
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Figure (3.2 (b)): Electricity consumption (kwWh) by week.

Figure (3.2): An example of electricity consumption of normal usage.

Figure (3.3), on the other hand, gives an example of the energy usage of a month-
long electricity robbery. In addition, electricity consumption by date is mapped (as
shown in Figure (3.3 (a))) and electricity consumption by week (as shown in Figure
(3.3 (b)) in a similar way to Figure (3.2). As seen in Figure (3.3), found that the
use of energy fluctuates regularly in the first two weeks (i.e., week 1 and week 2).

For e.g., on day 3 and on day 6 in every week, electricity usage hits its peak.
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However, as of the third week, there was a distinct loss of electricity usage and
electricity consumption stayed at a low level after that.
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Figure (3.3 (a)): Electricity consumption (kWh) by date.
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Figure (3.3 (b)): Electricity consumption (kWh) by Week.

Figure (3.3): An example of electricity consumption of electricity theft.

Electricity consumption data is generally acquired through smart meters or various
sensors located at the user end. The data is then aggregated to any central location
through a data communication network. In this scenario, there is a possibility of
smart meter failure, sensor malfunctioning, or faults in data transmission and the

storage server.

It is inherent that missing or erroneous data will be present in the electricity
consumption datasets. In this dataset, numerous missing values are found. If those

missing instances are just discarded, the size of the dataset shrinks considerably,
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and thus reliable analysis becomes difficult. To avoid downsizing the dataset, the
missing values are replaced with zeros to get rid of null or non-numeric values
(NaN), because the neural network accepts numbers only, and these values are not
defined, so these values are converted them into zeros until the neural network

understands them.

The given dataset of electricity consumption passed in various stages of modifying
to reduce it to be used in building operations of electricity theft detection templates
using various algorithms. These stages are shown as follows:
1. Generating new dataset by replacing all null and Nan values in original
dataset with zero.
2. Splitting new dataset into two parts, one part used for training (80%) and
the other part used for testing (20%).
3. Reducing new dataset by dropping location and flag columns from new
dataset. The reason is to reduce the complexity and the time as those two

attributes will not be used in the proposed system.

3.3 Building of Electricity Theft Detection (ETD) Model

The proposed Electricity Theft Detection model can be summarized as follows: in
the first step is the dataset passed in several modify operations to reduce it as
discussed in (section (3.2)) then SM have been build using Algorithm (3.1). The
third step is to build prediction model (ETD model), and this can be done by two
operations. The first operation is by using SM, which described in Algorithm (3.2).
The second operation using BM algorithm (see Algorithm (3.3)).

The input is Sequential Model with the reduced dataset and the output is the model
of electricity theft detection with its accuracy and loss, where this algorithm consists
of a set of fully connected layers, convolution layers and soft max layer to train and

test the dataset (electricity consumption data).

3.3.1 Sequential Model (SM)

Sequential model is appropriate for a plain stack of layers where each layer has

exactly one input tensor and one output tensor.

A Sequential model is not appropriate when:
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e The model has multiple inputs or multiple outputs.
o Any of layers has multiple inputs or multiple outputs.
e You need to do layer sharing.

e You want non-linear topology (e.g., a residual connection, a multi-branch

model).

In Algorithm (3.1), the input to this algorithm is the dataset and the output is the
reduced dataset. The first step in this algorithm is defining the input shape to be
compatible with the SM. After that, there are two cases to use SM: the first case is
predicting electricity signals using original fully connected layers of the SM, this
can be done by sending the electricity signals to the SM, which it in turn will return
the classification of this electricity signals. The second case is using array and will

use to build and train a given dataset.

Algorithm (3.1): Sequential Model (SM)
Input: Dataset.
Output: Reduced Dataset.

Step1: Define input shape entering to SM.

Step2: Define the number of Convolution layers and padding of each layers.

Step3: Define the number of fully connected layers and size of each layer.

Step4: Define the size of soft-max layer.

Steps: Define array to store the downloaded dataset.

Step6: For I=1 to number of convolution layers,
Execute Steps 7 to 13.

Step7: Apply three convolution operations on the input; the three operations of
Convolution are 2D (3*3).

Step8: Apply flatten operation on the input.

Stepo9: Apply six activation operations on the input; five operations of activation
is (Relu), final operation of activation is (SoftMax).

Step10: Apply four dropout operations on the input; two operations of dropout
are (0.25) and the other two operations is (0.5).

Step11: Apply three Dense operations on the input, A=dense (layer1), B=dense

(layer2), C=dense (2).
Step12: Reduced Dataset=concatenate (metrics)

Step13: Return (Reduced Dataset)
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In addition, there are three types of convolution layers 2D (3*3). The three
convolution layers (3*3) will be link with fully connected layers (activation,
dropout), then linking the other fully connected layers (dense, activation, dropout)
with each other. Finally, the resulting metrics from above operations used to

generate the reduced dataset, as shown in Figure (3.4).

In this algorithm, used three fully connected layers (dense) which are (layerl,
layer2, output) , where the value of (layer 1) is 128 nodes and the value of (layer 2)
is 64 nodes, while the (output) value is represents the customers type either thief or

normal customer depending on the dataset.

In addition, Applying four fully connected layers (dropout), where the values of
those layers are selected after trying many possible values, it was found that the

best values for them are (0.25 for the first two layers and 0.5 for the last two layers).

Dataset

7 Convolutional Layers /\

Pooling Layers /

|

Fully Connected Layers

V

/ Reduced Dataset /

Figure (3.4): Sequential Model (SM).

Sequential Model (SM)

L
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The Electricity Theft Detection (ETD) model using SM is shown in Algorithm
(3.2): the input is SM with the reduced dataset and the output is the model of
electricity theft detection with its accuracy and loss. Where the dataset is divided
into two parts, the first part is used for training, which are (80%) of the dataset and
the second part is used for testing, which are (20%) of the dataset.

This algorithm is used to test the best configuration of neural in terms of number of
layers and parameters, beginning with two layers and ending with four layers. The
maximum dimension of layer is 128 nodes and the minimum one is 16 nodes. The
best architecture is obtained with two layers, where the first layer contains 128
nodes, and the second layer contains 64 nodes as shown later in Chapter 4. This
system using SM is described in Figure (3.5).

Algorithm (3.2): Building of Electricity Theft Detection (ETD) Template using
SM.

Input: SM with the reduced dataset.

Output: The model of electricity theft detection with its accuracy and loss.

Step1: Generate Template.

Step2: Define sequential model.

Step3: Define the size of the input layer.

Step4: Define the dimension of each layer.

Steps: Create the layers using dimensions in step 4 and each lower layer
dimension should be less than or equal to the dimension of the layer above
it.

Step6: Define the dimension of output layer.

Step7: Define the optimizer used and its parameters (in this case, the Adam
optimizer is used).

Step8: Train the model using training values.

Step9: Test the model using testing values.

Step10: Evaluate the model using testing values, then using the evaluated model

to generate the score (accuracy, loss).
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Figure (3.5): Building of Electricity Theft Detection (ETD) template using SM (CNN).

3.3.2 Blue Monkey Algorithm (BM)

BM represented as a function to enhance Electricity Theft Detection (ETD)

template and return the solution of best location as describe in Figure (3.6). Where

the input to this function is the electricity theft detection (ETD) template. The BM

algorithmic program mimics behavior of the Blue Monkey. BM is a set of solutions

for parents and children each one of parents and children has random values. The

algorithm (3.3) describes the steps of BM.
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Algorithm (3.3): Steps of BM.
Input: Electricity theft detection (ETD) template.
Output: Best template of electricity theft detection (ETD) template with its

accuracy and loss.

Step1: Generate random template for population of BM (Parents, Childs).

Step2: Generate rand (uniform random).

Step3: Initialize location of monkey (X) and power rate of monkey (rate) and
weight of monkey (W), where (rate [0, 1], W €[4, 6]) for each solution
(Parents and Childs).

Step4: Distribute the BM randomly into one team (t).

Steps: Calculate fitness for each solution (Parents, Childs).

Step6: For the Parents, select worst and best value of fitness and store it in current
best, while Childs select the best fitness.

Step7: Set the number of iterations.

Step8: For i=1 to number of iterations,

Execute Steps (9 to 14) for each solution.

Stepo9: Update rate, X location of all BM (Parents) by Equations (2.1 and 2.2).

Step10: Update rate, X location of Childs by Equations (2.3 and 2.4).

Step11: Update fitness for the (Parents, Childs).

Step12: Update current best.

Step13: If the best location of Childs is better than the best location of the Parents

then the best solution = current best location of Childs, else best solution
= current best location of Parents.

Step14: Return the optimal BM (Best solution in the population).

In Algorithm (3.3), the input to this algorithm is a set of solutions each one
represents the template of reducing the dataset and the ETD. The number of
solutions used are 10 solutions, each solution has length of 1035 values generated
randomly using zeros and ones. The rate and location can be calculated as
mentioned in Section (2.6).

This template will be used in two steps: the first step is to reduce the dataset
according to modify function, where the input to this function is the template from
BM and original dataset (in case of building model). The output is a new dataset,
which is less than original dataset. Then building model that has input shape equal

to the size on new dataset. The second used is when there is a new electricity signal
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to classify, it should reduce the values of the Electricity Signal according to the
same template, so the Electricity Signal can be classified using this model. The

important goal of building BM template is to reduce the number of features in the

el

/ ETD Template resulting using SM (CNN) /

given dataset.

// Generate Population (Parents, Childs) /\
|

Generate Rand

!

K / Initialize X, rate, W / /
v

[ Random Teams (t=1) ]

Initialize BM
A

\ 4

Calculate Fitness ]

|

I1=i+1 ]
'

’ Update rate, X of Parents ‘

v

Update rate, X of Childs ‘

v

’ Update Fitness ‘

Execute Iterations (I)
L

/ Best solution= Xcn / / Best solution= X

Figure (3.6): BM algorithm.
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3.4 Calculating Accuracy using Fitness Value

The input is dataset, and the output is accuracy. In this part, the fitness is calculated
and will be used to modify the dataset to produce the reduced dataset. The reduced
dataset will be used for train and test. The resulting values from fitness, train and
test used to evaluate the accuracy as shown in Algorithm (3.4).

Algorithm (3.4): Calculate Accuracy using Fitness Value.

Input: Dataset.

Output: Accuracy.

Step1: Define fitness (f) and calculate it.

Step2: Modify dataset using fitness value to reduce it.

Step3: Splitting reduced dataset to training (80%) and testing (20%).

Step4: Evaluate the accuracy of dataset.

Steps: Return (Accuracy).

3.5 Summary

The whole approach is working as follows:

The first step is to build SM using Algorithm (3.1). Then before building SM, the
given dataset passed to several modify operations to reduce it. The second step is
to build prediction model (ETD template), and this can be achieved by two
operations. The first operation is by using SM. The second operation is by using
BM algorithm.

The resulting template from BM is for enhance ETD Template and Features
Reduction. The purpose of reduction process of dataset and features is to enhance
the performance of prediction model.

For classifying a new electricity signal, the electricity signal at first is converted to
array, then reducing the data of this array using the same template used in building
the prediction model by sending electricity signal array and template to modify
function. The output of modify function is the electricity signal after reducing its

dataset according to the template.
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Chapter Four:

Results and Discussion

4.1 Introduction

One of the world's most important issues is the classification of Electricity signals,
which has a wide range of practical applications. In this chapter, the proposed
solution is tested to obtain and discuss the findings that demonstrate the system's
efficacy. There are five parts of experiments conducted using electricity
consumption dataset. The first part is the results of testing electricity signals
classifier configuration. The second part represents the testing results of two layers
(selected from the first part) on some number of nodes and selecting the best
configuration. The third part represents the results of applying BM with best
configuration of two selected layers, while the fourth part represents the results of
accuracy and loss using CNN and BM model. The final part represents comparing
results of loss and accuracy resulting from CNN and BM model with results of loss
and accuracy resulting from the CNN model. The tests have been done using python
programming language, under windows 7 PC with AMD E2-1800 (1.70 GHz) CPU
and (4.00 GB) RAM.

4.2 Configuration of Classifier Part Experiments

The configuration of fully connected layers in term of number of layers and nodes
was tested on several models beginning with two layers and ending with four layers.
The maximum dimension of each layer is 128 nodes while the minimum dimension
IS 16 nodes.

In Table (4.1), each row in this table represents the complete model configurations
and results obtained from this model, while the columns represent the following:
the first column is model number that represents the sequence of the model in the
experiment, the second column represents the number of fully connected layers in
the model, which ranges from two to four layers, while the third column represents
the number of nodes in each layer and it is between (16-128). The fourth column
contains the best accuracy of the selected architecture. The fifth column contains

worst accuracy of the selected architecture. The sixth column represents the average
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accuracy of the model. The seventh column contains the average training loss,

where this value equal to the difference between true label and predicted label of

the electricity signals inside training, which should be minimized as much as

possible. The last column represents the time consumed for training.

Table (4.1): Settings and Results of Network Consists of Two-Four Layers.

No. Il_\lo. of No. of Best Worst Average Average A¥?rr:13e
ayers Nodes Accuracy Accuracy Accuracy Loss (Second)
1| 2 128-128 | 0.918112004 | 0.916578174 | 091716815 | 0.266775871 | 13.1
2 | 2 6464 | 0.91764009 | 0.914926231 | 0.915740407 | 0.283764297 | 10
3 | 2 32-32 | 0.915634215 | 0.915162265 | 0.91520946 | 0.285755402 | 10
4| 2 1616 | 0.915162265 | 0.915044248 | 0.915150464 | 0.295629337 | 10
5 | 2 12864 | 0918230116 | 0.916460156 | 0.917297935 | 0.26462948 | 10
6 | 2 12832 | 091764009 | 0.915988207 | 0.916896755 | 0276600096 | 10
| 2 128-16 | 0.916578174 | 0.915044248 | 0.915598828 | 0277276114 | 10
8 | 2 6432 | 091716814 | 0.914808273 | 0.915905619 | 0.281315494 | 101
9 | 2 64-16 | 091716814 | 0.915162265 | 0916176987 | 0.270790696 | 10
0| 2 3216 | 0.915162265 | 0.91492623 | 0915126864 | 0.296932735 | 10
1 3 | 18025 10918038041 | 0.916106224 | 091710175 | 0.255808522 | 10
12| 3 | 64-6464 | 0.916578174 | 0.915162265 | 0915882021 | 0.272322157 | 101
13 | 3 | 323232 | 0.915162265 | 0.915162265 | 0.915162265 | 0.295278683 | 10
14 | 3 | 16-16:16 | 0.915162265 | 0.915162265 | 0915162265 | 0.291884622 | 10
156 | 3 | 128-64-32 | 0.917404115 | 0.916578174 | 0.916849566 | 0.265754673 | 101
16 | 3 | 643216 | 0.915516198 | 0.915162265 | 0.915233052 | 0.283388585 | 10
17 | 4 | 2200 | 0.916032166 | 0.915516198 | 0.916318583 | 0.267135677 | 10
18 | 4 | 64-64-64-64 | 0.916578174 | 0.914218307 | 0.915339243 | 0.287885103 | 10.1
19 | 4 | 32:32-32-32 | 0.915162265 | 0.915162265 | 0915162265 | 0.293846384 | 10
20 | 4 | 16-16-16-16 | 0.915162265 | 0915162265 | 0915162265 | 0.290049273 | 10
20 | 4 | PN 001716814 | 0915516108 | 0.916204992 | 0.271532404 | 10

In Table (4.1), the selected architecture is the architecture that has two layers as it

has the best average accuracy and the best consumed time.

4.3 Two Layers Experiments

This section explains the results presented in Table (4.1) for two layers in details

and shows how to find the accuracy; loss and the time spent in performing each

operation as shown below:
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In Table (4.2), the rows represent ten training rounds of the proposed model. The
columns are as follow: the first column represents the number of nodes in each
layer, which are 128 as well as 128 nodes for the first, and the second layer,
respectively. The second column represents the number of training experiment. The
third, fourth, and fifth columns contain the average loss, average accuracy and
average time of each model respectively (as mentioned in Section (4.2)), where the
average loss is equal to 0.2667759, the average accuracy is equal to 0.9171682 and
the average time is equal to 13.1 seconds. The last two columns represent the worst
and best accuracy for ten training rounds in which the worst accuracy is equal to
0.9165782 and the best accuracy is equal to 0.918112094.

Table (4.2): Two Layers Model (128-128).

- Average
’l:llgd(e)z Trz;llglng Loss Accuracy Time A\Il_eor:\Sge Q\ézrfgce Time

' y (Second)

1 0.262991395 | 0.917640118 23

2 0.255323413 | 0.918112094 24 0.2667759 | 0.9171682 131

3 0.249847542 0.91740413 11

4 0.263680607 | 0.916696191 11

5 0.278808653 | 0.917758107 Best Accuracy
128-128

6 0.279120803

7 0.26984337 | 0.916696191

8 0.254106194 | 0.917286158 10

0.9165782 0.918112094
9 0.288878024 | 0.916814148 10
10 0.265158713 | 0.916696191 10

In the Table (4.2), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

In Table (4.3), the rows represent ten training rounds of the model. The columns
are as follow: the first column represents the number of nodes in each layer, which
are 64 and 64 nodes for the first, and the second layer, respectively. The second
column contains the number of layers, which are two layers. The third column
represents the sequence of each training round. The fourth, fifth and sixth columns
represents the loss, accuracy and time of each model respectively (as mentioned in
Section (4.2)). While the seventh, eighth and ninth columns represents the average
of loss, accuracy and time for ten training rounds respectively, where the average

loss is equal to 0.2837643, the average accuracy is equal to 0.9157404 and the
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average time is equal to 10 seconds. The last two columns represent the worst and
best accuracy for ten training rounds in which the worst accuracy is equal to
0.9149262 and the best accuracy is equal to 0.91764009.

Table (4.3): Two Layers Model (64-64).

- Average
No. of No. of | Training - Average Average -
Loss Accuracy Time Time
Nodes Layers No. Loss Accuracy (Second)
0.288906723 | 0.91539824 10
0.257616371 | 0.916342199 10 0.2837643 | 0.9157404 10
0.257586628 | 0.91764009 10

0.284564883 | 0.915044248 10
0.300418824 | 0.915044248 10 Best Accuracy
0.296142191 | 0.915280223 10
0.257039577 | 0.916578174 10

0.9149262 0.91764009
0.258123368 | 0.916224182 10
0.305430859 | 0.914926231 10

64-64 2

O|lo|N|la|lo[sr|w|N| ~

=
o

In Table (4.3), the values of accuracy and time are convergent, and this indicates
the presence of stability in the network.

In Table (4.4), the rows represent ten training rounds of the model. The columns
are as follow: the first column represents the number of nodes in each layer, which
are 32 and 32 nodes for the first, and the second layer, respectively. The second
column contains the number of layers, which are two layers. The third column
represents the sequence of each training round. The fourth, fifth and sixth columns
represents the loss, accuracy and time of each model respectively (as mentioned in
Section (4.2)). While the seventh, eighth and ninth columns represents the average
of loss, accuracy and time for ten training rounds respectively, where the average
loss is equal to 0.2857554, the average accuracy is equal to 0.9152095 and the
average time is equal to 10 seconds. The last two columns represent the worst and
best accuracy for ten training rounds in which the worst accuracy is equal to
0.9151623 and the best accuracy is equal to 0.915634215.
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Table (4.4): Two Layers Model (32-32).

_— Average
No. of | No.of | Training n Average Average -
Nodes | Layers No. e AEIEG] AT Loss Accuracy (S-elz—::?r? d)

1 0.258463979 | 0915634215 | 10

2 0263028115 [JOIGNGHGRBBSN 10 | 02857554 | 09152095 | 10

3 0.303429216 | 0915162265 | 10

4 0.305112481 | 0915162265 | 10

5 0.265692145 | 0915162265 | 10 Best Accuracy
A 6 0.289280593 | 0915162265 | 10

7 0.277891457 | 0915162265 | 10

8 0.307486266 | 0915162265 | 10

5 0.9151623 0.915634215

0.289243102 | 0.915162265 10
0.297026664 | 0.915162265 10

[N
o

In Table (4.4), it can be noticed that the accuracy is decreased compared to the
results in tables (4.2), (4.3), and tables (4.6 - 4.10) of this experiment. The reason
Is that the size of the layers cannot cover the important features in the Electricity
signals, or the features are expanded on the size of more than 32 nodes.

In Table (4.5), the rows represent ten training rounds of the model. The columns
are as follow: the first column represents the number of nodes in each layer, which
are 16 and 16 nodes for the first, and the second layer, respectively. The second
column contains the number of layers, which are two layers. The third column
represents the sequence of each training round. The fourth, fifth and sixth columns
represents the loss, accuracy and time of each model respectively (as mentioned in
Section (4.2)). While the seventh, eighth and ninth columns represents the average
of loss, accuracy and time for ten training rounds respectively, where the average
loss is equal to 0.2956293, the average accuracy is equal to 0.9151505 and the
average time is equal to 10 seconds. The last two columns represent the worst and
best accuracy for ten training rounds in which the worst accuracy is equal to
0.9150442 and the best accuracy is equal to 0.915162265.
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Table (4.5): Two Layers Model (16-16).

- Average
i | Lo | TS| o | sy | Time | A | A | e
1 0.304809988 | 0.915162265 10
2 0.28919518 0.915162265 10 0.2956293 | 0.9151505 10
3 0.289177895 | 0.915162265 10
4 0.290117979
16-16 ’ 5 0.289201409 | 0.915162265 Best Accuracy
6 0.294315189 | 0.915162265 10
7 0.340786278 | 0.915162265 10
8 0.291540414 | 0.915162265 10 019150447 0.915162265
9 0.289279938 | 0.915162265 10
10 0.277869105 | 0.915162265 10

In Table (4.5), it can be noticed that the accuracy is decreased compared to the
results in tables (4.2), (4.3), and tables (4.6 - 4.10) of this experiment. The reason
is that the size of the layers cannot cover the important features in the Electricity

signals, or the features are expanded on the size of more than 16 nodes.

In the Table (4.6), the rows represent ten training rounds of the model. The columns
are as follow: the first column represents the number of nodes in each layer, which
are 128 and 64 nodes for the first, and the second layer, respectively. The second
column contains the number of layers, which are two layers. The third column
represents the sequence of each training round. The fourth, fifth and sixth columns
represents the loss, accuracy and time of each model respectively (as mentioned in
Section (4.2)). While the seventh, eighth and ninth columns represents the average
of loss, accuracy and time for ten training rounds respectively, where the average
loss is equal to 0.2646295, the average accuracy is equal to 0.9172979 and the
average time is equal to 10 seconds. The last two columns represent the worst and
best accuracy for ten training rounds in which the worst accuracy is equal to
0.9164602 and the best accuracy is equal to 0.918230116.
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Table (4.6): Two Layers Model (128-64).

- Average
Nt | Do | T | o | meray | e | AT | S | e

1 0.265759706 !L

2 0.254469693 | 0.91716814 10 0.2646295 | 0.9172979 10

3 0.260951936 | 0.916578174 10

4 0.253114253 | 0.917286158 10
128- 5 0.260221213 | 0.918112099 10 Best Accuracy
64 2 6 0.261828154 | 0.91716814 10

7 0.267765313 | 0.917050123 10

8 0.305615753 | 0.916932166 10

0.9164602 0.918230116
9 0.258682787 | 0.917994082 10
10 0.257885993 | 0.918230116 10

In Table (4.6), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

In Table (4.7), the rows represent ten training rounds of the model. The columns
are as follow: the first column represents the number of nodes in each layer, which
are 128 and 32 nodes for the first, and the second layer, respectively. The second
column contains the number of layers, which are two layers. The third column
represents the sequence of each training round. The fourth, fifth and sixth columns
represents the loss, accuracy and time of each model respectively (as mentioned in
section (4.2)). While the seventh, eighth and ninth columns represents the average
of loss, accuracy and time for ten training rounds respectively, where the average
loss is equal to 0.2766001, the average accuracy is equal to 0.9168968 and the
average time is equal to 10 seconds. The last two columns represent the worst and
best accuracy for ten training rounds in which the worst accuracy is equal to
0.9159882 and the best accuracy is equal to 0.91764009.
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Table (4.7): Two Layers Model (128-32).

- Average
No. of No. of | Training - Average Average -
Loss Accuracy Time Time
Nodes | Layers No. Loss Accuracy (Second)
1 0.282110214 | 0.917286158 10
2 0.255521417 | 0.917050123 10 0.2766001 0.9168968 10
& 0.280097693 | 0.916932166 10
4 0.390093982 | 0.91764009 10
5 0.253987938 | 0.916460156 Best Accuracy
128-32 2
6 0.261899799
7 0.257771403 | 0.916932166
8 0.26001507 | 0.916578174 10
0.9159882 0.91764009
9 0.259834439 | 0.917404115 10
10 0.264669001 | 0.916696191 10

In Table (4.7), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

In Table (4.8), the rows represent ten training rounds of the model. The columns
are as follow: the first column represents the number of nodes in each layer, which
are 128 and 16 nodes for the first, and the second layer, respectively. The second
column contains the number of layers, which are two layers. The third column
represents the sequence of each training round. The fourth, fifth and sixth columns
represents the loss, accuracy and time of each model respectively (as mentioned in
Section (4.2)). While the seventh, eighth and ninth columns represents the average
of loss, accuracy and time for ten training rounds respectively, where the average
loss is equal to 0.2772761, the average accuracy is equal to 0.9155988 and the
average time is equal to 10 seconds. The last two columns represent the worst and
best accuracy for ten training rounds in which the worst accuracy is equal to
0.9150442 and the best accuracy is equal to 0.916578174.

56



Chapter Four Results and Discussion

Table (4.8): Two Layers Model (128-16).

No. of No. of | Training
Nodes | Layers No.

Average Average Average Time

e AEIEG] AT Loss Accuracy (Second)

1 0.26906684 | 0.916578174 10

2 0.269400626 !I 0.2772761 | 0.9155988 10

3 0.384497672 | 0.915634215 10

4 0.263178349 | 0.916342199 10

5 0.265783131 | 0.915988207 10 Best Accuracy
128-16 2 6 0.264063776 | 0.915162265 10

7 0.279936105 | 0.915162265 10

593 0.260340452 | 0.915280223 10 SR e

0.258155704 | 0.915634215 10
0.258338481 | 0.915162265 10

=
o

In Table (4.8), the values of accuracy and time are convergent, and this indicates
the presence of stability in the network.

In Table (4.9), the rows represent ten training rounds of the model. The columns
are as follow: the first column represents the number of nodes in each layer, which
are 64 and 32 nodes for the first, and the second layer respectively. The second
column contains the number of layers, which are two layers. The third column
represents the sequence of each training round. The fourth, fifth and sixth columns
represents the loss, accuracy and time of each model respectively (as mentioned in
Section (4.2)). While the seventh, eighth and ninth columns represents the average
of loss, accuracy and time for ten training rounds respectively, where the average
loss is equal to 0.2813155, the average accuracy is equal to 0.9159056 and the
average time is equal to 10.1 seconds. The last two columns represent the worst and
best accuracy for ten training rounds in which the worst accuracy is equal to
0.9148083 and the best accuracy is equal to 0.91716814.
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Table (4.9): Two Layers Model (64-32).

- Average
i | Lo | TR | o | sy | me | A | S| i
1 0.287540257 0.91539824 10
2 0.276144713 0.916578174 11 0.2813155 0.9159056 10.1
3 0.276388824 0.915988207 10
4 0.270792246
64-32 2 5 0.30134666 0.916106224 Best Accuracy
6 0.282411814 0.915162265 10
7 0.270164937 0.91716814 10
8 0.2918697 0.916106224 10
9 0.280879855 0.915162265 10 09148083 091716814
10 0.275615931 0.916578174 10

In Table (4.9), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

In Table (4.10), the rows represent ten training rounds of the model. The columns
are as follow: the first column represents the number of nodes in each layer, which
are 64 and 16 nodes for the first, and the second layer, respectively. The second
column contains the number of layers, which are two layers. The third column
represents the sequence of each training round. The fourth, fifth and sixth columns
represents the loss, accuracy and time of each model respectively (as mentioned in
Section (4.2)). While the seventh, eighth and ninth columns represents the average
of loss, accuracy and time for ten training rounds respectively, where the average
loss is equal to 0.2707907, the average accuracy is equal to 0.916177 and the
average time is equal to 10 seconds. The last two columns represent the worst and
best accuracy for ten training rounds in which the worst accuracy is equal to
0.9151623 and the best accuracy is equal to 0.91716814.
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Table (4.10): Two Layers Model (64-16).
_— Average
Vi | Lo | TR | tos | mcray | T | AT | e | Time
1 0.257065147 | 0.91587019 | 10
2 0.271605045 | 0.916814148 | 10 | 02707907 | 0.916177 10
3 0.261602074 | 0.916342199 | 10
4 0.276430458
6416 ) 5 0.271416187 | 0.916342199 Best Accuracy
6 0.266020715 | 0.91587019 | 10
7 0.265891701 | 0.916460156 | 10
8 0.265506864 | 0.91716814 | 10
9 0.27846238 | 0.916460156 | 10 09151623 091710814
10 0.293906391 | 0.915280223 | 10

In Table (4.10), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

In Table (4.11), the rows represent ten training rounds of the model. The columns
are as follow: the first column represents the number of nodes in each layer, which
are 32 and 16 nodes for the first, and the second layer, respectively. The second
column contains the number of layers, which are two layers. The third column
represents the sequence of each training round. The fourth, fifth and sixth columns
represents the loss, accuracy and time of each model respectively (as mentioned in
Section (4.2)). While the seventh, eighth and ninth columns represents the average
of loss, accuracy and time for ten training rounds respectively, where the average
loss is equal to 0.2969327, the average accuracy is equal to 0.9151269 and the
average time is equal to 10 seconds. The last two columns represent the worst and
best accuracy for ten training rounds in which the worst accuracy is equal to
0.9149262 and the best accuracy is equal to 0.91516227.
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Table (4.11): Two Layers Model (32-16).

- Average

No. of | No.of | Training " Average Average X
Loss Accuracy Time Time

Nodes | Layers No. Loss Accuracy (Second)

1 0.275003821 | 0.915162265 10

2 0.277013129 | 0.91504425 10 0.2969327 | 0.9151269 10

3] 0.310250549 | 0.91516227 10

4 0.316424083 | 0.91516227 10

5 0.280209997 | 0.91516227 10 Best Accuracy
32-16 2

6 0.300594826 | 0.91516227 10

7 0.290422634 | 0.91516227 10

8 0.297431447 | 0.91516227 10

0.9149262 0.91516227
9 0.274115662 10
10 0.347861201 | 0.91516227 10

In Table (4.11), it can be noticed that the accuracy is decreased compared to the
results in tables (4.2), (4.3), and tables (4.6 - 4.10) of this experiment. The reason
is that the size of the layers cannot cover the important features in the Electricity

signals, or the features are expanded on the size of more than 32 and 16 nodes.

In tables (4.2 - 4.11), it can be noticed that using different size of layers is better
than using same size because the average of accuracy in different sizes is better than
the others. In addition, when the sizes of layers are less than 64 the average of the

accuracy is decreased because this size cannot cover all possible features.

The results showed that the best configuration in two layers was as follows: the first
layer consists of 128 nodes and the second layer is made up of 64 nodes, because
the model has highest accuracy using these configurations. Therefore, there is no
need to select the layers with high number of nodes because it will increase the

complexity without enhancing the accuracy.

4.4 Applying BM with Best Configuration of Two Layers (128-64)
in CNN Model

After testing all configuration of classifier part (Fully Connected Layers), it has
been found that the best configuration is the two fully connected layers, where the
first layer has 128 nodes, and the second layer has 64 nodes. This configuration has

been selected to build the proposed classifiers (to reduce the features) with best
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configuration of two layers using BM. In this section, showed the number of
iterations (10 iterations) with numbers of solutions (10 solutions) used in BM

template as follow.

Table (4.12), describing Iteration 1, the rows in this table represents twenty
training rounds of the model. The columns of this table are as follow: The first,
second, third, and sixth columns represent the sequence, loss, accuracy and time of

the model respectively for each training round,

Where the average loss is equal to 0.276244349, the average accuracy is equal to
0.918058997 and the average time is equal to 10 seconds. The worst accuracy is
equal to 0.914336264 and the best accuracy is equal to 0.920354009.

Table (4.12): Iteration 1 of Two Layers Model (128-64) using BM.

Iteration 1
Model No. Loss Accuracy Time A\fgssge A’i“c\grl?ag‘]cey A}Il'?:r?g ¢
(Second)
1 0.262136159 | 0.916932166 10
2 0.298456314 | 0.915988207 10
3 0.276000908 | 0.919292033 10
4 0.266682555 | 0.918820083 10 0.276244349 | 0.918058997 10
b 0.289418873 | 0.91716814 10
6 029183000 [[OMGGGROH 10 |
7 0.270489362 | 0.916814148 10
8 0.260285954 | 0.91716814 10
9 0.265519834 | 0.918112099 10
10 0.255108027 | 0.918348074 10
11 0.260740122 | 0.920354009 10 Bestacetity
12 0.343229401 | 0.918112099 10
13 0.265137493 | 0.916932166 10
14 0.265496415 | 0.919763982 10
15 0.33608697 | 0.918230116 10
16 0.252497633 | 0.919528008 10
17 0.263329231 | 0.918938041 10 0.914336264 0.920354009
18 0.260608372 | 0.919881999 10
19 0.25374069 0.91941005 10
20 0.280734053 | 0.917050123 10
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In Table (4.12), the values of accuracy and time are convergent, and this indicates
the presence of stability in the network.

Table (4.13), describing Iteration 2, the rows in this table represents twenty
training rounds of the model with the same description for table (4.12). The average
loss is equal to 0.300249134, the average accuracy is equal to 0.916961652 and the
average time is equal to 10 seconds. The worst accuracy is equal to 0.906312704
and the best accuracy is equal to 0.920117974.

Table (4.13): Iteration 2 of Two Layers Model (128-64) using BM.

Iteration 2
M . Average Average Avgrage
odel No. Loss Accuracy Time Loss Accuracy Time
(Second)
1 0.256584632 | 0.917286158 10
2 0.262147619 | 0.918112099 10
3 0.366652967 | 0.917994082 10
4 0.369725381 | 0.919646025 10 0.300249134 | 0.916961652 10
5 0.272879501 | 0.917286158 10
6 0.271322374 | 0.918938041 10
7 0.260333325 | 0.917404115 10
8 0.272804955 | 0.917758107 10
9 0.259746232 | 0.920117974 10
10 0.264320086 | 0.919292033 10
11 0.345792039 | 0.912684381 10 SIS
12 0.263699556 | 0.917758107
13 0.392895122
14 0.304622027 0.91764009 10
15 0.266164093 | 0.919292033 10
16 0.496647584 | 0.918466091 10
17 0.277987163 | 0.914336264 10 0.906312704 0.920117974
18 0.261000842 | 0.917758107 10
19 0.280470004 | 0.911740422 10
20 0.25918719 0.91941005 10

In Table (4.13), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

Table (4.14), describing Iteration 3, the rows in this table represents twenty
training rounds of the model with the same description for table (4.12). The average

loss is equal to 0.30032918, the average accuracy is equal to 0.918088496 and the
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average time is equal to 10 seconds. The worst accuracy is equal to 0.916578174
and the best accuracy is equal to 0.920235991.

Table (4.14): Iteration 3 of Two Layers Model (128-64) using BM.

Iteration 3
. Average Average Avgrage
Model No. Loss Accuracy Time Loss Accuracy Time
(Second)
1 0.26269831 | 0.916932166 10
2 0.424173199 | 0.917758107 10
3 0.286240864 | 0.919056058 10
4 0.26597951 | 0.917758107 10 0.30032918 | 0.918088496 10
5 0.272752143 | 0.918938041 10
6 0.273075696 | 0.918112099 10
7 0.3682971 0.919292033 10
8 0.29024347 0.91764009
9 0.438468586
10 0.263626807 | 0.919174016
11 0.265620796 | 0.918702066 10 AR
12 0.365818325 | 0.918702066 10
13 0.270651705 | 0.918112099 10
14 0.321038176 | 0.916696191 10
15 0.259300513 | 0.918584049 10
16 0.266732829 | 0.918230116 10
17 0.277736449 | 0.920235991 10 0.916578174 0.920235991
18 0.306965165 | 0.917050123 10
19 0.265823845 | 0.917522132 10
20 0.261340107 | 0.916696191 10

In Table (4.14), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

Table (4.15), describing Iteration 4, the rows in this table represents twenty
training rounds of the model with the same description for table (4.12). The average
loss is equal to 0.308467002, the average accuracy is equal to 0.918283185 and the
average time is equal to 10 seconds. The worst accuracy is equal to 0.91539824 and
the best accuracy is equal to 0.920707941.
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Table (4.15): Iteration 4 of Two Layers Model (128-64) using BM.

Iteration 4
Average
Model No. Loss Accuracy Time A\I/_eor;ge AAC \::eur?agci/ (Sl—é?:d)
1 0.273442773 | 0.917050123 10
2 0.293746553 | 0.916106224 10
3 0.263142323 | 0.918938041 10
4 0.253592572 | 0.919528008 10 0.308467002 | 0.918283185 10
5) 0.260511446 | 0.920707941 10
6 0.270317291 | 0.918702066 10
7 0.599808542 | 0.919056058 10
8 0.267110954 | 0.917994082 10
9 0.257338264 | 0.918348074 10
10 0.256245187 | 0.91941005 10
11 0.284786543 | 0.918938041 10 P ATy
12 0.27078401 | 0.919056058 10
13 0.263804258 | 0.918348074 10
14 0.256071756 | 0.918112099 10
15 0.59147545 | 0.918466091 10
16 0.29650002 | 0.919292033 10
17 0.295266796 | 0.916342199 10 0.91539824 0.920707941
15 | ozerei [NOREEE |
19 0.385551135 | 0.917994082 10
20 0.262718027 | 0.917876124 10

In Table (4.15), the values of accuracy and time are convergent, and this indicates
the presence of stability in the network.

Table (4.16), describing Iteration 5, the rows in this table represents twenty
training rounds of the model with the same description for table (4.12). The average
loss is equal to 0.302507543, the average accuracy is equal to 0.918660757 and the
average time is equal to 10 seconds. The worst accuracy is equal to 0.916106224
and the best accuracy is equal to 0.920589983.
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Table (4.16): Iteration 5 of Two Layers Model (128-64) using BM.

Iteration 5
M - Average Average Avgrage
odel No. Loss Accuracy Time Loss Accuracy Time
(Second)
1 0.260627226 | 0.919174016 10
2 0.772995302 | 0.919174016 10
3 0.256456371 | 0.918938041 10
4 0.284027126 | 0.917994082 10 0.302507543 | 0.918660757 10
5 0.271899974 | 0.919646025 10
6 0.292941332 | 0.91764009 10
7 0.275698556 | 0.916578174 10
8 0.354190652 | 0.91764009 10
9 0.263876286 | 0.917404115 10
10 0.259846044 | 0.919763982 10
11 0.272589616 | 0.918938041 10 AR
12 0.263807164 | 0.919528008 10
13 0.260979471 | 0.919174016 10
14 0.260379289 | 0.918584049 10
15 0.252775537 | 0.920589983 10
16 0.267134286 | 0.918938041 10
17 0.317843815 | 0.920000017 10 0.916106224 0.920589983
18 0.255102373 | 0.918466091 10
19 0.318131085 | 0.918938041 10
20 0.288849355 -IT

In Table (4.16), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

Table (4.17), describing Iteration 6, the rows in this table represents twenty
training rounds of the model with the same description for table (4.12). The average
loss is equal to 0.29349886, the average accuracy is equal to 0.917740414 and the
average time is equal to 10 seconds. The worst accuracy is equal to 0.912920356
and the best accuracy is equal to 0.920235991.
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Table (4.17): Iteration 6 of two Layers Model (128-64) using BM.

Iteration 6
M,\?gel Loss Accuracy Time Average Loss Qz\éirfagcey szasrgggn'gi)me
1 0.255899991 0.918348074 10
2 0.262030279 0.918938041 10
3 0.265712581 0.918702066 10
4 0.256796517 0.920235991 10 0.29349886 0.917740414 10
5 0.289303321 0.918466091 10
6 0.272421877 0.918820083 10
7 0.637002913 0.919528008 10
8 0.286742511 0.918112099 10
9 0.266422568 0.917522132
10 0.288294993
11 0.276304597 0.916460156 P ATy
12 0.270508157 0.916578174 10
13 0.260472651 0.918112099 10
14 0.34786384 0.914690256 10
15 0.290259311 0.917876124 10
16 0.266339258 0.918348074 10
17 0.269448951 0.917522132 10 0.912920356 0.920235991
18 0.268741278 0.918230116 10
19 0.272670062 0.918348074 10
20 0.266741538 0.917050123 10

In Table (4.17), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

Table (4.18), describing Iteration 7, the rows in this table represents twenty

training rounds of the model with the same description for table (4.12). The average

loss is equal to 0.30776233, the average accuracy is equal to 0.917834809 and the

average time is equal to 10 seconds. The worst accuracy is equal to 0.911268413
and the best accuracy is equal to 0.920000017.
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Table (4.18): Iteration 7 of Two Layers Model (128-64) using BM.

Iteration 7
Model No. Loss Accuracy Time Average Loss AAC \fur?agci/ sz:srsgoen'lt;i)me
1 0.500642313 | 0.919056058 10
2 0.29355611 0.919174016 10
3 0.380159939 | 0.918466091 10
4 0.417346588 | 0.917994082 10 0.30776233 0.917834809 10
5 0.261931958 | 0.918230116 10
6 0.280580217 | 0.919056058 10
7 0.259767462 | 0.919646025 10
8 0.25704296 0.916342199
9 0.300944026
10 0.26527152 0.917522132
11 0.312285964 | 0.919056058 10 P ATy
12 0.352429105 0.91764009 10
13 0.26729697 0.916696191 10
14 0.281900958 | 0.918702066 10
15 0.267868711 0.91716814 10
16 0.272329986 | 0.918938041 10
17 0.289064607 | 0.915516198 10 0.911268413 0.920000017
18 0.350622295 | 0.918938041 10
19 0.273199571 | 0.920000017 10
20 0.271005346 | 0.917286158 10

In Table (4.18), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

Table (4.19), describing Iteration 8, the rows in this table represents twenty

training rounds of the model with the same description for table (4.12). The average

loss is equal to 0.288925329, the average accuracy is equal to 0.917557526 and the

average time is equal to 10 seconds. The worst accuracy is equal to 0.904070795
and the best accuracy is equal to 0.919763982.
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Table (4.19): Iteration 8 of Two Layers Model (128-64) using BM.

Iteration 8
Model No. Loss Accuracy Time Average Loss Qz\ézrfa?cey szasr:ggn'gi)me
1 0.28800324 0.918348074 10
2 0.269769874 | 0.917994082 10
3 0.268389145 | 0.919763982 10
4 0.266029415 0.91941005 10 0.288925329 0.917557526 10
5) 0.349088648 0.91941005 10
6 0.253757812 | 0.919292033 10
7 0.270642976 0.91941005 10
8 0.292369911 | 0.916342199 10
9 0.389372155 | 0.918820083 10
10 0.275913555 | 0.917994082 10
11 0.275103527 | 0.919056058 10 P ATy
12 0.253536955 | 0.917758107 10
13 0.267949272 | 0.918584049
14 0.337432662
15 0.280432781 0.91941005 10
16 0.275843732 | 0.919292033 10
17 0.265476515 | 0.917876124 10 0.904070795 0.919763982
18 0.26442283 0.918702066 10
19 0.319655773 | 0.913038373 10
20 0.315315793 | 0.916578174 10

In Table (4.19), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

Table (4.20), describing Iteration 9, the rows in this table represents twenty

training rounds of the model with the same description for table (4.12). The average

loss is equal to 0.319363779, the average accuracy is equal to 0.918123892 and the

average time is equal to 10 seconds. The worst accuracy is equal to 0.91587019 and
the best accuracy is equal to 0.919763982.
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Table (4.20): Iteration 9 of Two Layers Model (128-64) using BM.

Iteration 9
. Average Avgrage
Model No. Loss Accuracy Time Average Loss Accuracy (SZé?r?d)
1 0.424743643 0.918466091 10
2 0.505186644 0.919763982 10
3 0.285795381 0.917050123 10
4 0.293457204 0.918112099 10 0.319363779 0.918123892 10
5 0.524328275 0.916578174 10
6 0.295424113 0.919056058 10
7 0.276254397 0.918938041 10
8 0.257465389 0.918820083 10
9 0.263723638 0.917522132 10
10 0.257740105 0.918702066 10
Best Accuracy
11 0.267956655 0.918938041 10
12 0.2572897 0.918938041 10
13 0.315698198 0.91716814 10
14 0.267901669 0.918938041 10
5 | oswee: [JUCEIEEE
16 0.313779082 0.918230116 10
17 0.274871416 0.917286158 10 0.91587019 0.919763982
18 0.286600947 0.916224182 10
19 0.27421232 0.919174016 10
20 0.430960388 0.918702066 10

In Table (4.20), the values of accuracy and time are convergent, and this indicates
the presence of stability in the network.

Table (4.21), describing Iteration 10, the rows in this table represents twenty
training rounds of the model with the same description for table (4.12). The average
loss is equal to 0.324672409, the average accuracy is equal to 0.910678467 and the
average time is equal to 10 seconds. The worst accuracy is equal to 0.797286153
and the best accuracy is equal to 0.918938041.
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Table (4.21): Iteration 10 of Two Layers Model (128-64) using BM.

Iteration 10
. Average Avgrage
Model No. Loss Accuracy Time Average Loss Accuracy Time
(Second)
1 0.265011785 0.917758107 10
2 0.27306657 0.918112099 10
3 0.29941101 0.912684381 10
4 0.272518669 0.916932166 10 0.324672409 0.910678467 10
5 0.265705152 0.915280223 10
6 0.300083631 0.918938041 10
7 0.656314497
8 0.28413875 0.913982272
9 0.264199569 0.918112099 10
10 0.30869456 0.918702066 10
11 0.262819471 0.918702066 10 B A
12 0.318708567 0.915044248 10
13 0.270718829 0.916106224 10
14 0.313190766 0.918584049 10
15 0.261128668 0.918938041 10
16 0.514016596 0.913274348 10
17 0.266173484 0.916578174 10 0.797286153 0.918938041
18 0.524251643 0.917758107 10
19 0.276477728 0.918348074 10
20 0.296818235 0.912448406 10

In Table (4.21), the values of accuracy and time are convergent, and this indicates

the presence of stability in the network.

The detection accuracy with varying number of iterations starting from (1 to 10) is

shown in Figure (4.1). Each value represents the best-obtained accuracy for various

iterations.

NO. OF ITERATIONS

Figure (4.1): The detection accuracy with varying the number of iterations.
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4.5 Results of Accuracy and Loss Using CNN and BM Model

This section describes the results of accuracy and loss using CNN and BM model,
after describing the number of iterations, which are ten iterations, and the number
of solutions, which are ten solutions in Section (4.4). This model consists of two
layers, which are 128 and 64 nodes, as shown in Table (4.22).

Table (4.22): Results of Accuracy and Loss for two Layers Model (128-64) using CNN & BM.

No. of No. of No. of No. of .
Nodes Layers | Iteration | Solution BRG] e Time (Second)
128-64 2 10 10 0.916932166 0.265327107 8

In Table (4.22), the columns of this table are as follow: the first column represents
the number of nodes in each layer, which are 128 and 64 nodes for the first, and the
second layer respectively. The second column contains the number of layers, which
are two layers. The third column represents number of iterations, which are ten
iterations. The fourth column represents number of solutions, which are ten
solutions. The fifth, sixth and seventh columns represents the loss, accuracy and
time of the model. Where the loss is equal to 0.265327107, while the accuracy is
equal to 0.916932165 and the time is equal to 8 seconds. The aim of combining BM
algorithm with CNN is to reduce features that will helps in reduction of time and

complexity for execution process.

4.6 Comparing Results of Loss and Accuracy

This section presents comparing the results of loss and accuracy that are resulting
from CNN and BM model with results of loss and accuracy resulting from CNN
model without BM, as shown in Table (4.23).

Table (4.23): Comparing Results of Loss and Accuracy of Two Layers Model (128-64).

CNN CNN & Blue Monkey (BM)
No. of Nodes 128-64 128-64
No. of Layers 2 2
Accuracy 0.92 0.92
Loss 0.26462948 0.265327107
time 10 seconds 8 seconds
Features 1035 666
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In Table (4.23), there are three columns are as follow: the first column represents
names of Inputs and outputs, the second column represents the results obtained from
CNN algorithm and the third column represents the results obtained from

combining CNN algorithm with BM algorithm.

While the rows of this table are as follow: the first row represents name of
algorithms used in this work. The second row represents the number of nodes for
each algorithm, where are used same nodes in both algorithms (128 and 64 nodes).
The third row represents number of layers for each algorithm, which are two layers
for both algorithms. The fourth row shows the accuracy ratio, where are the ratio
obtained in the both algorithms are (0.92). The fifth row shows the loss ratio, where
the result obtained from the CNN algorithm is (0.26462948) while the result
obtained from the CNN and BM algorithms is (0.265327107). The sixth row shows
the time spent in implementation of operations, where the average is (10 seconds)
for the CNN algorithm and (8 seconds) for the CNN and BM algorithms. The
seventh row shows number of features in both algorithms, where result obtained
using CNN algorithm is (1035 feature), while the result obtained using CNN and
BM algorithms is (666 feature).

Finally, it can be noted that the superiority of the CNN and BM model over the
CNN model in terms of reducing the features of the model while the accuracy

remaining the same.

The most important benefit of reducing features it can be useful in terms of reducing
time. In addition, if the accuracy is improving, then the features reduction can be

useful in the process of eliminating the contradiction between the features.

4.7 The Comparison of the Proposed Approach with Some Other
Approaches

This section presents the comparison of the proposed approach with some other
approaches for electricity theft detection in smart grids in terms of the applied

method, number of customers, and accuracy, as shown in Table (4.24).
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Table (4.24): The comparison between the proposed approach with some other approaches.

# | Reference Methods Number of | Accuracy
Customers (%)

1 [64] Support Vector Machines (SVM) 36176 60

2 [65] Convolutional Neural Network-Long 17120 89

Short Term Memory (CNN-LSTM)
3 [66] Combination functions (SVM, OPF, NA 86.20
C4,5 tree)
4 [67] Regression 30 78
5 [68] SVM-based fraud detection model 36176 72

(FDM) with the introduction of a fuzzy
inference system (FIS-SVM-FIS)

6 [69] Fuzzy logic NA 55
7 [70] Fuzzy classification NA 74.50
8 [71] Neural networks (NN) NA 83.5
9 [72] Neuro-fuzzy 4159 68.2
10 [31] Convolutional Neural Networks (CNN), 12,180 96.9
Long Short-Term Memory (LSTM) and
Stacked Autoencoder.
11 | Proposed | Convolutional Neural Networks (CNN), 42372 92

work Blue Monkey (BM)

The results in Table (4.24) shows the superiority of the proposed (CNN and BM)
method over other methods in terms of accuracy with many customers (42372
customers) compared with the obtained accuracy and number of customers that are

used by other methods.
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Chapter Five:

Conclusions and Future Work

5.1 Introduction

After designing the electricity signals classifier that has high performance and

making experiments for testing the results, some conclusions and future works are

mentioned in this chapter.

5.2 Conclusions

The most important conclusions of this thesis are:

1.

Supervised learning techniques are better than other techniques because
there are labeled data that makes training of models has high performance,
where using labels in electricity consumption dataset made the building of

models has high performance, as described in section (2.3.1).

Pre-trained models have high power in addressing electricity consumption
data because these models are trained using big datasets and powerful
computers and when extracting the data of dataset using normal CNN the
accuracy is too low comparing to addressing electricity consumption data
using SM, as described in section (4.2) and table (4.1) shows results for

different nodes.

The performance of building of models and new electricity signals
classification is increased by reducing dataset as described in section (3.2.2).

Increasing fully connected layers and nodes in each layer lead to increasing
the delay, without much affecting the accuracy, in the models in term of
training and classifying, as described in section (4.3).

Using an optimization algorithm (the BM algorithm) leads to reducing the
extracted features to speed up the performance of the designed system, as
described in section (4.6) and table (4.23).

The important results obtained can be explained as follows: The model

consists of two layers, which are 128 and 64 nodes, while number of
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iterations, which are ten iteration and number of solutions, which are ten
solution, as shown in table (4.22). The final loss resulting from this model
is 0.265327107 and the final accuracy resulting from this model is
0.916932165 with an amount of time 8 seconds. In addition, the features were
(1035 feature) before using BM algorithm, while become (666 feature) after
using BM algorithm.

5.3 Future Works

There is a list of future works that can be applied in several directions, some of them

are:

. There is stillroom to improve the results accuracy through implementing our

methods with wide convolutional neural network.

Combining Random forest with CNN may be achieving better results in
terms of accuracy and efficiency.

Combining CNN with LSTM can, in theory, help achieving better results in

terms of accuracy and efficiency.
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Appendix A:

Various data-oriented, network-oriented, and hybrid ETD techniques

Table (A.1): Summary of data-oriented ETD techniques [41].

Ref. Group Conception Procedure Kinds of Data Size of Features Metrics Time of
Dataset Response
[1] Oriented Supervised Universal Region Big - Rate of Hit 365 days
of Data Preservative style | Technical Non-
technical
Customer,
Region Non-
technical,
[2] Oriented | Supervised SVM Little Big Mean Rate of Hit, 365 days
of Data Resolution Accurateness
Power, Non-
technical
Customer
[3] Oriented Supervised Induction of Rule, | Little Big Mean, min./max. Rate of Hit, 365 days
of Data SVM Resolution Accurateness
Power, Non-
technical
Customer
[4] Oriented | Supervised SVM, ANN Little Moderate | Mean Rate of Hit, 365 days
of Data Resolution Accurateness
Power
[5] Oriented Supervised Tree of Decision, Little Big Mean, Wavelet, Rate of Hit, 365 days
of Data SVM, OPF Resolution coefficients of Precision, F _
Power predicted kWh, score, TNR
coefficients of
Fourier, Euclidean
distance to
Average
consumer,
coefficients of
Polynomial fit,
linear fit Slope
consuming curve
difference,
[6] Oriented Supervised Tree of Decision, Little Big Readings The score of 365 days
of Data SVM Resolution approved from F1, Precision,
Power DSO to other Rate of Hit,
readings, extreme | Accurateness
permissible
consuming,
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irregularities
number, days
since
update/inspection,

postponement of

instalment
[7 Oriented Supervised OPF Technical Big Min/max, the Time of 30 days
of Data Customer, factor of Load Arrangement,
moderate Accurateness,
Resolution Time of
Power Training,
[8] Oriented Supervised OPF Technical Big Min/max, the Rate of 30 days
of Data Customer, factor of energy, Recognition,
the factor of Load
moderate Correctness
Resolution
Power
[9] Oriented | Supervised OPF, Technical Big Min/max, factor Rate of 30 days
of Data Customer , of energy , factor Recognition
SOM. .SVM. moderate of Load ,Correctness
k-NN ,ANN Resolution
Power
[10] Oriented | Supervised Trees of Decision, | Technical Big Min/max, Accurateness, | 365 days
of Data Induction of Rule Customer, changeability, the | Support,
moderate factor of energy, exactness
Resolution daily consuming
Power, to contracted
Customer Non- energy streaks
Technical
[11] Oriented | Supervised Classifiers of Technical Big Min/max, Accurateness, | 30 days
of Data Bayesian, Trees of | Customer, Little changeability, the | Support,
Decision, Resolution factor of energy, exactness,
Induction of Rule | Power, daily consuming rate of hit
Customer Non- to contracted
Technical energy streaks,
coefficient of
Pearson,
Coefficient billed-
expended power
[12] Oriented | Supervised ANN Technical Big - FPR, 365 days
of Data Customer, Little Accurateness,

Resolution
Power,
Customer Non-

Technical

Support, rate
of hit
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[13] Oriented | Supervised KNN, OPF, ANN, | Technical Big Min/max, parts of | Time of 30 days
of Data SOM, SVM Customer, PCA factor of Training,
moderate load, the factor of | Accurateness,
Resolution power
Power
[14] Oriented | Supervised SVM Technical Big Min/max, the Accurateness | 30 days
of Data Customer, factor of load, the
factor of power
moderate
Resolution
Power
[15] Oriented | Supervised SVM, the moderate Big Max/min, parts of | Accurateness, | 30 days
of Data grouping of KNN, | Resolution PCA exactness,
Power rate of hit
[16] Oriented | Supervised ANN Technical Big Min/max, the Time of 30 days
of Data Customer, factor of load, the | Training,
moderate factor of power Accurateness
Resolution
Power
[17] Oriented | Supervised Classifiers of Technical Big Max/min, The score of 30 days
of Data Bayesian, KNN, Customer, Little coefficient of F1, AUC
SVM, Tree of Resolution billed-consuming
Decision, ANN Power, Power, coefficient
Customer Non- of Pearson,
Technical readings number
. reduction of
Eco!oglcal, Consuming
Region of Non- associated with
Technical the preceding
interval,
[18] Oriented | Supervised OPF Moderate Big coefficients of Rate of the 365 days
of Data Resolution Transform of hit,
Power Discrete Cosine Exactness, the
score of F1
[19] Oriented Supervised Induction of Rule, | Little Big Encoding Accurateness | 30 days
of Data SVM Resolution
Power
[20] Oriented | Supervised ANN Moderate Big - Accurateness, | 30 days
of Data Resolution Time of
Power Classification

, Time of

Training
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[21] Oriented | Supervised ANN moderate Big - FNR, FPR, Hours
of Data Resolution TPR, Rate of
Power Hit
[22] Oriented | Supervised Tree of Decision moderate - - - 30 days
of Data LANN Resolution
Power,
Ecological
[23] Oriented Supervised Induction of Rule | Technical Big - - 365 days
of Data Customer, Little
Resolution
Power,
Customer Non-
Technical
[24] Oriented Unsupervised | ANN, Induction Technical Big Mean, min/max, - Months
of Data & supervised | of Rule, Systems Customer, Little standard deviance
of Expert, Resolution
Power,
Customer Non-
Technical
[25] Oriented Unsupervised | Systems of Little Big The slope of Accurateness, | 365 days
of Data & supervised | Expert, SVM Resolution Consuming curve, | Rate of Hit,
Power, Mean TNR. FNR,
Customer Non- FPR, AUC
Technical
[26] Oriented Unsupervised | Classifiers of Data of Minor - Accurateness, | Days
of Data & supervised | Bayesian, Network of Time of
Clustering Smart Meter, Classification
Great , Time of
Resolution Training,
power FNR, FPR
[27] Oriented Unsupervised | Clustering Little Big Mean, min/max, Exactness, Months
of Data Resolution standard deviance | Rate of Hit
Power,
Customer Non-
Technical,
Mean Region
Consuming
[28] Oriented Unsupervised | Models of moderate Moderate | Mean, predicted Electrical Hours
of Data Regression Resolution kWh , standard energy
Power deviance robbed
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[29] Oriented Unsupervised | Clustering Little Minor Mean, min/max, - Months
of Data Resolution standard deviance
Power, Mean
Region
Consuming,
Customer Non-
Technical
[30] Oriented Unsupervised | Distribution of Technical Big Min/max, the Accurateness, | Months
of Data Multivariate Customer, factor of load, the | Rate of
Gaussian, moderate factor of power Acknowledg
clustering, OPF Resolution ment, the
Power score of F1
[31] Oriented Unsupervised | Clustering moderate Big parts of PCA FNR, FPR Weeks
of Data Resolution
Power
[32] Oriented Unsupervised | System of Expert moderate Minor Arrangement of - Hours
of Data Resolution Fractional of
Power
dynamic errors
[33] Oriented Unsupervised | (NCG) Non- moderate Minor Arrangement of - Hours
of Data cooperative game Resolution Fractional of
with a system of Power dynamic errors
FOSE
[34] Oriented Unsupervised | (NCG) Non- Moderate Minor Arrangement of - Hours
of Data cooperative game | Resolution Fractional of
with a system of Power dynamic errors
FOSE
[35] Oriented Unsupervised | Numerical Little Moderate | - FNR, Rate of | Months
of Data Controller Resolution Hit
Power
[36] Oriented Unsupervised | Numerical Moderate Moderate | - Power Days
of Data Controller Resolution Balance
Power Mismatch,
Rate of Hit,
Mean bill
rise,
standardized
labour fee
[37] Oriented Unsupervised | SOM Moderate Moderate | - FPR, FNR, Weeks
of Data Resolution TPR, Rate of
Power Hit
[38] Oriented Unsupervised | The difference of Moderate Moderate | - Electrical Weeks
of Data Kullback-Leibler Resolution energy
Power robbed, Rate

of Hit
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[39] Oriented Unsupervised | Models of moderate Moderate | - Undetected Hours
of Data Regression, Resolution attack fee,
Numerical Power FPR

Controller, Local

external

Factor

Table (A.2): Summary of network-oriented and hybrid techniques [41].

Ref. Group Conception Procedure Kinds of Data Size of Features Metrics Time of
Dataset Response
[40] Oriented Flow of Load | The flow of the Moderate Moderate | - - Hours
of power of the grid Resolution
Network of Distribution Power, Data of
Observer Meter,
data of network
of Smart meter,
Topology of
Network
[41] Oriented Flow of Load | Factor Moderate Minor - Rate of Hit Hours
of identification for | Resolution
Network
calculation of Power, Smart
loss of practical Meter Network,
Data of
Observer Meter
[42] Oriented Flow of Load | Decomposition of | Moderate Minor - Smallest Hours
of individual Value Resolution detected
Network
& Stochastic Petri | Power, data of deviance
Nets FRTU, data of from typical
network of
Smart meter,
mean region
consuming,
Data of
Observer Meter
[43] Oriented Flow of Load | The distributed Moderate Moderate | - - Hours
of answer of linear Resolution
Network
systems Power, Data of
Observer Meter,
Topology of
Network
[44] Oriented Flow of Load | The probabilistic Little Big - - Days
of flow of energy for | Resolution
Network
distribution grid Power, Data of
Observer Meter,
Topology of
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Network, Smart
Meter Network

[45] Oriented Flow of Load | identification of Great Minor - Hours
of Voltage Resolution
Network
sensitivities by Power, Data of
small linear Observer Meter,
squares Topology of
Network, data
of network of
Smart meter
[46] Oriented Flow of Load | Recursive small Moderate Minor Time of Hours
of Squares for Resolution Arrangement,
Network
modelling of the Power, Data of Rate of Hit
manner of meter Observer Meter,
Topology of
Network
[47] Oriented Network of Cross-Entropy & Great Minor The fee of Days
of sensor Conditional Resolution FRTU, index
Network ) ] Powver,
Arbitrary domain of coverage
Topology of of irregularity
Network
[48] Oriented Network of Dynamic The topology of | Moderate The fee of Days
of sensor Programming Network, Smart FRTU, index
Network
Meter Network of coverage
of irregularity
[49] Oriented Network of Integer Linear Topology of - fee of FRTU Days
of sensor Programming Network, data
Network
of FRTU, Mean
region
consuming
[50] Oriented Network of algorithms of Tree | Moderate Moderate Time of Hours
of sensor search Resolution Classification
Network
Powver, , Rate of Hit
Topology of
Network, Data
of Observer
Meter
[51] Oriented Estimation of | The distributed Data of Moderate Accurateness | Minutes
of State answer of Kalman | Observer Meter,
Network

filter

Topology of
Network, data
of network of

Smart meter
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[52] Oriented Estimation of | The estimator of Moderate Minor - - Minutes
of State state of MV (LV) Resolution
Network
WLS Power,
Topology of
Network, Data
of Observer
Meter, data of
FRTU
[53] Oriented Estimation of | Assessment of the | Great Minor - - Minutes
of State state of LV and Resolution
Network
MV Power,
Topology of
Network, Data
of Observer
Meter, data of
FRTU
[54] Oriented Estimation of | Assessment of the | Moderate Minor - - Minutes
of State state of MV WLS | Resolution
Network
and detection of Power,
insufficient data Topology of
Network, data
of FRTU
[55] Oriented Estimation of | detection of The topology of | - - - Hours
of State insufficient data Network, data
Network
and gathering of of FRTU
network
[56] Oriented Sensor The estimator of The topology of | Moderate | - Rate of Hit Hours
of Network & state of DC, grid Network, Smart
Network
Estimation of | located sensor Meter Network
State algorithm data
[57] Hybrid Unsupervised | The estimator of Moderate Minor - - Hours
& Estimation | state of MV and Resolution
of State ANOVA Power, data of
FRTU,
Topology of
Network, mean
region
consuming
[58] Hybrid Unsupervised | ANOVA and Great Minor - - Minutes
& Estimation | assessment of the Resolution
of State state of WLS Power, Data of
(semidefinite Observer Meter,
programming) Topology of
Network, data
of network of
Smart meter,
data of FRTU
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[59]

Hybrid

The flow of
Load &

Supervised

spectator meter
with SVM

Moderate
Resolution
Power, Data of
Observer Meter,
Topology of
Network

Big

Rate of Hit,
DR-FPR,
FPR, Rate of
Detection of

Bayesian

Days

[60]

Hybrid

The flow of
Load &

Supervised

Decision Tree
with spectator
meter, SVM

Moderate
Resolution
Power,
Customer
Technical,
Topology of
Network,
Customer Non-
Technical, Data
of Observer
Meter,

ecological

Moderate

Predicted kWh

Accurateness,
FPR, Rate of
Hit, Time of

Arrangement

Months

[61]

Hybrid

supervised &
Estimation of
State

MV and OPF

estimation of state

The topology of
Network,

Little
Resolution
Power, data of
FRTU

Big

Exactness,
Rate of Hit

Months

[62]

Hybrid

The flow of
Load &
Supervised

theory of Rough
group with the
assessment of

practical loss

Moderate
Resolution
Power,
Customer
Technical,
Topology of
Network,
Customer Non-
Technical, Data
of Observer
Meter

Big

Mean, rates of
consuming of

season

Months

[63]

Hybrid

The flow of
Load & un
Supervised

Numerical
controller with

spectator meter

Moderate
Resolution
Power,
Topology of
Network

Big

Months

[64]

Hybrid

Unsupervised
& Estimation
of State

MV WLS state
estimator and
Multivariate
Gaussian

Distribution

Little
Resolution
Power, data of
FRTU,

Topology of
Network

Big

Accurateness,
Rate of Hit

Months
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[65] Hybrid The flow of A-star (A*) The topology of | Moderate | - Rate of Hit Minutes
Load & un derivative Network, data
Supervised algorithm and of network of
Numerical Smart meter,
controller data of FRTU,
mean region
consuming
[66] Hybrid Supervised, SVM with Medium Moderate | Mean, the ratio of | FNR, FPR Days
unsupervised clustering of Resolution mismatch
& Sensor network, Energy, average
Network Clustering area

consumption,
Observer Meter
Data, Network
Topology,
FRTU data,

Moderate
Resolution
Power, Data of
Observer Meter,
Topology of
Network, data
of FRTU, mean
region
consuming
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