REPUBLIC OF IRAQ MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH UNIVERSITY OF BAGHDAD COLLEGE OF SCIENCE DEPARTMENT OF GEOLOGY

Hydrogeological Study for Mulussa Aquifer Between Rutba and Dhabaa-West of Iraq

A THESIS

SUBMITTED TO THE COLLEGE OF SCIENCE, UNIVERSITY OF BAGHDAD AS A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY (WATER RESOURCES AND ENVIRONMENTAL GEOLOGY)

By

Mahmood Hafedh Dheyab Al-Kubaisi

B.Sc. Department of Applied Geology 2012

Supervised By

Prof. Dr. Qusai Yaseen Al-Kubaisi

1439

Abstract

The study area is located at Al Rutba city, in Al-Anbar Governorate, western Iraq. It is located between 3653442.86 m and 3659709.33 m to the north and 617632.76 m and 643771.85 m to the east. The total area is expanded over about 174.87 Km² with an elevation of (585–645 m a.s.l.). According to metrological data the total annual rainfall was 113.3 mm and relative humidity was 47.1 %, while monthly average temperature was 20.1 °C, evaporation was 3074.3 mm, wind speed was 2.6 m/s and sunshine duration was 9.2 h/day. Climate of the study area is described as an arid and relatively hot in summer, and cold with low rain in winter. During the 36 years' comparison period, water surplus was recorded in the study area was 19.849 % of the total rainfall. The value of groundwater recharge was 22.489 mm with a rate of 19.849% which represents the percentage of groundwater recharge from the total rainfall.

The groundwater moves in directions of (NE, E and SE) influenced by depletion process in the amount of hydraulic gradient ranged between (0.0000416 - 0.008036). The groundwater flux and groundwater pore velocity are reached (0.00451) m/day and (25.02) m/day, respectively. Mulussa aquifer is carbonate beds, where represents confined aquifer conditions. The values of transmissivity, permeability and storage coefficient are ranged between (0.507 – 250) m²/day, (0.00547 - 3.05) m/day and (9.65 x 10⁻⁵ - 2.64 x 10⁻⁴) respectively. While the estimated of transmissivities which are obtained from specific capacity ranged (208.041 – 862.166) m²/day. This variation in the values revealing the great variations in the aquifer lithology, which was affected by intensity and the number of fractures and joints.

The concentration of ions of groundwater samples for the wet period are lower than the dry period due to the dilution process, according to the TDS values the groundwater in the study area has classified as fresh to slightly water and the hardness of water is hard to very hard. The results show that the groundwater of the study area is unpolluted with trace elements such as (Fe, Mn, Pb, Cd and Zn).

The most prevalent water type is calcium bicarbonate $Ca(HCO_3)_2$ and the second prevailing type is calcium sulfate $CaSO_4$ while the calcium chloride $CaCl_2$ is a lower rate in the study area. The groundwater in the study area is suitable for drinking water, livestock, building and agricultural purposes, but it's unsuitable for industrial purposes.

The HWQI for all groundwater samples in two periods are (<50) and indicate that all groundwater samples are excellent water for human drinking, except (W-17, W-18 and W-20) in dry period and (W-17) in wet period have a raise very little about class I, which mean that the wells are good water for human drinking

	List of Contents		
Parag.	Title	Page No.	
	Chapter One – Introduction		
1.1	preface	1	
1.2	Location of the study area	1	
1.3	Previous studies	2	
1.4	Geological setting	5	
1.4.1	Geology and stratigraphy	5	
1.4.2	Geomorphologic and Structural settings	10	
1.4.3	Tectonic setting	13	
1.5	Aims of study	14	
1.6	Methodology and material	15	
1.6.1	Field work	15	
1.6.2	Laboratory work	19	
1.6.3	Office work	19	
	Chapter Two – Climate and Water Balance	ce	
2.1	Climate	21	
2.1.1	Introduction	21	
2.1.2	Climatic elements	21	
2.1.2.1	Rainfall (P)	23	
2.1.2.2	Relative Humidity (RH %)	24	
2.1.2.3	Temperature (T)	25	
2.1.2.4	Evaporation (E)	26	
2.1.2.5	Wind Speed	26	
2.1.2.6	Sunshine duration	28	
2.1.3	Classification of Climate	30	
2.1.3.1	Mather classification (1974)	30	
2.1.3.2	AL-Kubaisi classification (2004)	31	
2.2	Water Balance	33	
2.2.1	Evapotranspiration	33	
2.2.2	Water Surplus (WS) and Water Deficit (WD)	37	
2.2.3	Soil Conservation Service Method (SCS)	40	
2.2.4	Groundwater Recharge (Re)	45	
	Chapter Three – Hydrogeology		
3.1	Introduction	46	
3.2	Mulussa aquifer description	46	
3.3	Boundary Conditions of Mulussa aquifer	48	
3.4	Hydraulic Parameters	50	

3.4.1	Hydraulic conductivity (K)	50
3.4.2	Transmissivity (T)	51
3.4.3	Storage coefficient (S)	51
3.4.4	Specific capacity (Sc)	51
3.5	Ground water levels and flow direction	52
3.6	Pumping test	55
3.6.1	pumping test methods	56
3.6.2	Analysis results of pumping test	57
3.6.2.1	Hydraulic Properties and Pumping Test (W-A)	58
3.6.2.2	Hydraulic Properties and Pumping Test (W-B)	58
3.6.2.3	Hydraulic Properties and Pumping Test (W-C)	59
3.6.3	Discussing the results of pumping test	59
3.6.4	Estimates of Aquifer Transmissivity from Specific	61
	capacity data	01
3.7	Groundwater flux and groundwater pore velocity	62
	Chapter Four – Hydrochemistry	
4.1	preface	64
4.2	Accuracy	65
4.3	Physical properties	69
4.3.1	Color, Odor and Taste	69
4.3.2	Temperature (T °C)	70
4.3.3	Hydrogen Number (pH)	72
4.3.4	Total Dissolved Solids (TDS)	73
4.3.5	Electrical Conductivity (EC)	75
4.3.6	TDS - EC Relationship	77
4.4	Chemical properties	78
4.4.1	Major Cations	78
4.4.1.1	Calcium (Ca ²⁺)	78
4.4.1.2	Magnesium (Mg ²⁺)	79
4.4.1.3	Sodium (Na ⁺)	81
4.4.1.4	Potassium (K ⁺)	82
4.4.2	Total Hardness (TH)	84
4.4.3	Major Anions	86
4.4.3.1	Chloride (Cl ⁻)	86
4.4.3.2	Sulfate (SO_4^{2-})	88
4.4.3.3	Bicarbonate (HCO_3^{-}) and carbonate (CO_3^{2-})	89
4.4.4	Minor compounds of Nitrate (NO ₃)	92
4.4.5	Trace elements	93
4.4.5.1	Iron (Fe)	95
4.4.5.2	Manganese (Mn)	96
4.4.5.3	Lead (Pb)	97

4.4.5.4	Cadmium (Cd)	98
4.4.5.5	Zinc (Zn)	99
4.5	Hydrochemical formula and water type	102
4.6	Hypothetical salts	104
4.7	Hydrochemical indicators and origin of groundwater	105
4.8	Groundwater classification	112
4.8.1	Piper classification (1944)	112
4.8.2	Stiff classification	115
4.9	Groundwater suitability for different purposes	118
4.9.1	Groundwater suitability for human drinking	118
4.9.2	Groundwater suitability for livestock purposes	119
4.9.3	Groundwater suitability for industrial purposes	122
4.9.4	Groundwater suitability for building purposes	124
4.9.5	Groundwater uses for agricultural purposes	125
4.9.6	Groundwater suitability for irrigation purposes	126
4.9.6.1	Electrical Conductivity (EC)	126
4.9.6.2	Sodium Adsorption Ratio (SAR)	127
4.9.6.3	Sodium ion percentage (Na%)	128
4.9.6.4	Residual Sodium Carbonate (RSC)	129
4.9.6.5	Kelly Index (KI)	130
4.9.6.6	Permeability Index (PI)	131
	Evaluation of Groundwater Suitability for Human	
4.10	Consumption in Terms of Water Quality Index	132
	(HWQI)	
Chapter Five – Conclusions and Recommendations		
5.1	Conclusions	138
5.2	Recommendations	142
References		
	References	144

List of Figures		
Figure	Title	Page No.
Chapter One		
1-1	Location map of the study area	2
1-2	Geologic map of the study area, modified from Al- Dulaymi et al., (2013)	6
1-3	The geological section of the (W-17) Al-Dulaymi et al., (2013)	10

1-4	Topographic map of the study area	11
1-5	Intermittent valleys in the study area	11
1-6	Tectonic map of Iraq (Jassim and Buday, 2006)	13
1-7	Transversal tectonic divisions of Iraq (Jassim and Buday, 2006)	14
1-8	Location map of the wells within the studied area	16
	Chapter Two	
2-1	Average monthly rainfall (mm) for the period from (1981-2016) for Rutba meteorological station	23
2-2	The monthly average relative humidity for the period (1981-2016) in Rutba meteorological station	24
2-3	The monthly average temperature for the period (1981-2016) for Rutba meteorological station	25
2-4	Average of monthly evaporation for the period (1981- 2016) for Rutba meteorological station	26
2-5	The monthly average values of wind speed (m/sec) recorded at Rutba meteorological station for the period 1981-2016	27
2-6	Wind direction (in a percentage of contribution) for the period (1981-2016) in Rutba meteorological station	28
2-7	The monthly average of sunshine duration for the period (1981-2016) for Rutba meteorological station	29
2-8	Relationship between climatic variables in the study area	30
2-9	Relationship between evaporation, potential and corrected evapotranspiration for the period (1981- 2016)	37
2-10	The relationship between mean monthly values of rainfall and corrected evapotranspiration in the study area for the period (1981-2016)	39
2-11	The SCS rainfall / runoff relationship (Soil Conservation Service) by (USDA, 1986)	40
Chapter Three		
3-1	Hydrogeologic section of well (W-17), modified from Al-Dulaymi et al., (2013)	47
3-2	3D model of the Mulussa Aquifer in the study area created by (RockWorks16) software	47
3-3	Spatial distribution map of districts and aquifers (Hussien and Fayyadh, 2014)	48
3-4	3D diagram shows the extension of Mulussa aquifer in the study area and adjacent areas	49

3-5	Groundwater flow map for studied area	54
3-6	Location of wells pumping test within study area	58
	Chapter Four	
4-1a	The spatial distribution of groundwater temperature in the study area (dry period)	71
4-1b	The spatial distribution of groundwater temperature in the study area (wet period)	71
4-2a	The spatial distribution of groundwater pH in the study area (dry period)	73
4-2b	The spatial distribution of groundwater pH in the study area (wet period)	73
4-3a	The spatial distribution of groundwater TDS in the study area (dry period)	74
4-3b	The spatial distribution of groundwater TDS in the study area (wet period)	75
4-4a	The spatial distribution of groundwater EC in the study area (dry period)	76
4-4b	The spatial distribution of groundwater EC in the study area (wet period)	76
4-5a	Relationship between TDS and EC for groundwater in dry period	78
4-5b	Relationship between TDS and EC for groundwater in wet period	78
4-6a	The spatial distribution of groundwater Ca in the study area (dry period)	79
4-6b	The spatial distribution of groundwater Ca in the study area (wet period)	79
4-7a	The spatial distribution of groundwater Mg in the study area (dry period)	80
4-7b	The spatial distribution of groundwater Mg in the study area (wet period)	80
4-8a	The spatial distribution of groundwater Na in the study area (dry period)	81
4-8b	The spatial distribution of groundwater Na in the study area (wet period)	82
4-9a	The spatial distribution of groundwater K in the study area (dry period)	83
4-9b	The spatial distribution of groundwater K in the study area (wet period)	83
4-10a	The spatial distribution of groundwater Cl in the study area (dry period)	87

4-10b	The spatial distribution of groundwater Cl in the study area (wet period)	87
4-11a	The spatial distribution of groundwater SO ₄ in the study area (dry period)	89
4-11b	The spatial distribution of groundwater SO ₄ in the study area (wet period)	89
4-12	Distribution diagram showing pH dependence of carbonate species in water (Weiner, 2000).	90
4-13a	The spatial distribution of groundwater HCO_3^- in the study area (dry period)	91
4-13b	The spatial distribution of groundwater HCO ₃ ⁻ in the study area (wet period)	91
4-14a	The spatial distribution of groundwater NO ₃ in the study area (dry period)	92
4-14b	The spatial distribution of groundwater NO ₃ in the study area (wet period)	92
4-15	Variation of trace elements concentration for groundwater samples in the study area	94
4-16	Spatial distribution of (Fe) in study area	95
4-17	Spatial distribution of (Mn) in study area	97
4-18	Spatial distribution of (Pb) in study area	98
4-19	Spatial distribution of (Cd) in study area	99
4-20	Spatial distribution of (Zn) in study area	100
4-21	The spatial distribution of water types in the study area (dry and wet period)	104
4-22	Hypothetical salts for two periods (dry and wet)	105
4-23	Standards plotting of Piper trilinear diagram, (1944) with the divisions of Langguth, (1966)	113
4-24	Piper diagram of the water samples in the dry period	114
4-25	Piper diagram of the water samples in the wet period	115
4-26	Stiff diagram of the water samples in the dry period	116
4-27	Stiff diagram of the water samples in the wet period	117
4-28	Human drinking water quality index (HWQI) map in dry period	137
4-29	Human drinking water quality index (HWQI) map in wet period	137

List of Tables		
Table	Title	Page No.
	Chapter One	
1-1	Geographic location of selected wells	17
	Chapter Two	
2-1	Mean monthly records of climatic parameters at Rutba meteorological station for the period (1981- 2016), (Iraqi Meteorological Organization, 2017).	22
2-2	Climate classification according to (Mather, 1974)	31
2-3	Climate classification according to Al- Kubaisi, (2004)	32
2-4	Average number of hours between sunrise and sunset for each month in Rutba meteorological station	35
2-5	Mean monthly values of evapotranspiration for period (1981-2016) at Rutba meteorological station, values calculated using Thornthwaite method	36
2-6	Water surplus and water deficit for the study area	39
2-7	Definition of four SCS hydrologic soil groups (USDA, 1986)	42
2-8	Classification HSG according to the texture of the new surface soil (USDA, 1986)	43
2-9	Curve Number for Various Urban Land Uses (USDA, 1986)	44
2-10	Mean monthly values of surface runoff in the study area	44
	Chapter Three	
3-1	Water table elevation above sea level for the wells	53
3-2	Ground water levels and flow direction in the present study and compare it with the study of the previous	55
3-3	Results of the hydraulic properties from pumping test analysis	57
3-4	Laboutka classification of hydraulic parameters	60
3-5	Standards for transmissivity (Gheorghe, 1978)	60
3-6	Transmissivity values for pumping test wells in the study area by using two methods	62
Chapter Four		
4-1	Classification of accuracy and relative difference (Stoodly, et al., 1980)	66

4-2	The accuracy of the results of groundwater samples in study area for two periods	67
4-3	Physical parameters and total hardness for the groundwater samples in the dry period	68
4-4	Physical parameters and total hardness for the groundwater samples in the wet period	69
4-5	Classification of water salinity according to TDS	74
4-6	Relationship between electrical conductivity and water mineralization, (Detay, 1997)	76
4-7	Calcium (Ca ²⁺) ranges and averages for the two periods	79
4-8	Magnesium (Mg ²⁺) ranges and averages for the two periods	80
4-9	Magnesium (Na ⁺) ranges and averages for the two periods	81
4-10	Potassium (K ⁺) ranges and averages for the two periods	82
4-11	Classification of water according to total hardness (Boyd, 2000), (Todd, 2007)	85
4-12	Total hardness (TH) ranges and averages for the two periods	85
4-13	Chlorine (Cl ⁻) ranges and averages for the two periods	86
4-14	Classification of chlorine water according to Schoeller, (1956)	87
4-15	Sulfate (SO ₄ ²⁻) ranges and averages for the two periods	88
4-16	Classification of sulfate water according to Schoeller, (1956)	88
4-17	Bicarbonate (HCO ₃ ⁻) ranges and averages for the two periods	90
4-18	Classification of carbonate water according to Schoeller, (1956)	91
4-19	Nitrate (NO ₃ ⁻) ranges and averages for the two periods	93
4-20	Ranges and average concentrations of the groundwater samples for two periods compared with the previous study of Al-Dulaymi et al. (2013)	101
4-21	The percentage ratio of prevailing water type in groundwater samples for two periods	103
4-22	The reaction order of the hypothetical salts (Collins, 1975)	104

4-23	Hydrochemical indicators of groundwater samples for dry period	107
4-24	Hydrochemical indicators of groundwater samples for wet period	108
4-25	Computed function for the source rock interpretation for dry period	109
4-26	Computed function for the source rock interpretation for wet period	110
4-27	Piper diagram divisions according to Langguth (1966)	113
4-28	Comparison groundwater samples with WHO, (2011) and IQS, (2009) the standards of drinking water	119
4-29	Specifications of waters for Livestock consumption purposes (Altoviski, 1962)	120
4-30	Water specifications for the purpose of livestock and poultry according to Crist and Lowery (1972)	121
4-31	Water specifications for the purpose of livestock and poultry according to Ayers and Westcot (1989)	121
4-32	Suitability of water for industrial purposes according to Hem, (1991)	122
4-33	Comparing groundwater samples with water classification for building uses according to (Altoviski, 1962)	124
4-34	Relative tolerances of crops to salt concentrations according to Todd, (2007)	125
4-35	Classification of irrigation water based on (EC) values (College of Agricultural Sciences, 2002)	127
4-36	Classification of irrigation water based on the (SAR) values (Subramain et al., 2005)	128
4-37	Classification of irrigation water according to Don, (1995)	129
4-38	Classification of irrigation water based on (RSC) values (Turgeon, 2000)	130
4-39	Water quality classification according to the values of PI Nagaraju et al., (2006)	131
4-40	Statistical summary of physical-chemical parameters of groundwater samples in the study area and the computed HWQI for each well in September, 2017	134
4-41	Statistical summary of physical-chemical parameters of groundwater samples in the study area and the computed HWQI for each well in April, 2018	135

4-42	Weighted arithmetic and standard values for each parameter according to World Health Organization Standard (WHO, 2011)	136
4-43	Water quality classification according to the value ranges of HWQI Vasanthavigar et al., (2010)	136

List of Plate		
Plate	Title	Page No.
Chapter One		
1-1	A) show Mesa and Butte. B, C, D, E and F) Show intermittent valleys	12
1-2	A) show water level measurement. B, C and D) Show process of wash plastic bottles and water samples collection. E and F) measure some field analyzes. G and H) pumping test operation	18

List of Appendices			
Appe ndix	Title	Page No.	
1	Some details for the chosen wells in study area	Ι	
2	Well test data and results	II	
3	The accuracy of the results of groundwater samples of study area for both periods	Х	
4a	Physical parameters and total hardness for the groundwater samples in the dry period	XI	
4b	Physical parameters and total hardness for the groundwater samples in the wet period	XII	
5a	Concentrations of major cations and anions for the dry period	XIII	
5b	Concentrations of major cations and anions for the wet period	XIV	
6	Concentration of trace elements for groundwater samples in the study area	XV	
7a	Hydrochemical formula for the samples in the dry period	XVI	
7b	Hydrochemical formula and water type for water samples of wet period	XVII	
8a	Hypothetical salts of water samples in dry period	XVIII	

8b	Hypothetical salts of water samples in wet period	XIX
9a	Values of (SAR, Na%, RSC, KI and PI) for groundwater samples in the study area for dry period	XX
9b	Values of (SAR, Na%, RSC, KI and PI) for groundwater samples in the study area for wet period	XXI

List of Symbols and Abbreviations				
Abbreviation	Description			
3D	Three-dimensional			
Α	Area			
A %	Accuracy or Certainty			
AI	Aridity index			
APE	Actual Potential Evapotranspiration			
BDL	Below Detection Level			
CN	Curve Number			
Ε	Evaporation			
EC	Electrical Conductivity			
epm	Equivalent per million			
FAO	Food and Agriculture Organization			
Fig.	Figure			
GEOSURV	The State Company for Geological Survey and			
GEOSCIAV	Mining			
GIS	Geographic Information System			
GPS	Geographic positioning system			
H.I	Humidity index			
HWQI	Human drinking Water Quality Index			
Ι	Hydraulic gradient			
IMO	Iraqi Meteorological Organization			
IQS	Iraqi standards			

K	Hydraulic Conductivity
КН	Key Hole
KI	Kelly Index
km	Kilometer
m	Meter
m a.s.l.	Meter above sea level
meq/l	milli-equivalents per liter
Na%	Soluble sodium percentage
NRCS	Natural Resources Conservation Service
O.S.W.	Ordinary sea water
Ob.	Observation well
Р	Rainfall
P.L.	Piezometric levels
PE	Potential evapotranspiration
PEc	Correct evapotranspiration
рН	Hydrogen Number
PI	Permeability Index
ppm	part per million
Q	Discharge
qi	quality rating
Re	Groundwater recharge
RH%	Relative Humidity
Rs	Runoff
RSC	Residual Sodium Carbonate
S	Storage coefficient
SAR	Sodium Adsorption Ratio
Sc	Specific capacity
SCS	Soil Conservation Service Method

SIi	Index of the parameter
SL	Sea Level
Sw	Drawdown
Т	Transmissivity
T ⁰ C	Temperature in centigrade degree
TCS	Total Calculated Solids
TDS	Total Dissolved Solids
TDSc	Calculated total dissolve solids
ТН	Total Hardness
TSc	Transmissivity from specific capacity
U	Groundwater pore velocity
USDA	United States Department of Agriculture
USSL	United States Salinity Laboratory
V	Groundwater flux
W-1,W-2etc.	Well number one, two etc.
WD	Water Deficit
WHO	World Health organization
Wi	Parameter's relative weight
WQI	Water Quality Index
Wr	Relative weight
WS	Water Surplus