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Abstract. The Maxwell's equations are a basic formulation using for solve propagation 

equations within a waveguide. In this research, the wave propagation inside the waveguide was 

studied and some basic parameters of wave propagation were measured through MATLAB 

2013. Silicon with a refractive index 3.46 was chosen to study this propagation and the use of 

core and cladding with a lower refractive index 2.46 and some parameters were extracted for 

the waveguide including propagation constant, cutoff wavenumber, cutoff frequency, cutoff 

thickness and normalized parameter. These parameters are studied at the wavelength 0.6 μm for 

transvers electric TE and transvers magnetic TM we changed the core thickness at wavelength 

constant and found that the number of modes increases as the increase of core thickness and the 

waveform is thinner in TM than it is in TE. We note from the measurements that the value of 

cutoff frequency and cutoff thickness are equal in the two types TE and TM. Moreover, when 

two modes (m=0, 1) and core thickness 0.24 μm the value of propagation constant in TE is 

equal (34.8901, 30.7737) while in TM (30.6440, 26.1967) respectively, we find that the values 

in TE are greater than TM. Also, the results obtained from Finite Difference Method were 

compared with the method used (Maxwell's equation through wave equation solutions). This 

work represents a short pathway for the theoretical analysis concerning the electromagnetic 

waves propagating through Si planar waveguide with both modes (TE and TM) considered. 

Keywords: Planar Waveguide, Silicon, Transvers Electric, Transvers Magnetic. 

 

1. Introduction 

Since the development of lasers and optoelectronics the telecommunications industry has driven the 

rise of photonics. Waveguides allow the light from these devices to travel large distances without 

being obstructed and to be directed easily in small areas without the need for complicated prism, lens 

and mirror systems. Waveguide consist of a core of dielectric material surrounded by a medium with a 

lower index of refractive [1]. These fibers, (depending on the size, shape and composition), can be 

either multimode or single-mode. Modes are fields that maintain the same transverse distribution and 

polarization at all points along the fiber axis. Multimode fibers support, as the name suggests, more 

than one mode in the electric field. (Different modes have different propagation constants and group 

velocities). An optical waveguide is a structure which confines and guides the light beam by the 

process of Total Internal Reflection (TIR) [2]. The refractive index of the cladding material is always 

chosen to be lower than the refractive index of the core material in order to trap the field energy inside 

the core by the phenomenon of (TIR). The core thickness and refractive indices for core and cladding 

can be shown in the Table 1. 

mailto:abdoo994az@gmail.com
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Table 1. The core thickness and refractive indices for core and cladding 

 Refractive index Thickness 

Core n1= 3.46 0.24 μm, 0.36 μm and 0.48 μm 

Cladding n2 = 2.46 - - - - - 

 

2. Theory 

2.1. Fundamentals of planar Waveguide 

Planar waveguides are an optical structure in which the optical ray passes along the direction of 

propagation. By distributing the refractive index to the waveguide structure, waveguides can be 

classified into symmetric and asymmetric waveguides [3].  

The waveguide is surrounded by two dielectric mediums of refractive indexes, where the refractive 

index of the core is greater than the refractive index of the substrate and the cladding. The refractive 

index of the cladding is less or equal to the refractive index of the substrate and is known as 

(Asymmetric step-index planar waveguide). Usually the refractive index of the cladding and the 

substrate are equal. In this case, the waveguide is called (Symmetric step-index planar waveguide), [4] 

as shown in Figure 1. 

 

Figure 1. (a) Asymmetric step-index planar waveguide (b) Symmetric step-index planar waveguide. 

 

By solving Maxwell's equations, a more accurate description of the spread of the electromagnetic 

wave can be propagation inside the waveguide. Only detailed solutions of the wave equations are 

allowed when the boundary conditions are entered into the media interfaces. This means that only 

separate waves are able to propagate (i.e. situations characterized by separate speeds and capacities) 

[5]. 

 
2.2. Waveguide mode 

The light guiding loss-less within a particular waveguide is considered possible via the entire internal 

reflection phenomenon which occurs at the interface between low to large index of the refraction 

dielectric materials just above the so-called critical angle. Herein, light has the ability to be occur in a 

confined space when a constructive interface is happening. Therefore, in contrast within a free space 

whereby light is able to propagate in all directions, an optical wave within a waveguide can only 

propagate at a separated state set; these are known as modes. Continuously, these modes are 

categorized based on their constant of propagations. The constant of propagation is defined as a speed 

measure by which the phase fronts propagate along the structure [6]. It must be mentioned that more 

than one mode can be obtained when an electromagnetic wave is propagated through any waveguide. 

Every particular mode possesses a specific cut-off frequency whereby the pre-described wave number 

is zero at the propagation direction. When a mode has the smallest cut-off frequency, it is considered a 
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dominant mode. The cut-off frequency is determined by the physical dimensions of the waveguide. 

There should be a multimode and single mode fibers which are classified based on the number of 

modes that propagate through that particular fiber. A mode is a mathematical representation which 

describes the propagation nature of an electromagnetic wave through a waveguide [7]. In other words, 

the mode can be also defined as the electromagnetic configuration nature along the path of the light 

within a fiber. Currently, there are two different slab waveguides which are utilized, these are single-

mode and multi-mode slab waveguides [8]. 

 

2.2.1. Single mode. A single-mode waveguide is recognized as having extremely small optical 

dispersion value, high bandwidth occurs via the allowance of the mode of zero-order to be propagated. 

Single-mode is capable of transporting high quantities of optical information because of lower optical 

dispersion over long distances. However single-mode waveguides suffer from high coupling losses 

from any kind of misalignment or fabrication defects [9]. A low NA (Numerical aperture) can reduce 

modal dispersion by limiting the number of modes and can reduce scattering loss. A single-mode 

possesses a relatively low core which permits only a particular mode of the propagating light at a time. 

Consequently, the signal mode fidelity is better reserved upon far distance, and modal dispersion is 

considered to be significantly decreased. The factors which mainly contribute in greater capacity of 

bandwidth as compared to multimode fiber can be accommodated [10]. 

 

2.2.2. Multimode. The second general type of waveguide modes, multimode possesses greater core in 

comparison to the single-mode fiber. It obtained this particular name as for that several modes, or light 

beams, could be passed instantaneously over a waveguide. Note that both mentioned modes ought to 

pass diverse distances to approach their targets. The disparity between the light beams arrival time is 

named a modal dispersion. Modal dispersion leads to humble signal quality at the receive point and 

eventually confines the transmission space, by which a multimode fiber is not utilized in wide-range of 

requests [11].  

In order to compensate for the dispersion disadvantages, fiber with graded-index was developed. 

The greater refraction at the core center decelerates some of light beams speed which allow all the 

beams to approach their destinations at around a similar time and decreasing the so-called modal 

dispersion. [12]. 

 

2.3. Types of transverse modes 

A non-directed electromagnetic wave in an open space and/or in isotropic dielectric, which is 

considered bulk, could be defined as an overlap of flat wave which in turn could be defined as a TEM 

mode as shown in the following subsections [13]. 

The waveguide modes are classified as follows: 

• Transverse electromagnetic (TEM) modes: - The magnetic field as well as the electrical field are 

not in the propagation direction. 

• Transverse electric (TE) modes: - The magnetic field is only in the propagation direction and is 

also entitled as H mode (H is the symbol that indicates the magnetic field). The electrical field is 

lacked in the propagation direction. 

• Transverse magnetic (TM) modes: - The electrical field is only in the propagation direction and 

may be entitled as E mode (E is the symbol that indicates the electric field). The magnetic field is 

lacked in the propagation direction. 

2.4. Symmetric step-index planar waveguide 

There is refractive index discontinuity only in x-direction, z and y direction is infinitely extended. 
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Figure 2. (a) shows the boundary of the waveguide and refractive index. (b) Confinement in x-

direction and propagating in z-direction (𝑛1 > 𝑛2). 

 

By solving Maxwell's equations, the wave propagation inside the waveguide can be analyzed as 

shown below. 

 

2.5. Propagation Constant 

It is a parameter that describes the spread of light in a waveguide and depends on the situation and 

frequency. The propagation constant is determined in some way by the waveguide and is denoted by 

the symbol (β), as the amplitude and phase of that light vary with a specific frequency along the 

direction of propagation z [14]. The spread constant depends on the wavelength and frequency, and 

that its measurement unit in the basic units is
1

𝑚
. The propagation constant is specified between two 

values (𝑛2𝑘° < 𝛽 < 𝑛1𝑘°) this condition is a basic and universal condition for any waveguide, 

regardless of the geometrical shape. Different types of wave solutions contain many common features, 

regardless of the structure and shape of the waveguide [15]. 

 

2.6. Numerical Aperture (NA) 

In the optical system, the numerical aperture is a measure of its angular acceptance of incoming light. 

It is a theoretical parameter that is calculated by visual design and defined based on engineering 

considerations [16]. Although the guide is considered a special kind of optical system, there are special 

aspects of the term numerical aperture in the waveguide. In the waveguide, the numerical aperture can 

be determined based on the input beam with the maximum angle at which the total internal reflection 

can occur [17]. The light beam is refracted when entering the waveguide and then subjected to the total 

internal reflection at the core-cladding interface. This only occurs when the angle of entry is not very 

large, as shown in Figure 3. 

 

Figure 3. Total internal reflection (TIR). 

The numerical aperture (NA) of the waveguide can be calculated by the difference between the 

refractive index of the core and the cladding, by the following relationship. 

 

𝑁𝐴 =
1

𝑛°
√𝑛1

2 − 𝑛2
2                                                                 (1) 

𝑛°: Refractive index of air equation (1). 
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𝑛1: Refractive index of the core. 

𝑛2: Refractive index of the cladding. 

 

When the input medium is different, i.e. with a higher refractive index, the maximum input angle 

will be smaller, but the numerical aperture remains the same [18]. There is no close relationship 

between the properties of waveguide modes and the numerical aperture. But only the waveguide with a 

high numerical aperture is due to the presence of modes with a greater deviation of the light coming 

out of the waveguide [19]. 

When the numerical aperture is high it has the following consequences: 

• The high numerical aperture (NA) waveguides are the most directive, that is, they will generally 

support a large number of modes. 

• Random differences in the refractive index increase when the numerical aperture decreases, so the 

waveguide that contains a low percentage of NA has increased propagation losses. 

• Orientation sensitivity is reduced for refractive index fluctuations. 

2.7. General solution of TEM, TE and TM wave using Maxwell's equations 

By solving Maxwell's equations we find 

∇ × �⃗� = −𝑖𝜔𝜇�⃗⃗�      (2) 

∇ × �⃗⃗� = 𝑖𝜔𝜀�⃗�                                (3) 

 

[𝜎 – not included because there are no source or material] 

 

|

�̂�𝑥 �̂�𝑦 �̂�𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐸𝑥 𝐸𝑦 𝐸𝑧

| = −𝑖𝜔𝜇(𝐻𝑥�̂�𝑥 + 𝐻𝑦�̂�𝑦 + 𝐻𝑧�̂�𝑧)                   (4) 

 

|

�̂�𝑥 �̂�𝑦 �̂�𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐻𝑥 𝐻𝑦 𝐻𝑧

| = 𝑖𝜔𝜀(𝐸𝑥�̂�𝑥 + 𝐸𝑦�̂�𝑦 + 𝐸𝑧�̂�𝑧)            (5)  

 

Consider electromagnetic wave which is propagation in z-direction, so z-direction will be 

longitudinal and x-y plan will be the transverse direction so, if the propagation in z-direction we will 

have. 
𝐸𝑥 ,     𝐻𝑥

𝐸𝑦,     𝐻𝑦
} 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

𝐸𝑧,     𝐻𝑧}𝑎𝑟𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑜𝑑𝑎𝑛𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 
From solving equations (4 and 5) we get. 

 

 
𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= −𝑖𝜔𝜇𝐻𝑥   (6)  

𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝑖𝜔𝜀𝐸𝑥    (9) 

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= −𝑖𝜔𝜇𝐻𝑦   (7)  

𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= 𝑖𝜔𝜀𝐸𝑦   (10) 

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝑖𝜔𝜇𝐻𝑧   (8)  

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑖𝜔𝜀𝐸𝑧   (11) 

�⃗� = 𝐸°exp
−𝑖𝛽𝑧            (12) 

 
𝜕𝐸

𝜕𝑧
= −𝑖𝛽�⃗�             (13) 

[𝐸° - could be a function of x]. 

Replacing (
𝜕

𝜕𝑥
) with (−𝑖𝛽) in equations (6, 7, 9 and 11) we will get equations. 
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𝜕𝐸𝑧

𝜕𝑦
+ 𝑖𝛽𝐸𝑦 = −𝑖𝜔𝜇𝐻𝑥     (14)  contains (𝐸𝑧, 𝐸𝑦, 𝐻𝑥) 

−𝑖𝛽𝐸𝑥 −
𝜕𝐸𝑧

𝜕𝑥
= −𝑖𝜔𝜇𝐻𝑦     (15)  contains (𝐸𝑥 , 𝐸𝑧, 𝐻𝑦) 

            
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝑖𝜔𝜇𝐻𝑧         (16)  same (8) 

                                 
𝜕𝐻𝑧

𝜕𝑦
+ 𝑖𝛽𝐻𝑦 = 𝑖𝜔𝜀𝐸𝑥                  (17)  contains (𝐻𝑧, 𝐻𝑦, 𝐸𝑥) 

                            −𝑖𝛽𝐻𝑥 −
𝜕𝐻𝑧

𝜕𝑥
= 𝑖𝜔𝜀𝐸𝑦       (18)  contains (𝐻𝑥, 𝐻𝑧, 𝐸𝑦) 

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑖𝜔𝜀𝐸𝑧                    (19) 

 

In all the equations above, one longitudinal component with two transverse components. 

So from equations (14 and 18) we can write. 

 

𝐻𝑥 =
𝑖

ᶄ2 (𝜔𝜀
𝜕𝐸𝑧

𝜕𝑦
− 𝛽

𝜕𝐻𝑧

𝜕𝑥
)     by eliminating 𝐸𝑦    (20) 

𝐸𝑦 =
𝑖

ᶄ2 (−𝛽
𝜕𝐸𝑧

𝜕𝑦
+ 𝜔𝜇

𝜕𝐻𝑧

𝜕𝑥
)     by eliminating 𝐻𝑥    (21) 

 

Similarly, from equations (15 and 17) we can write. 

 

𝐻𝑦 =
−𝑖

ᶄ2 (𝜔𝜀
𝜕𝐸𝑧

𝜕𝑥
+ 𝛽

𝜕𝐻𝑧

𝜕𝑦
)      by eliminating 𝐸𝑥                  (22) 

𝐸𝑥 =
−𝑖

ᶄ2 (𝛽
𝜕𝐸𝑧

𝜕𝑥
+ 𝜔𝜇

𝜕𝐻𝑧

𝜕𝑦
)              by eliminating 𝐻𝑦    (23) 

 

Where:  

ᶄ2 = 𝑘2 − 𝛽2 = 𝜔2𝜇𝜀 − 𝛽                  (24) 

ᶄ: Cutoff wave number, E: Electric field, H: Magnetic field, 𝜀: Permittivity, 𝜇:Permeability, 𝜔: 

Angular frequency, 𝛽: Propagation constant, 𝑘: Wavenumber 

Through the solutions of Maxwell's equations, we notice that both the electric field and the 

magnetic field are independent. Through these solutions, two modes are referred to (TE and TM) 

modes. 

 

2.7.1. TEM (Transverse Electron Magnetic) mode. Means that electric and magnetic fields both are 

transvers and there is no longitudinal components, so, 𝐸𝑧 = 𝐻𝑧 = 0 (longitudinal components). We 

can't use equations (20, 21, 22 and 23) in this mode because all will becomes zero. So, we use the 

equations (14, 15, 17 and 19). 

Combine (14) and (17) we will get  

𝑖𝛽𝐸𝑦 = −𝑖𝜔𝜇𝐻𝑥                    (25) 

−𝑖𝛽𝐻𝑥 =  𝑖𝜔𝜀𝐸𝑦                    (26) 

Combing we get 

𝑖𝛽𝐸𝑦 = −𝑖𝜔𝜇 [
𝑖𝜔𝜀𝐸𝑦

−𝑖𝛽
]                   (27) 

𝛽2 = 𝜔2𝜇 𝜀                     (28) 

Where: -  𝛽2 = 𝑘2 

Which means for TEM mode there is no cutoff wave number ᶄ=0. 

In TEM mode all frequencies will have Helmholtz equation. For TEM mode we can write a 

Helmholtz equation in terms of (𝐸𝑥  𝑜𝑟 𝐻𝑥 𝑜𝑟 𝐸𝑦 𝑜𝑟 𝐻𝑦) [18]. 

(∇2 + k2)Ex = 0       (29) 

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 + k2)Ex = 0      (30) 
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∂2

∂z2 = (−iβ)(−iβ) = −β2                                 (31) 

(
∂2

∂x2 +
∂2

∂y2 + 0)Ex = 0

(
∂2

∂x2 +
∂2

∂y2 + 0)Hx = 0

(
∂2

∂x2 +
∂2

∂y2 + 0)Ey = 0

(
∂2

∂x2 +
∂2

∂y2 + 0)Hy = 0}
 
 
 

 
 
 

                                                                   (32) 

 

2.7.2. TE (Transverse Electric) mode.In this mode (Ez = 0) because it longitudinal component. From 

solving equations (20, 21, 22 and 23) we will get. 

 

𝐻𝑥 =
−𝑖𝛽

ᶄ2 (
𝜕𝐻𝑧

𝜕𝑥
)

𝐸𝑦 =
𝑖𝜔𝜇

ᶄ2 (
𝜕𝐻𝑧

𝜕𝑥
)

𝐻𝑦 =
−𝑖𝛽

ᶄ2 (
𝜕𝐻𝑧

𝜕𝑦
)

𝐸𝑥 =
−𝑖𝜔𝜇

ᶄ2 (
𝜕𝐻𝑧

𝜕𝑦
)}
  
 

  
 

        (33) 

 

Amply the Helmholtz equation to solve for 𝐻𝑧 

 

(
∂2

∂x2 +
∂2

∂y2 + ᶄ2)Hz = 0        (34) 

ᶄ2 = 𝑘2 − 𝛽2         (35) 

 

Then substituting 𝐻𝑧 in equation (34) above we can get (𝐸𝑥  𝑜𝑟 𝐻𝑥 𝑜𝑟 𝐸𝑦 𝑜𝑟 𝐻𝑦). 

 

2.7.3. TM (Transverse Magnetic) mode. In this mode (Hz = 0) because it longitudinal component. 

Similarly, we get all the transverse components of (m) mode in terms of Ez only. 

𝐻𝑥 =
𝑖𝜔𝜀

ᶄ2 (
𝜕𝐸𝑧

𝜕𝑦
)

𝐸𝑦 =
−𝑖𝛽

ᶄ2 (
𝜕𝐸𝑧

𝜕𝑦
)

𝐻𝑦 =
−𝑖𝜔𝜀

ᶄ2 (
𝜕𝐸𝑧

𝜕𝑥
)

𝐸𝑥 =
−𝑖𝛽

ᶄ2 (
𝜕𝐸𝑧

𝜕𝑥
) }

  
 

  
 

         (36) 

(
∂2

∂x2 +
∂2

∂y2 + ᶄ2) Ez = 0        (37) 

 

Then substituting 𝐸𝑧 in equation (37) above we can get (𝐸𝑥  𝑜𝑟 𝐻𝑥 𝑜𝑟 𝐸𝑦 𝑜𝑟 𝐻𝑦). 

 

2.8. Cutoff frequency 

The waveguide carries signals that will carry only above a certain frequency known as the cutoff 

frequency and below the waveguide cutoff frequency it is unable to carry the signals. 

The waveguide should be able to spread the signals, and this depends on the wavelength of the signal. 

If the wavelength is too long, the waveguide will not operate in a position where it can carry signals 

[20]. 
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The cutoff frequency depends on the dimensions of the waveguide due to mechanical limitations. In 

order for the waveguide to transmit the signals, the waveguide width must be the same size as the 

propagating wavelength. The cutoff frequency is known as the following relationship [21]. 

𝑓𝑐 =
𝑚𝑐

4𝑎𝑁𝐴
                                                        (38) 

 

Where m is the number of mode, c is the speed of light in free space and NA is the numerical aperture. 

 

2.9. Normalized Frequency (V number) 

The normalized frequency determines the number of modes in the waveguides. The normalized 

frequency is a dimensionless parameter which is often used in the context of waveguides [22]. It is 

defined as: 

 

𝑉 =
2𝜋

𝜆

2𝑎

2
𝑁𝐴     (39) 

 

Where V: normalized frequency, λ: wavelength, 2a: thickness of the waveguide core and NA: 

numerical aperture. 

The normalized frequency is proportional to the optical frequency, but it is re-measured according 

to the characteristics of the waveguide, and it is considered suitable for various basic characteristics of 

waveguides [23]. 

 

2.10. Normalized parameter (b) 

We have the normalized frequency from equation (39) define the normalized propagation constant as: 

 

𝑏 =
(

𝛽

𝑘°
)
2

−𝑛2
2

𝑛1
2 −𝑛2

2      (40) 

 

Which makes the value of (b) lies between (0) and (1)(0 < 𝑏 < 1). 
b: Normalized parameter, 𝑘°: Vacuum wavenumber. 

 
3. Results 

A specific wavelength has been studied within the silicon waveguide with its value 0.6 μm. The silicon 

refractive index 3.46 (core) and the refractive index of the cladding 2.46. Moreover, core thickness has 

values (0.24, 0.36, 0.48 μm), while thickness of the cladding was unknown. 

https://www.rp-photonics.com/fiber_core.html
https://www.rp-photonics.com/numerical_aperture.html
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Figure 4. The intensity of the electric and magnetic field when the wavelength 0.6 μm, thickness 0.24 

μm (a, b), 0.36 μm (c, d) and 0.48(e, f) μm and m=0,1, m=0,1,2 and m=0,1,2,3, respectively. 

 

Figure 4 (a, b) shows the difference in the pattern of patterns at each thickness. We have noticed 

that when the thickness of the core is 0.24 μm, we get two modes, one symmetric and the other 

asymmetric in both types, but it was found that the waveform in TM is thinner than it is in TE. From 

the same Figure we noticed that when the core thickness increases, the number of modes increases, as 

in (c, d), we got three modes when the thickness of the core 0.36 μm, while we got four modes when 

the thickness of the core 0.48 μm as shown in (e, f). Through Figure 4 in all cases, TM modes appear 

much thinner than they are in TE due to the difference between the refractive index of the core and the 

refractive index of the cladding where the core is larger than in the cladding. 
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Table 2. Parameters of the silicon (Si) waveguide of the four lower order modes in TE and TM mode. 

 

Through the Table 2 which contains several variables, propagation constant, cutoff wavenumber, 

cutoff thickness, cutoff frequency and normalized parameter. These variables have different values 

according to the mode. We note that the values of the propagation constant are in TE higher than they 

are in TM at every core thickness, while cutoff wavenumber is in TM greater than in TE. Moreover, 

the cutoff thickness and cutoff frequency are equal in both modes. It was also observed that 

normalized parameter it has higher values in TE than TM. Relationships were also drawn between 

most of the parameters, and the difference between TE and TM was noted. 

 

 

Figure 5. (a) Shows the relationship between the number of modes and the propagation constant. 

(b)Shows the relationship between the number of modes and the normalized parameter. 

 

Figure (5 a, b) shows the relationship between the propagation constant and the number of modes at 

the wavelength of 0.6 μm and the core thickness of 0.48 μm, observed  there are four modes in TE and 

m
o

d
e 

λ
 (μ

m
) 

2
a
 

(μ
m

) 

m β ᶄ 

t
c
o
 

(μ
m

) 

f
c  

(T
H

z) 
b 

TE 

V
I 

0
.6

 μ
m

 

0.24 
0 34.8901 9.7729 0 0 0.8529 

1 30.7737 19.1263 0.1233 256.87 0.4365 

0.36 

0 35.5196 7.1550 0 0 0.9211 

1 33.3524 14.1580 0.1233 171.25 0.6912 

2 26.6209 20.8671 0.2466 342.50 0.3293 

0.48 

0 35.7938 5.6247 0 0 0.9513 

1 34.4615 11.1910 0.1233 128.44 0.8071 

2 32.1755 16.6604 0.2466 256.87 0.5724 

3 28.8760 21.8863 0.3699 385.31 0.2622 

TM 

V
I 

0
.6

 μ
m

 

0.24 
0 30.6440 19.3334 0 0 0.4242 

1 26.1967 25.0313 0.1233 256.87 0.0349 

0.36 

0 33.3539 14.1544 0 0 0.6914 

1 30.5565 19.4713 0.1233 171.25 0.4160 

2 26.9605 24.2067 0.2466 342.50 0.0974 

0.48 

0 34.4822 11.1270 0 0 0.8093 

1 32.6376 15.7360 0.1233 128.44 0.6186 

2 30.1111 20.1533 0.2466 256.87 0.3744 

3 27.0661 24.0886 0.3699 385.31 0.1062 
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TM modes. Through the Figures shown, it was found that the inverse relationship between the number 

of modes and each of the propagation constant and normalized parameter. The numerical values of 

both for each variable are greater in TE than TM at each mode. 

 

 

Figure 6. (a) Shows the relationship between the propagation constant and the cutoff thickness. 

(b)Shows the relationship between the propagation constant and the normalized parameter. 

 

Through Figure (6, a), we find that the inverse proportion between each of the two variables, and 

both TE and TM. Figure (6, b) we find that the proportional between each of the two variables shown 

in the Figure, but the values of TM are greater than the values of TE. 

 

 

Figure 7. (a) The relationship between the number of modes and the cutoff frequency (b) The 

relationship between the number of modes and cutoff wavenumber. 

 

We can observe from the Figure (7, a) the relationship between number of modes and cutoff 

frequency, as we note that the proportional for both TE and TM. While the Figure (7, b) shows the 

relationship between the number of modes and cutoff wavenumber we notice through this form that 

the proportional between them, Also, through the Figure (7, b), we notice that the values of the cutoff 

wavenumber in TM are greater than in TE. Moreover, it shows the approximation of the values cutoff 

wavenumber in TE and TM when increasing the number of modes. 

 

3.1. Finite Difference Method 

When solving Maxwell's equations using a finite difference method that depends on the method of 

solving them on using the algebra of matrices, the shape of the waves is obtained at certain 

wavelengths and core thicknesses, and also results are obtained for the parameters of the waveguide in 
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the TE mode field with core thickness (0.24, 0.36, 0.48 μm) at 0.6 μm wavelength.  The results were 

obtained as shown in the Table 3. 

 

Table 3. Parameters of silicon (Si) waveguide of the four lower order modes in Finite Difference 

Method in TE mode. 

λ (μm) 2a(μm) m β ᶄ 
t

c
o
 

(μ
m

) 

f
c  

(T
H

z) 

b 

V
I 

0
.6

 μ
m

 

0.24 
0 34.9322 9.6216 0 0 0.8574 

1 31.0133 18.7352 0.1233 256.87 0.4593 

0.36 

0 35.5404 7.0507 0 0 0.9235 

1 33.4408 13.9480 0.1233 171.25 0.7004 

2 29.8995 20.4659 0.2466 342.50 0.3548 

0.48 

0 35.8040 5.5594 0 0 0.9524 

1 34.5061 11.0527 0.1233 128.44 0.8118 

2 32.3081 16.4018 0.2466 256.87 0.5856 

3 29.1845 21.4732 0.3699 385.31 0.2897 

 

 

4. Conclusion 

These parameters are studied at the wavelength 0.6 μm for transvers electric TE and transvers 

magnetic TM we changed the core thickness at wavelength constant and found that the number of 

modes increases as the increase in core thickness and the waveform is thinner in TM than it is in TE. 

We note from the measurements that have been found that value of cutoff frequency and cutoff 

thickness are equal in the two types TE and TM. Moreover, when two modes (m=0, 1) and core 

thickness 0.24 μm the value of propagation constant in TE is equal (34.8901, 30.7737) while in TM 

(30.6440, 26.1967) respectively, we find that the values in TE are greater than TM. In this study, the 

waveguide parameters were acquired using Maxwell's equation through wave equation solutions and 

Finite Different Method by using MATLAB program. Hereinafter, it was concluded that the difference 

between the two utilized approaches exhibited small values. 

This means that both aforementioned techniques can be considered successful in determining the 

waveguide parameters in such arrangement and this work represents a short pathway for the theoretical 

analysis concerning the electromagnetic waves propagating through Si planar waveguide with both 

modes (TE and TM) considered. 
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