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Abstract  

In this work, the stage transition from an order-to-disorder of Nickel II Iron III oxide (ferromagnetic) of the two-
dimensional Ising Model is determined using Monte Carlo method with important samples. The magnetization per site 
(µ), energy per site (j) of a NiOFe2O3 have been calculated as a function of inverse temperature (βJ) for different 
lattice sizes (L×L= 4, 8, 16, 32), in the absence of external magnetic field (B=0). The critical inverse temperature 
(βC=0.435 KB/J) has been determined. The analysis of the outcomes appears that (βCJ=0.435) is set by measuring the 
magnetic characteristics in which the ferromagnetic suffers of the stage transition from an order to disorder. For 
clarity, Metropolis algorithm method was used to assess the behavior of the lattice and the critical inverse 
temperature in which the stage transition between NiOFe2O3 of ferromagnetic and paramagnetic states occurs was 
noted. It was noted that above (βCJ) the substance (NiOFe2O3) becomes a ferromagnetic state (order), leading to 
increase in average magnetization and the average energy decreases, while below (βCJ) the substance is in a 
paramagnetic state (disorder). 
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Introduction 

Basically a stage transition and critical region are 
the foremost wide phenomenon in nature. The 
square-lattice sizes (L2) of the Ising model are the 
simplest efficient system appears partial 
transitions (that is, the partial a stage transitions 
between the paramagnetic and ferromagnetic 
phase) and critical region at limited temperatures. 
The square-lattice sizes (L2) Ising Model has played 
a central role in the comprehension of stage 
transitions and critical conditions [1,2].  
The critical inverse temperature indicates the 
highest temperature for which there can be non-
zero magnetization. At this point, the system suffers 
an order-to-disorder transition, named stage 
transition [3]. The model ISING regarded is a 
square-lattice of spin locations with cyclic limit 

conditions, varying in dimensions from 
(L×L=N2=4×4 to L×L=N2=32×32) with the 
Hamiltonian criterion. Together, the coupling 
constant J and the Boltzmann constant KB are set to 
1, such that T-1=βJ is a denoted to as the inverse 
temperature. Spin locations are appointed a worth 
of (±1) to represent spin up and spin down 
respectively. Thus, the entire magnetization M is 
simply the integer sum of all lattice spin locations, 
and in addition, the total energy E is defined as 
minus the coupling steady J times all the 
neighboring spin pairs which can be aligned [4]. 
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Computational physics technique has played an 
increasingly significant role in addressing 
complicated problems of this kind in latest 
research. By implementing these techniques, at 
least in static critical behavior research, highly 
precise and reliable calculations of critical 
parameters can be performed [5]. 
Several works were well performed by multiple 
researchers on the two-dimensional Ising model of 
ferromagnetic. Bhanot [6] assessed the Ising 
model's accurate partition functions in (L2) square 
lattice sizes with free boarders stipulations up to 
(L=10) using Cray XMP. Bhanot counted all 2L×L = 
2100 (≈ 1.27 x 1030) states for (L=10), and start-up 
get to some beneficial outcomes. Stodolsky and 
Wosiek [7] obtained the precise partition function 
for L=13 (corresponding to 2169 ≈ 7.48 x 1050 
states) using IBM RISC 6000, and studied stage 
transitions based on the entropy as a function of 
the energy. 
In this work, we calculated the precise partition 
function of the Ising model and emulate the critical 
conditions of NiOFe2O3 on (L×L) square lattices with 
free boarders stipulations for (L×L=16) and 
(L×L=32), is acquired after categorize all 2L×L=216×16 

(≈1.1579×1077), 232×32 (≈1.79×10308) shapes of spin 
and we observe how the system evolves across 
steps to achieve balance. The energy and the 
magnetization were determined as a function of 
time of the Monte Carlo Step (MCS) and inverse 
temperature respectively. The correlation between 
magnetization and energy was determined in 
various square lattices in absence an magnetic field 
(B=0).  

 

The Ising Model   

Hamiltonian system depends on the order of the 
grid spins and we conclude from this 
characteristics, for example, magnetization [8,9]. 
Let Si,j denote a spin in lattice coordinates i and j 
with either spin up or spin down, Si,j= ±1. Assume 
which Hamiltonian is [10]: 
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where <ij> an strategy that sums up over the 
closest neighboring spin pair because the spin at 
location ij interacts with spins at locations i(j±1) 
and j(i±1) respectively. Jij is the exchange energy 
between the spins and B is an external magnetic 
field. In the absence of an external magnetic field, B 
= 0, and so the Hamiltonian reduces to [11] 
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The following distribution of probabilities should 
be used to calculate the expected values such as 

mean energy E or magnetization M in 

thermodynamic physics at a specific temperature  
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with β=1/KBT  is the inverse temperature, KB the 
Boltzmann constant, Ei the energy of state i, 
whereas Z the partition function for the canonical 
ensemble we may write  
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The specified configuration energy is given i by 
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Computational Observables 

For getting the result, I have altered the Fortran 90 
code that was developed by Lisa Larimore  [12]. we 
can measure of the effect inverse temperature (βJ) 
on the energy and the magnetization at each step. 
The critical inverse temperature (βC=0.435 KB/J) 
has been determined. Then, by taking the amount 
of all the spins in the lattice, we can evaluate the 
magnetization and the energy as a function of  time 
from Monte Carlo simulation (MCS). Two 
dimensional shapes are plotted using Grapher 
version 1.09 [13]. The computational observables 

of special concern are E , M . We determine in 

the next method: 
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Where M : represented the mean magnetization 

and )(sM , the magnetization per spin. 

To calculate the energy provided in equation (1), 
we use the Hamiltonian the factor of (1/2) is 
presented accounting for the fact that every pair is 
calculated twice in the sum. 
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Boundary conditions for inverse temperature (βJ): 

For a given β= (KB T)-1, the initiation lattice is set as 
the settled lattice of the former (β): 

 At (β= (KBT)-1=1), i.e. at a fully low 
temperature, completely aligned spins are 
obtained. There is maximum magnetization. 
Then, as the temperature will increase the 
change of spins gradually. 

 When (β=(KB T)-1) is such that β ≈ βC there 
are various clusters of aligned spins, 
magnetization is utmost in each cluster, 
however, the magnetization of the group is 
generally cancelled due to the eventuality of 
being in the αi configuration is equal to the 
eventuality of being in the -αi configuration. 

 The dipoles are routed randomly at a fairly 
high temperature (β= (KBT)-1=0), while the 
lattice is initialized at every value of (β= 
(KBT)-1), the findings differ: At a totally low 
temperature, there are several clusters of 
aligned spins. These domains stop evolution: 
We usually tend to get domain names from 
Weiss and walls Bloch. As a consequence, 
magnetization is random. The matrix of size 
limits the number of possible clusters[14]. 

 

Fluctuations in Monte Carlo Time “Evolution” 

In the simulation system, whenever the flip is done, 
the interaction energy will be reduced. If the energy 
increases, the flip is only obliged with an 
eventuality of {exp (-βE)} whereby (β=1/KBT) and 
(E>0) is the energy variance between upturned and 
non-upturned case (metropolis algorithm 
method).The applicable temperature will be in 
modules of (βJ) named the decreased temperature 
and is the "natural" temperature module used for 
the While of the execution. The emulation time 
repeatedly calculates what is called (Monte-Carlo 
Step), generally indicated to as time, each of which 
involves the potential flipping of all spins within 
the vicinity [15]. 

 

Simple Sampling 

The essential elementary sampling manner 
comprises of simply randomly selecting points 
within the configuration space from anywhere. A 
huge numeral of spins patterns is generated 
randomly (for the whole lattice) and data are used 
to calculate the average energy and magnetization. 
However, this mechanism needs to suffer from 
precisely the same problems as the quadrature 

manner, often sampling from unimportant areas of 
the stage size. The chances of producing a 
randomly created spin array and  up / down spin 
patterns are remote (~2-L), and high-temperature 
random spin array is highly likely. The most 
common way to avoiding this problem is by using 
the Metropolis importance sampling, which works 
by applying weights to the microstates [16]. 

 

Results and Discussion 

Location of the critical transition phenomenon 

Critical region shows the maximum temperature of 
non-zero magnetization. In this situation, the 
system is subject to transition called partial 
transition (a stage transition) from order-to-
disorder [17]. In order to locate the essential 
(critical) inverse temperature (βC), the most 
realistic value is given in the thermodynamic limit, 
where (L×L=N2), the boundary of infinity is 
regarded. Thus, we aimed to calculate the essential 
(critical) inverse temperature with fully different 
lattice sizes. Figure (1) shows the critical inverse 
temperature as N approaches infinity, and has been 
calculated the critical region for many lattice sizes 
and it value (βC=0.435 KB/J) without effect of the 
magnetic field (B=0). 

 

Figure 1: Critical inverse temperature (βC=0.435) depend on different 
lattice sizes 

 

The impact of the lattice size on the stage transition 
of (NiOFe2O3) 

To sight the impact of the magnitude of the lattice 
on the transition of the stage, the thermodynamic 
quantities are plotted in (L×L= 4, 8, 16, 32) without 
effect of the magnetic field (B=0) as shown in figure 
(2). We have started with random spin at the lattice 
locations and calculated magnetization and energy 
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using Ising Model. We executed (Metropolis 
algorithm) Monte Carlo simulation of an Ising 
Model in Fortran 90 Code. Each the emulations 
were in (L×L= 4, 8, 16, 32) the square lattice sizes of 
ferromagnetic (NiOFe2O3), and the simulation for 
inverse temperature (β) of  0.09 KB/J through 1.75 
KB/J with intervals of 0.02. As the temperature 
raise, the system was allowed to equilibrate for 
10,000 steps, and then the averages were 
performed over the entire lattice. It is obvious from 
absolute magnetization that a stage transition takes 
place at a critical inverse temperature (βCJ=0.435) 
or (TC=2.29) from a decreased value to a maximal 
magnetization value. Magnetization at higher 
inverse temperatures (low temperatures) above 
(βCJ) is the most stable (called order). While at low 
inverse temperatures (high temperatures) below 
(βCJ) the magnetization becomes instable (called 
disorder) and the fluctuation is bigger for all lattice 
sizes. 

 

Figure 2: Magnetization per site of a NiOFe2O3 as a function of inverse 
temperature for L2=N×N various square lattice sizes in an external 
magnetic field (B=0) 

 

Thermodynamics technique 

Thermodynamics is the process of fetching the 
lattice to equilibrium at a certain temperature 
T (1/βJ). This is attained pick from two initial states 
of the lattice, either evenly distributed spins 
identical to an inverse temperature of (β = 0) or all 
spins aligned in the same trend identical to (β = ∞), 
and then applying the Monte Carlo algorithm of 
choice until equilibrium is reached at a given 
inverse temperature (β), beginning from these 

primary cases [18]. The technique used to predict 

this time of equilibrium was to analyze the 
conduct of the total energy and magnetization of a 
(L×L= 16, 32) square lattice sizes of ferromagnetic 
(NiOFe2O3) using the Metropolis algorithm as these 
achieve a stable state of equilibrium as shown in 
figures (3,4). It can be seen that equilibrium has 
been reached for all temperatures at 
 =200, =650 lattices sweeps (steps per site) of a 
(L×L= 16, 32) square lattice sizes of ferromagnetic 
(NiOFe2O3) respectively. We can see clearly that 
time of thermalization will rise with (β) and that 
equilibrium is reached much quicker while starting 
from a polarized state. 

 

 

Figure 3: Thermalization processes of the total magnetization M of a 
NiOFe2O3 at various inverse temperature in an external magnetic field 
(B=0). 
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Figure 4: Thermalization processes of the total energy E of a 

NiOFe2O3 at various inverse temperature in an external magnetic 

field (B=0) 

 

The impact inverse temperature on magnetization 
and energy of (NiOFe2O3). 

Figures (5,6) show the impact of inverse 
temperature at βC=0.435 on energy and 
magnetization with a great range of spin-lattice 
interactions (L×L=16) of ferromagnetic (NiOFe2O3). 
It should be observed that stage transition is 
already important if the scale is sufficiently big. 
Figure (5) obviously indicates a transition stage 
under βCJ=0.435 for (L×L=16) lattice size without 
the magnetic field (B=0). At higher inverse 

temperatures βJ (lower temperatures), the regime 
highly prefer the ground cases. There are instances 
where spins line up either to up and the 
magnetization becomes +1 or down and the 
magnetization becomes -1. At lower inverse 
temperatures βJ (higher temperatures) than a stage 
transition, the spins tend to line up randomly, 
which outcomes in (Magnetization=0). This 
corresponds to extreme temperature, since (J= -E/ 
KBT) which implies that (J) is inversely proportional 
to T. Nevertheless, the spins tend to align as the 
inverse temperature increases. The transition stage 
is much more evident in figure (6). We start with a 
(L×L=N2) square spin lattice and observe how the 
system evolves across (2L×L=216×16 (≈1.1579×1077)) 
step to achieve balance. With growing inverse 
temperature, the division of the line is likely to 
become more evident owing to the different energy 
of the lattice with domains, which means the 
magnetization be zero (M=0), as well as a full 
magnetization lattice of (-1 or 1). Figure (7) shows 
the relationship between magnetization and energy 
for (L×L=16) square lattice size of ferromagnetic 
(NiOFe2O3). We will see that two low-energy zones 
are the identical for spin up and spin-down 
orientation. Low-energy cases are also not 
exhibiting high net magnetization. It occurs when 
there are comparatively large clusters of spins both 
up and down. This is often similar to ferromagnetes 
domains. It is sensible to note that reduced energy 
outcomes from net magnetization or domains 
formation. 

 

Figure 5: Magnetization per site of a NiOFe2O3 as function of inverse 
temperature for L2=N×N square lattice size in an external magnetic 
field (B=0). 
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Figure 6: Energy per site of a NiOFe2O3 as a function of inverse 
temperature for L2=N×N square lattice size in an external magnetic 
field (B=0) 

In additionally, it is interesting to draw 
magnetization versus energy, which is completed in 
Figure (7). The zones of higher density refer the 
four states. Concerning (M=±1.0, E=-2.0) we find 
the two high inverse temperature stage ground 
states; centered at (M=0, E=-1.2) we find the high 
inverse temperature semi settled states; and 
concerning (M= 0, E=-0.4) we find the low inverse 
temperature stage. 

 

Figure 7: Magnetization per site of a NiOFe2O3 as a function of energy 
for L2=N×N square lattice size in an external magnetic field (B=0) 

 

Conclusion 

The Monte Carlo method implemented in the Ising 
Model that prescribes the magnetic characteristics 
of a ferromagnetic a (NiOFe2O3), permits to attain 
the thermodynamic quantities variation with a 
(L×L= 4, 8, 16, 32) various lattice sizes at Curie 
region (βCJ=0.435). The square-lattice size (L2) Ising 
Model is the simplest system showing partial 
transitions (the transition between the 
ferromagnetic phase and the paramagnetic section) 
and critical conditions at limited temperatures. 
Under a certain temperature (critical inverse 
temperature βc=0.435 KB/J), the material will be in 
the paramagnetic state, which means that the 
average magnetization decreases and the average 
energy increases, while above a certain 
temperature (critical inverse temperature βc=0.435 
KB/J) the material will be in the case of 
ferromagnetic, thus, the average magnetization 
increases and the average energy decreases. 
Moreover, under a certain temperature (critical 
inverse temperature βc=0.435 KB/J), spontaneous 
magnetization is zero. 

 There are two explanations in a wider lattice 
for an increased computational time: 

1. Since the flipping of spins is greater, it is 
important to settle on more particles. 

2. This takes longer for a larger system to 
achieve a balance which that has to permit 
the system to develop over a greater number 
of steps. Because the computations are more 
demanding in this situation. 
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Appendix (A) 

Table 1: Calculation magnetization as a function of inverse temperature Beta at (L×L=N2) lattice sizes in external an magnetic fielf (B=0). 
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Table 2: Calculation energy as a function of Time of the Monte Carlo Step (MSC) at (L×L=N2) lattice sizse in external an magnetic fielf (B=0) 

 


