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Abstract:The location of the phase transition in the two dimensional Ising model were  

determined using Monte Carlo simulation with importance sampling. The magnetization  M  per 

site   , energy
  E  per site  J , magnetic susceptibility   , specific heat  VC  of a 

Ferromagnetic materials were calculated as a function of temperature T for 

 5555,3030,1616   spin lattice interaction in zero and nonzero magnetic field
 

 0,0  BB . There is thus a phase transition defined by the Curie temperature. The Monte 

Carlo method was used to check the results and to confirm the phase transition . The internal 

interaction results were found to be consistent with what was expected. As a magnetic field is 

applied, the spins tend to align with it for T ˃ CT  and its effect is not significant at a very high 

temperature because of the thermal agitation. For T ˂ CT , the alignment of the spins is possible 

only if the amplitude of the field is big enough. 
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Introduction 
The ising model allows to deal with 

thermodynamic problems such as the behavior 

of the spins in ferromagnetic materials. Thus, 

referring to a two-dimensional lattice of 1/2 
spins to which the Monte Carlo method is 

applied, we determine the observables 

describing the system and their evolution with 

the variation of the magnetic field and the 

temperature [1]. 

 An ising model is introduced and used to 

investigate the properties of a  ferromagnet 

with respect to its magnetization and energy at 

varying temperatures. The observables are 

calculated and a phase transition at a critical 

temperature is also illustrated and evaluated 
[2]. we can to rely on numerical methods that 

adopted is based on program as ( Fortran code 

90),to build the phase diagrams . 

In most ordinary materials the associated 

magnetic dipoles of the atoms have a random 

orientation. In effect this non-specific 

distribution results in no overall macroscopic 

magnetic moment.  

 

However in certain cases, such as iron, a 

magnetic moment is produced as a result of a 

preferred alignment of the atomic spins [2]. 

This phenomenon is based on two fundamental 

principles, namely energy minimization and 

entropy maximization. These are competing 

principles and are important in moderating the 

overall effect. Temperature is the  
mediator between these opposing elements and 

ultimately determines which will be more 

dominant. The relative importance of the 

energy minimization and entropy maximization 

is governed in nature by a specific 

probability[2,3].                                            
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Where     E  : the energy  ,   

                    P : Partition function ,  

                T : Temperature ,   

                  k : Boltzmann constant  
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which is illustrated in figure 1 and is known as 

the Gibbs distribution   

Theory And Method 
The ising model 

The Hamiltonian for a system that is dependent 

on the arrangement  of spins on a lattice and 

from that we can deduce properties such as 

magnetization and susceptibility [4,5]. Suppose 

that the Hamiltonian is 

 
i

i

ji

ji sBssJH                (2)                                                                                                                                                                            

internal interaction energy   external 

magnetic energy 

   

where
 

ji means that we sum over the 

nearest-neighbor pair of spins. This means that 

the spin at site ji  interacts with spins at sites
 

 1ji  and  1ij  respectively. We are 

assuming periodic boundary conditions in our 
model which means that every spin will interact 

with four other spins regardless of their 

position on the finite lattice. The better 

understanding of the proposed system can be 

seen as in figure 2 . 

Here J  is the dimensionless interaction 

strength and B represents the energy involved 
in the magnetization of the lattice and is also 

dimensionless. 

The Ising Model considers the problem in two 
dimensions and places dipole spins at regular 

lattice points while restricting their spin axis to 

be either up (+y) or down (-y). The lattice 

configuration is square with dimensions L
and the total number of spins equal to 

LLN  . In its simplest form the 

interaction range amongst the dipoles is 

restricted to immediately adjacent sites (nearest 

neighbors). This produces a Hamiltonian for a 

specific spin site, i , of the form [2,6]  : 

  

jnn

jii ssJH                  (3)                    

where the sum nnj  runs over the nearest 

neighbors of i  . The coupling constant between 

nearest neighbors is represented by J  while the 

is  and js  are the respective nearest neighbor  

spins. The nature of the interaction in the model is 

all contained in the sign of the interaction coupling 

constant J  . 

 If J is positive it would mean that the material 

has a ferromagnetic nature (parallel alignment) 

while a negative sign would imply that the 

material is antiferromagnetic (favors anti-parallel 

alignment). J  will be taken to be 1  in our 

discussion and the values for spins will be 1  for 

spin up and 1  for spin down. A further 

simplification is made in that BkJ  is taken to 

be unity. The relative positioning of nearest 

neighbors of spins is shown in figure 3 with the 

darker dot being interacted on by its surrounding 

neighbors [2]. 
The equilibrium of the system can be 

represented with these quantities [1,5,6]. 

•  Magnetization 

                   (4)        S
N

M
2

1
           

   
2N : The total no. square of spins S . 

 

•  Heat capacity 

                                              

   222

2
1

1
 EEkT

N
C          (5)                                              

  
2E : Average of  the energy square of 

spins . 

 T : Temperature , k : Boltzmann constant  
 

It is linked to the variance of the energy. 

 

•  Susceptibility 

 

  
 22

2

1
 SS

kT

J

N
                   (6)        

         

     T : Temperature , k : Boltzmann 

constant 

   J : is the dimensionless interaction 

strength . 

where  j jSS .  It is linked to the variance of 

the magnetization . 

 

The free energy should  satisfies the 

equation:[1,5] 
                                               

STEZTkF B  ln             (7) 

 

       Where    





j

jE
eZ



   

      

                Z : partition function 

                 and 

   
TkB

1
  

          Where   the Boltzmann factor is 

equal to unity . 

  The system approaches the equilib- rium by 

minimizing F. 
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- At low temperatures, the interaction 

between the spins seems to be strong, the 

spins tend to align with another. In this 

case, the magnetization reaches its 

maximal value
 

1M  according to its 

formula, the magnetization exists even if 

there is no external magnetic field. 

- At high temperature, the interaction is 

weak, the spins are randomly up or down. 
So, the magnetization is close to the value 

0M . Several configurations suits: the 

system is metastable. 

- The magnetization disappears     at a given 

temperature. 

- Thus there exists thus a transition phase. In 

zero external magnetic field, the critical 
temperature is the Curie temperature 

 21ln

2


CT  (obtained 

     by the Onsager’s theory) [1,7].  According 

to the transition phase theory, the second 

order derivative of the free energy in B
and in T are discontinuous at the 

transition phase; as the susceptibility and 
the heat capacity are expressed with these 

derivatives, they should diverge at the 

critical temperature. 

Behavior of the spins 

     For a given   , the starting lattice is 

defined as the stable lattice of the previous

    : 

•  At  1 , i.e. at a very low temperature, 

we obtain fully aligned spins. 
The magnetization is maximum. Then, as 

the temperature increases the  spins are 

gradually changed. 

•  When    is such that CTT  , there are 

several clusters of aligned spins, in each 

cluster the magnetization is maximum but the 

magnetization of the set is null in general 

because the probability which will be in the 

configuration i  is equal to the probability 

that will be in the configuration i  . 

• At very high temperature  0 , the 

dipoles are  randomly oriented. 

When the lattice is initialized at each value 

of   , the results are different: At a very 

low temperature, there are several clusters 
of aligned spins. These domains stop to 

evolve: We obtain Weiss domains 

 and Bloch walls. The magnetization is thus 

random. The size of the matrix limits the 

possible number of clusters.[1] 

 

Results And Discussion 
Case of zero external magnetic field  

Influence of the size on the charac- 

teristic quantities : 

In order to see the effects of the size of the 
lattice on the transition of the phase, the 

thermodynamic quantities are plotted for 

several sizes in the absence of magnetic field. 

We notice that if the size is not big enough, the 

phase transition is not really perceptible. The 

effect of temperature for different lattice sizes 

on energy and magnetization have been shown 

in figures (4 and 5) .  

At very low temperatures, the energy is 

minimum and it slowly increases with the 

temperature. At a given temperature, the slope 
for three different sizes of lattice becomes the 

same abrupt increasing and the energy finally 

approaches  J0 .  

For the three sizes, the magnetization is 

maximum at low temperatures and at Curie 

temperature 05.065.2 CT  for  

lattices  3030,1616  , but at  2.02CT
 

for lattice  5555  the  

magnetization becomes minimum because the 

sequence particles is long in lattice as well as it 
takes greater time for a larger system to reach 

equilibrium which means that must be let the 

system evolve over a larger number of steps.  

There is a transition such that the magnetization 

above this temperature is almost null.  
The bigger is the lattice , the faster is the 

demagnetization . Moreover, the 

demagnetization is not complete at small sizes, 

in this case  M is constant and non-null at 

high temperature. Indeed, there are finite size 

effects[1]. Therefore, a lattice  3030  is 

appropriated to determine the transition phase 
according to the above discussion. 

The heat capacity and the susceptibility against 

the temperature for different sizes have been 

shown in figures (6 and 7), respectively .    

The heat capacity has a peak at Curie 

temperature
 

2.045.2 CT  which 

symbolizes the phase transition, at high 

temperatures, it decreases until it reaches 0. 

The bigger the lattice is, the more the peaks 

marking the phase transition are pronounced.  

The peak is present in the figure (7) as well at 

10.05.2 CT , but the susceptibility 

becomes almost null at high temperatures.  

The finite size effects for a lattice  3030  

is appropriated to determine the transition 

phase. When the size is appropriated enough, 
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the susceptibility and the heat capacity diverge, 

and this is consistent with the theory. 

 Influence of the magnetic field 

 Thermodynamic quantities against the 

temperature : 

The effect of the external  magnetic field 

 0B  on the thermodynamic quantities have 

been also investigated . In figure (8) the 

influence of the magnetic field on the energy 
makes the shift of the energy less abrupt with a 

lattice  3030 .  

In figure (9) the magnetization is in general 

bigger when a magnetic field is applied, but at 

high temperatures, the magnetic field has only 

little effect. 

The heat capacity and the susceptibility against 

the temperature for a lattice  3030  and 

with presence of the external magnetic field 

 0B  have been shown in figures (10 and 

11), respectively . 

 The temperature at the location of the peak, is 

lightly displaced toward the bigger values.  

In figure (11) the magnetic field generates a 

decreasing in the magnitude of the peak. At 

high temperature, the magnetic field has almost 

no effect. The thermal agitation makes 

negligible effect in the magnetic field. 

The bigger the lattice is, the more the peaks 

marking the phase transition are pronounced.  

Thermodynamics quantities against the 

magnetic field 
The effect of the external  magnetic field 

 0B  on the thermodynamic quantities with 

a lattice
 
 3030  have been shown in figures 

(12 and 13), respectively. The influence of the 

magnetic field on the energy and magnetization 

at several given temperatures, the magnetic 

field varies from  JB 1 , a large 

positive value to  JB 1 , a large 

negative value . 

Both the energy and magnetization quantities are 

approximately null constants as shown in figures 

(12 and 13), respectively. The magnetic field 

cannot establish  an order, the temperature is 

much too high, it confirms the above results 

about the influence of the magnetic field 

according to the temperature. 

The effect of external magnetic field
 
 0B  

on energy and on the magnetization with a 

lattice  3030 have been shown in figures 

(14 and 15), respectively .    

As shown in figure (14), the magnetic field has 

a large positive value at the beginning ,whereas 

the energy is negative , the spins are thus up, 

they align with the magnetic field. Then the 

energy increases linearly with  B  until the 

sign of the magnetic field changes. the 

magnetic field becomes a large negative value, 
but the energy is negative and maximum, the 

spins are down, they align with the magnetic 

field. Then the energy decreases linearly with 

 B . The energy quantity follow the pattern 

from  JB 1  to
 
 JB 1  . 

 In figure (15) at the beginning , the magnetic 

field has a large positive value, the 

magnetization is positive and maximum, the 

spins are up, they align with the magnetic field. 

Then the magnetization decreases with  B  

until the sign of the magnetic field changes. 

The magnetization becomes negative. the spins 

tend to align with the magnetic field and the  

magnetization increase with  B . The 

magnetization quantity follow the same pattern 

from  JB 1  to  JB 1  as shown in 

figure (14). 

Conclusions 

The Monte Carlo method applied to the Ising 

model which describes the magnetic properties 

of materials allows to obtain the 

thermodynamic quantities variations. The 

results are consistent with the expected values 
and behavior in the case where the lattice is big 

enough to limit the finite size effect [1]. At a 

certain temperature (T ˃ TC) and in the absence 

of magnetic field  B , the spins are randomly 

oriented , a phase transition will be 

inferromagnetic state, Therefore the average 
magnetization will be decreased and the energy 

state increases, while below a certain 

temperature at (T ˂
 
TC) the spins are aligned, 

hence a phase transition will be in a 

ferromagnetic state, and the average 

magnetization will be increased and the energy 

state decreases. Moreover, above a certain 

temperature spontaneous magnetization  M
 

will be zero. 

 In the presence of a magnetic field  B , the 

phase transition is not so marked. At a very 

high temperature, the field has no effect 

because of the thermal agitation. In a general 
way, the spins align with the magnetic field but 

at (T ˂ TC) the changes of direction happens 

only if the field is above a critical value . 
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Figure 1: shows the Boltzmann probability distribution as a landscape for varying Energy (E) and 

Temperature (T ) [2] . 

 

 

 

 

 

 

 

 

 
Figure 2: The energy of particle on the left is low since all the neighboring particles have the same 

alignment of spin. In contrast, the energy of the particle on the right is at its highest 

since all the neighboring particles have a different spin alignment [4]. 
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Figure 3: Nearest neighbor coupling. The dark dot, at position(x,y), is being interacted upon by its 

nearest neighbors which are one lattice spacing away from it [2] . 

 

 

 

 

 

 

   

 

 

 

Figure 4: Energy (in J-unity) against the temperature for three different sizes of lattice for case of 

zero external field (B=0).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Magnetization against the temperature for three different sizes of lattice for case of zero 

external field (B=0). 
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Figure 6: Heat capacity (in J -unity) against the temperature for different sizes for case of zero 

external field (B=0) .  

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Susceptibility against the temperature for different sizes for case of zero external field 

(B=0) .  

 

 

 

 

 

 

 

 

 

Figure 8: The influence of the  external magnetic field on the energy on a lattice  3030  . 
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Figure 9: The influence of the  external magnetic field on the magnetization on a lattice 

 3030  . 

 

 

 

 

 

 

 

 

 

 

Figure10 : The Influence of the magnetic field on the heat capacity with a lattice  3030 . 

 

 

 

 

 

 

 

 

 

 

Figure11 : The Influence of the magnetic field on the susceptibility with a lattice 
 3030 . 
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   Figure 12 :  0  . Energy against the magnetic field with a lattice  3030 . 

 

 

 

 

 

 

 

 

 

 

 

          

   

 Figure 13 :  0  . Magnetization against the magnetic field with a lattice  3030 . 

 
 

 

 

 

 

 

 

  Figure 14 : 
 4.0 . Energy against the magnetic field with a lattice 

 3030 .  
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Figure 15 : 
 4.0

. Magnetization against the magnetic field with a lattice  3030 .  
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 الخلاصة
لمعثفع  وثةع  اعثلاثد تعودر لوثةع  اعثلاثد اعوثن ل معتعم ا ما اع د لاومعوتتب  (Ising)تم تعيين موقع  لانتتاع ا لاورعوثن ئتع لب لاولععو وتمعو   

 لاوميت ريمععي  لاوماتمععل ولان  . اعع ثوو ومعع ود فيثوميت ريمععي  M  واععا موقعع  وتعع ثلا ,   لاور قعع  لاوماتمععل E  واععا موقعع J ,
 لاوا لتيععع  لاوميت ريمعععي   لاومععععع  لاواثلاثيععع ,  VC  لاواععععثلاثد, امعععل  اولاوعععع  ووثةعععT  ومصعععةوف  معععن تةعععع در   عععليا   ثلا  لاولععععثم

 5555,3030,1616 مة ا ميت ريمب  فب 0,0  BB.   لامتخوم  رثيا  موتتب اع ثوو وتعوقيه هع ل لاوتتع لت ووتئليع
لانتتا ا لاوروثن . ليت  تت لت لاوتة دا لاوولاختب )لاوتتاع لب  وتلعثوم دتعو  0B   لاتهع  متولافاع  مع  لاوامع ل   لاوت ثيع  وهع ل لاورثياع  . لامع

دتعو مةعع ا ميت ريمععب  0B   فعع ن لاولععثوم تميعا ورصععرة م معع  لاومةعع ا لاوممععتر فععب ا وع CTT   ايععا لان تععهئيثل وععم ياععن فععع ا ,
ثن لاو ن يعثقا لاصعرة م لاولعثوم . ودتعو لوثة   لاواثلاثد لاوع وي  لملب لاوتهيت لاواثلا CTT   فهتع   لاما تيع  نصعرة م لاولعثوم فاعر لا لا

 ا ت  قيم  لاومة ا اليثد .
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