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 الخلاصة
حددث بإسخعًال يحاكاةِ يىَخٍ كازنى  (Ising)حأثُساث حجىِ انًشبكِّ عهً الاَخقال انطىزٌ ثُائٍ انبعد نًُىذج 

رزاثانًكخسبت نكم يىقع نه المغناطيسيةنًىاد فُسو يغُاطُسُت . واٌ  ,انًكخسبت نكم يىقع الطاقة j ,

نًصفىفت يٍ حفاعلاث شبُكت ذزاث انبسو  Jنقىة انخفاعم حسبج كدانت  9898,2222  فٍ يجال

يغُاطُسٍ  0B َحبٍُ َخَائجَِ أعًال انًحاكاة بانحاسىبِ انخىُافقُ يع يصادزَ أخسي حعسف بانقًُت انحسجت .

نقىّةِ انخفاعمِ وانقسَبت يٍ انقًُت  48.0CJ  ِأَضاً انُخَائجِ كَاَجْ يخسّقت يع قَُِى . ٍِ فٍ صفس يجال يغُاطُس

. كًا حى دزاست حقدو يىَخٍ كازنى انًخىقعّت انًُىذجُت وانُظسَت نهًشبّ  ٍِ كِ الأكبس ذو حأثُسِ انحجىِ انلاَهائ

)حسكت( انكًُاث اندَُايُكُت انحسازَت وقىة انخفاعمَ قسُْب الاَخقال CJ  نعلاقت بٍُ انطاقتِ اوكرنك

 .وانًغُاطُسُت

ABSTRACT 
In this project, the effects of the size of the lattice on the transition of the Phase in 

the two dimensional ising model were determined by using Monte Carlo simulation. 

The magnetization per site   , the energy per site  j  of a ferromagnetic 

materials were Calculated as a function of interaction strength  J  for 
 9898,2222  spin lattice interaction by using Monte Carlo Simulation of the 

2D ising model in which the results of computer simulations agree with other 

sources that claim that the critical value of interaction strength is close to  48.0CJ

, in zero magnetic field. Also the results were consistent with the expected Monte 

Carlo model and theoretical values for the bigger lattice in which infinite size effect. 

Further the evolution of the thermodynamic quantities and interaction strength near 

the transition as well the relation between energy, magnetization were examined. 

INTRODUCTION 
It is well known that the interplay between the competing interactions in 

many magnetic and superconducting materials as well as in complex 

systems leads to a rich phase diagram with a large number of phases and 

non-trivial types of ordering. As a vivid example of such systems, we 

investigate here the two-dimensional  D2  ising model with competing 

ferromagnetic nearest-neighbor (Si) and diagonal (Sj
`
) interactions on a 

square lattice L
2 
 [1]. 

Consider the two-dimensional ising model which has many appliances 

in condensed matter physics and field theory. Generally, ising models 

have degrees of freedom residing on a lattice which interact locally. 

Here, thermodynamic properties of a magnetic material are calculated 

using the metropolis algorithm. The degrees of freedom are spins of 

atoms interacting with each other and an external magnetic field [2]. 

The Ising model considered is a square lattice of spin sites with periodic 

boundary conditions, ranging in size from  2222  to  9898  with the 

standard Hamiltonian. The coupling constant J  and  the Boltzmann 

constant BK  are both set to 1 . Spin sites are assigned a value of 1  to 
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represent spin up and down respectively. Thus, the total magnetization 

M is simply the integer sum of all lattice spin sites, and the total energy 

E is defined as minus the coupling constant J  times all the neighboring 

spin pairs that are aligned [3]. Ferromagnetism and antiferromagnetism 

are exchange interactions that are caused by Pauli’s Principle and 

Coulomb interactions. If we consider two spins iS  and
 jS , the 

exchange interaction is in the form of
 
  ji SSJ . , where J  is a 

positive and distance-dependent coupling constant. This coupling 

constant is determined by the overlap that consists of Coulomb 

interactions [4]. 

 

 

 

 

 

 

 

 
 

 

Figure-1: The energy of particle on the left is low since all the neighboring particles 

have the same alignment of spin. In contrast, the energy of the particle on the right 

is at its highest since all the neighboring particles have a different spin alignment 

[3]. 

 

THE MODEL AND METHOD 

The Model 

The particular model is a ji nn  square lattice with spin variables S . 

These can take two different values, jiSS  = 1   ji ,  which 

represents the either "`up"' or "`down"' state. The Hamiltonian for this 

system is [2] 

                           
 


 SBSSJH
neighbours

                          (1) 

"Neighbors" means summation over the nearest-neighbor pairs of spins, 

i.e. spin jiS , interacts with the four spins jiS ,1  and  Periodic boundary 

conditions are assumed, so the upmost spin interacts
 1, jiS  also with the 

lowest, and the leftmost with the most right. We will be assuming 

periodic boundary conditions in our model which means that every spin 

will interact with four other spins regardless of their position on the 

finite lattice. We refer to figure (1) for better understanding of the 

proposed system. 



Al- Mustansiriyah J. Sci.                                                                                         Vol. 24, No 6, 2013 

                                                               91 

The coupling strength is ;J its sign defines the preferred spin 

orientation to minimize the total energy. This corresponds to 

ferromagnetic behavior. If J is positive, the energy minimum is 

achieved by orienting as many spins as possible parallel to each other. 

The orientation can be influenced by the external magnetic field B [2]. 

In order to compute the thermodynamics of this system, J and B can be 

measured in units of temperature. The system is configured by setting 

each spin variable, resulting in 
ji nn .

2 possible configurations S . The 

weighting of any one of these configurations in the canonical ensemble 

is therefore [2]: 

                                                       

 
 

Z

e
Sw

SH

                                                                   (2)                                                 

       
    

S

SHeBJZ

functionpartitionwith

,
                                                        (3) 

The thermodynamic quantities which can be calculated are the energy E

, the magnetization M , the susceptibility X and the specific Heat at a 

constant field BC  [2-5]: 
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S

B                                                                 (7) 

 

Onsager [2,6] solved the ising model exactly in the limit of
  

ji nn ,  .     

For 0B , the energy and magnetization then simplify to [2,6,7] . 
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The specific heat is 
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Following short-hands are used in these expressions: 
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There is a critical value  4868.0CJ for which 1k , where 
1K has a 

logarithmic singularity. Therefore, all thermodynamic functions are 

singular at cJ , which corresponds to a phase transition. Here, the 

magnetization vanishes for couplings lower than cJ . Stronger couplings 

result in a magnetization taking on one of two equal and opposite 

values. 

 

Monte Carlo Simulation Method 
The arrayN 2   is initialized at a low temperature with aligned spins or 

at a high temperature with random values (1 or −1). Then, the evolution 

at a given temperature is achieved by following the Metropolis 

algorithm which ensures a Boltzmann distribution, i.e the probability 

that the system is in the S configuration is given by using equations (2,3) 

[4-8]: 
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The Monte Carlo method consists to choose randomly a spin to flip. The 

chosen spin is flipped if it is favorable for the energy. The system has
2

2N
configuration, the Metropolis algorithm allows not to test each 

configuration to reach the equilibrium. The Boltzmann distribution 

maximizes the entropy, so it reduces the free energy. 
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When the energy becomes stable, the system reached the thermalisation. 

Then, several configurations are determined by the Metropolis 

algorithm in order to determine the properties of interest as the energy 

and magnetization for types from lattices. In presence of magnetic field: 

the spins align with the magnetic field. 

 

-  At low temperatures, the interaction between the spins seems to be 

strong, the spins tend to align with another. In this case, the 

magnetization reaches its maximal value
 

1M  according to its 

formula, the magnetization exists even if there is no external 

magnetic field. 

- At high temperature, the interaction is weak, the spins are randomly 

up or down. So, the magnetization is close to the value 0M . 

Several configurations suits: the system is metastable. 

- The magnetization disappears at a given temperature. 

- There exists thus a transition phase. In zero external magnetic field,  

      the critical temperature is the Curie temperature 
 21ln

2


CT

(obtained 

     by the Onsager’s theory) [8] . According to the transition phase 

theory, the second-order derivative of the free energy in B and in T

are discontinuous at the transition phase; as the susceptibility and 

the heat capacity are expressed with these derivatives, they should 

diverge at the critical temperature. 

 

RESULTS AND DISCUSSION 
 Influence of the size of the lattice on the characteristic quantities : 

   Smaller lattice 

In order to see the effect of the size of the lattice on the transition of the 

phase, the interaction strength is plotted for lattice size  2222   in the 

absence of magnetic field . begin by creating a square lattice with 

 4842222  particles and assign random spin orientation. Choose a 

random value between  10 and  for the interaction strength and then 

watch how the system evolves over  900  steps to reach an equilibrium. 

The effect of interaction strength for this lattice on energy and 

magnetization have been shown in figures (2,3) . Also, the 

magnetization per site as a function of energy is shown in the figure (4).  
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    Figure-2: Energy as a function of interaction strength for the  222   particle lattice 

 

In figure (2) one can see the speed of evolution is controlled by the 

variable or (value J  = 0.2) .Value of (0.2) means that only 20% percent 

of the originally selected group will have its spin flipped. In essence this 

parameter tries to mimic the evolution of real systems. Even though a 

certain particle will have a smaller energy with its spin flipped it doesn't 

mean that all particles in the lattice that follow that criterion will have 

their spins flipped immediately. Although the total energy of the system 

as function of interaction isn't very distinctive one can see some 

transition at an interaction strength between (0.5 and 0.55). This can be 

seen more clearly when one look at the change in magnetization as a 

function of interaction strength, see figure 3. 

 

 
Figure- 3: Magnetization as a function of interaction strength for the  222  particle 

lattice. 

0.00 1.00 2.00 3.00 4.00 5.00

-1.00

-0.50

0.00

0.50

1.00

Lattic 22*22

Interaction strength

Ising model for square lattice at magnetic field B=0

0.00 1.00 2.00 3.00 4.00 5.00

-2.00

-1.60

-1.20

-0.80

-0.40

Lattic 22*22

Interaction strength

Ising model for square lattice at magnetic field B=0

E
ne

rg
y 

pe
r 

si
te



Al- Mustansiriyah J. Sci.                                                                                         Vol. 24, No 6, 2013 

                                                               95 

At higher interaction strength , the system strongly favors the two 

ground states. These are states with all spins aligned, either all up  1M  
or all down  1M . At strength of interaction slower than the phase 

transition, the spins tend to be randomly aligned, which results in  0M

. This corresponds to a high temperature (the crossing of Curie's 

temperature) since  TkEJ  which means that  J  is inversely 

proportional to T . However, as we increase the interaction strength the 

spins tend to align.  

The relation between magnetization and energy for lattice  2222   have 

been shown in figure (4) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure- 4: Magnetization as function of energy for the  222  particle lattice. 

 

There are two regions of low energy corresponding to spin up 

orientation and spin down. There are also low energy cases that do not 

show a high net Magnetization. This happens when relatively large 

clusters of either spin up and spin down. This is analogous to the 

domains of ferromagnets. It is good to notice that a net Magnetization or 

the formation of domains leads to decreased energy. 
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Influence of the size of the lattice on the characteristic quantities : 

   

  A bigger lattice 

The influence of the lattice size clearly visible when the phase transition 

at an interaction strength  6.0J  for lattice with higher number of 

particles in the absence magnetic field. We notice that if the size is big 

enough, the phase transition is really perceptible. The effect of 

interaction strength for  9898  lattice on energy and magnetization 

have been shown in figures (5,6) . Also the magnetization per site as 

function of energy is shown in the figure (7) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure- 5: Energy as a function of interaction strength for the  298  particle lattice. 

 

In figure (5) the phase transition is much more apparent. Initialize a 

square lattice with  298  particles and watch how the system evolves 

over   96049898  steps to reach an equilibrium. 

The splitting of the line which becomes more apparent as interaction 

strength increases is probably due to different energy for the lattice with 

domains, i.e. zero net magnetization, and the lattice with a total 

magnetization of  11 or [4]. 
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Figure- 6: Magnetization as a function of interaction strength for the  298  particle 

lattice. 

 

In figures (6 and 7) the population of atoms in case of  4842222   are 

more distinguishable for  1M and  1M  branches than  9898   

for the case of a  particle lattice. It turns out that this is in agreement 

with theory. We will end by comparing these results with theoretical 

model . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure- 7: Magnetization as function of energy for the  298  particle lattice. 
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In figure (7) at high interaction strength there appears to be also a class 

of ‘metastable’ states in which approximately half of the spins are up 

and approximately half are down, with aligned spins forming large 

contiguous clusters. 

These states account for the cluster of points around  0M at high 

interaction strength, and, therefore, the lower of the two lines in the 

energy plot (as the boundary between the spin-up cluster and the spin-

down cluster will decrease the energy slightly from the ground state).  

It is also interesting to plot magnetization versus energy, which is done 

in figure (7). Higher-density regions indicate the four states. Around

 2,4.0  EM   we find the two high interaction strength ground 

states; centered at  7.0,0  EM  we find the low interaction strength 

phase; and around  7.1,0  EM  we find the high interaction 

strength metastable states. 
 

   Comparing the Model with theory 

It is easy to calculate the theoretical values for energy and 

magnetization according to equations (8) and (9) by using analytical 

solutions methods. One can see compare between the results Monte 

Carlo model and theoretical values for the bigger lattice  9898  have 

been shown in figures (8,9) . The theoretical model assumes an infinite 

lattice which affects the meaning of all comparisons. It is however a 

reassuring thing that Monte Carlo model gives better results for the 

bigger lattice. One can see that the theoretical model for the energy is 

quite different from what obtain using model, see figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

 

   Figure -8: Energy as a function of interaction strength for the  298  particle lattice. 
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According to theory the energy per site goes to infinity when the 

interaction strength goes to zero. This is in agreement with the fact that 

the interaction strength is reversely proportional to temperature and as 

temperature goes to infinity the energy of each particle should too. 

 In figure (9) one see a much nicer agreement between theory and the 

Monte Carlo model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure- 9: Magnetization as a function of interaction strength for the  298  particle 

lattice. 
 

There are high interaction strength cases where the net magnetization is 

close to zero and these correspond to the formation of domains in 

ferromagnetic materials [4]. 

 
CONCULOSIONS 

The Monte Carlo method applied to the ising model which describes the 

magnetic properties of materials allows to obtain the thermodynamic 

quantities variations with different lattice sizes. The results were 

consistent with the expected Monte Carlo model and theoretical values 

for the bigger lattice in which infinite size effect. All the values 

calculated, based on the fact, that the only positive coupling constant 

(interaction strength) are used . In this case one can see that the 

exchange energy,   21. SSJ , is negative and thus the spins prefer to be 

parallel, which leads to ferromagnetism. Hence, below the  6.05.0 J , 

becomes spontaneous magnetization. 
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in the case of the bigger lattice, to reach an equilibrium, the evolution of 

the system over  96049898  steps only is needed . 

There are two reasons for an increased computational time in a larger 

lattice.  

1-  Since it is bigger the flipping of spins for more particles needs to 

be decided. 

2- It takes greater time for a larger system to reach equilibrium which 

that must be let the system evolve over a larger number of steps. 

In this case, since the calculations are more demanding. 

REFERENCES 
1. O'Hare A., Kusmartsev F.V, and Kugel K.I, "Two-Dimensional 

Ising Model with Competing Interactions as a Model for Interacting

 -Rings" , Vol. 115, No.1 (2009), Department of Physics, 

University Lough borough ,UK . 

2. Stefan Sellner, "Ising model calculations using the Monte-Carlo 

method"  (March 11, 2008) . 

3. Robert Knegjens, " Simulation of the 2D Ising Model "  ( May 13, 

2008 ) 

4. Jon Emil Gudmundsson," Monte Carlo method and  the Ising 

model" University of Uppsala (2010) . 

5. Steven E. Koonin, "Computational Physics" (The 

Benjamin/Cummings Publishing Company,Inc., 1986) . 

6. Lars Onsager, Phys. Rev.,  p. 117,1944 . 

7. Kerson Huang, "Statistical Mechanics"(John Wiley & Sons, 1987). 

8. Guavin Laetitia "Monte Carlo Method  applied to the ising model" 

( December 17,2004) . 


