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The first objective of the present manuscript is to introduce the notion of complex-valued D∗
c -metric spaces as generalizing and

improving the idea ofD∗-metric spaces by using the context of complex-valued metric space andD∗-metric spaces. The principle
of contraction mappings has recently been established. Furthermore, the second objective is devoted to establishing various new
fixed-point theorems in complete complex-valued D∗

c -metric spaces that are improved and generalized by Azam et al. Banach’s
contraction principle and various distinguished outcomes are also presented in the literatures. Additionally, some
implementations of common fixed-point theory on complete complex-valued D∗

c -metric spaces have been offered by applying
open and closed balls. Additionally, we provide some illustrative examples as an implementation for our main results.
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1. Introduction and Preliminaries

The metric spaces provide a more general setting for
researchers in various fields such as pure and applied math-
ematical analysis, mathematical modelling, optimization,
and economic theories. As motivated by the impact of met-
ric spaces to mathematical analysis, various researchers
extended the concept of metric spaces to various other
abstract spaces such as G-metric, Gb-metric, and cone metric
D∗-metric and complex D∗

c -metric spaces. On the other
hand, the complex-valued metric spaces are advantageous
in several branches of pure and applied mathematics, includ-
ing algebraic geometry and number theory. Banach’s con-
traction principle provides a technique for solving a variety
of pure and applied problems in mathematical sciences,
physics, and engineering and has been expanded and
enhanced in various directions, and it is commonly cited
as the origin of metric fixed-point theory. Thus, the Banach
contraction principle has several extensions. In 2004, Ran

and Reurings [1] considered an important extension of the
Banach contraction principle, and Nieto and Rodriguez-
Lopez in [2] described and highlighted the presence and
uniqueness of fixed-points for this contractive condition
for the equivalent elements of X. It also presented the
Banach contraction principle in a metric space endowed
with a partial order. Following that, other writers took into
account various reports of integral contractions and came
up with fixed-point conclusions on these contractions in var-
ious metric spaces [3, 4]. The concept of complex metric space
began via Azam, Fisher, and Khan [5] to take advantage of the
notion of complex-valued Hilbert and complex-valued
normed spaces to prove the existence of fixed-points under
certain contractive condition. Sitthikul and Saejung [6]
verified various fixed-point outcomes via extending the con-
tractive conditions in setting of complex spaces. Several
authors contributed diverse ideas in complex metric spaces,
and we refer readers to see [7–12]. After that, Öztürk and
Kaplan [13] proved the existence and uniqueness of
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common-coupled fixed-points for maps in the setting of
complex-valued Gb-metric. As well, in the same year, Dubey,
Shukla, and Dubey [14] obtained some fixed-point results
for a map satisfying rational expression in complex-valued
b-metric space. Subsequently, Singh et al. [15] established
several common fixed-points of pair of maps satisfying more
general contractive conditions portrayed via rational expres-
sion in complex metric spaces. In 2018, several ideas, such as
coincidence points and compatible and occasionally weakly
compatible maps, were presented via Ege and Karaca [16] in
the setting of complex-valued Gb-metric space. Recently,
Rashwan, Hammad, and Mahmoud [17] established several
common fixed-point theorems utilizing four weakly compati-
ble maps in complex-valued G-metric space. The purpose of
the present manuscript is to present and study the complex-
valuedD∗

c -metric spaces and establish a contraction principle.
In addition, we verify various novel fixed-point results in com-
plete complexD∗

c -metric that are extended and generalized to
Azam et al.’s, Banach’s contraction principle, and various dis-
tinguished outcomes in the literatures. Moreover, in view of
closed balls, various implementations of common fixed-
point theory on complete complex D∗

c -metric spaces have
been introduced. In our research, first, we introduce different
types of definitions and essential conclusions by using the
term of D∗-metric spaces, since we put in our consideration
that such type of examining will provide the readers a chance
to be fully understand in the following subsequent sections.

In 2007, Shaban, Nabi, and Haiyun [18] presented a new
version of generalized metric spaces, namely, D∗-metric
spaces, as follows.

Definition 1. Let X be a nonempty set. The D∗-metric is a
function D∗ X3 ⟶ 0,∞ ,that verification of the next
statements:

D∗
1 D∗ x, y,z ≥ 0,for each x, y,z ∈X ;

D∗
2 D∗ x, y,z = 0⟺z = y =x ;

D∗
3 D∗ x, y,z =D∗ P x, y,z , where P a per-

mutation function,
D∗

4 D∗ x, y,z ≤D∗ x, y, b +D∗ b,z,z , for each
x, y,z, b ∈X

In that case, the function D∗ is called an D∗-metric, and
the pair X ,D∗ is called an D∗-metric space.

Remark 1. In a D∗-metric space, ∀x,y ∈X ,D∗ x,x, y =
D∗ x, y, y .

Example 1. Direct examples of such a function are the
following:

1. D∗ x, y,z =max d x, y , d y,z , d z,x ,
2. D∗ x, y,z = d x, y + d y,z + d z,x

Here, d is the ordinary metric on X .

Definition 2. Suppose that z1&z2 ∈ℂ. A partial order ≾ on
ℂ is defined as z1≾z2 if f Re z1 ≤Re z2 &Im z1 ≤ I
m z2

It follows that z1≾z2 if the following conditions are
satisfied:

C1 Re z1 =Re z2 and Im z1 = Im z2 ;
C2 Re z1 < Re z2 and Im z1 = Im z2 ;
C3 Re z1 =Re z2 and Im z1 < Im z2 ;
C4 Re z1 < Re z2 and Im z1 < Im z2
In private, write z1⋨z2 if z1 ≠z2, one of C2 , C3 , &

C4 is satisfied, and z1 ≺z2 if only C4 is satisfied.

Remark 2. We acquired that the following statements hold:

(i) If a, b ∈ℝ anda ≤ b⟹ az ≺ bz ∀z ∈ℂ

(ii) If 0≾z1⋨z2 ⟹ z1 < z2

(iii) If z1≾z2&z2 ≺z3 ⟹z1 ≺z3

Azam, Fisher, and Khan [5] extended the notion of
abstract metric spaces by proposing the complex-valued
metric spaces and provide several fixed-point results for
maps satisfying a rational inequality to exploit the notion
of complex-Hilbert and complex-normed spaces as follows.

Definition 3. Let X be a nonempty set. Suppose that the
function D∗ X2 ⟶ℂ, satisfies the following conditions:

C1 0≼d x, y , for each x, y ∈X and d x, y = 0 iff
x = y,

C2 d x,y = d y,x , for each x, y ∈X ,
C3 d x,y ≼d x,z + d z, y , for each x, y,z ∈X
In that case, d is regarded to be a complex-valuedmetric on

X, while X , d is referred to as a complex-valuedmetric space.

Next, we present the idea of complex-valued D∗-metric
space similar to the concept of complex metric space [5] to
extend the idea of complex metric and D∗-metric spaces as
follows.

Definition 4. LetX be a nonempty set. A complexD∗
c -metric

onX is a function D∗
c X3 ⟶ℂ, that satisfies the following

conditions:
CD∗

1 0⋨D∗
c x, y,z , for each x, y,z ∈X ;

CD∗
2 D∗

c x, y,z = 0, if and only if x = y =z ;
CD∗

3 D∗
c x, y,z =D∗

c P x, y,z , where P a per-
mutation function,

CD∗
4 D∗

c x, y,z ≾D∗
c x, y, b +D∗

c b,z,z , for each
x, y,z, b ∈X

In that case, D∗
c is said to be a complex-valued

D∗-metric, and the pair X ,D∗
c is said to be a complex-

valued D∗-metric space.

Remark 3. The following proposition follows readily by uti-
lizing Definition (2), part CD∗

4

Lemma 1. Assume that X ,D∗
c is complex D∗-metric space.

Then, the next statements hold for every x, y,z ∈X

1. D∗
c x, y,z ≾D∗

c x, y, y +D∗
c x,z,z ,

2. D∗
c x,x,y ≾2D∗

c x, y,x
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3. D∗
c x,x, y =D∗

c x, y,y

Definition 5. Presume that X ,D∗
c is a complex-valued D∗

-metric space; then:

1. A sequence xs is complex D∗-convergent to point
x ∈X if for each c ∈ℂ&0 ≺ c, ∃ a positive integer s0
such thatD∗

c x,xs,xr ≺ c for each s, r ≥ s0; we refer
to x as the limit point of xs and write xs ⟶x

2. A sequence xs is a complex D∗-Cauchy sequence,
if ∀c ∈ℂ, and 0 ≺ c, ∃ is a positive integer s0, where
∀s, r ≥ s0,D∗ xs,xs,xr ≺ c.

3. A complex D∗-metric X ,D∗
c is called complex-

valued D∗-complete if each complex-valued D∗-Cau-
chy sequence is complex D∗-convergent of X ,D∗

c

Definition 6. Suppose X ,D∗
c is complex D∗

c -metric. For
0 ≺m and x ∈X , the open ball Bc

D∗ x,m and closed ball
Bc

D∗ x,m with center x and radius m are described as
follows:

Bc
D∗ x,m = y ∈X D∗

c y, y,x ≺m ,
Bc

D∗ x,m = y ∈X D∗
c y, y,x ≾m

1. x ∈X is said to be interior point of A ⊆X , if ∃0 ≺
m ∈ℂ, where

Bc
D∗ x,m ⊆A

2. A point x ∈X is said to be limit point of A whenever
Bc

D∗ x,m A − x ≠∅, for each 0 ≺m ∈ℂ

Definition 7. A subset A of complex-valued D∗-metric
space X ,D∗

c is called:

1. Open when every element of A is interior point of A .

2. Close whenever every limit point of A belongs to A .

Definition 8. Suppose that X ,D∗
c & X∗,D∗∗

c are complex
D∗-metric spaces. In that case, F X ,D∗

c ⟶ X∗,D∗∗
c is

complex-valued D∗-continuous at aο ∈X if F−1 BD∗∗
c

Faο,
m is open in D∗

c ∀m > 0 We say F is complex-valued
D∗-continuous if F is D∗-continuous at each point ofX

From the fact that complex D∗-metric topologies are
metric topologies, the next lemma follows.

Lemma 2. Suppose that X ,D∗
c & X∗,D∗∗

c are two com-
plex D∗-metric spaces. In that case, F X ,D∗

c ⟶ X∗,

D∗∗
c is complex D∗-continuous at aο ∈X iff it is complex

D∗-sequentially continuous at aο; that is, when a sequence
xs is complex D∗-convergent to point aο, obtained Fxs

is complex D∗-convergent to point Faο.

2. First Results in Complex-Valued D∗
c -Metric

Spaces

This section is devoted to establishing the principle of
contraction mappings in complex D∗

c -metric space.

Proposition 1. If X ,D∗
c is a complex-valued D∗

c -metric
space and xs is a sequence in X, so xs is complex-
valued D∗

c -convergent to x iff D∗ x,xs,xr ⟶ 0 as s,
r⟶∞

Proof 1. Assume that a sequence xs is complex D∗
c -con-

vergent to x ∈X Let

ℴ = μ

2
+ i

μ

2
, for μ > 0,

Therefore, 0 ≺ ℴ ∈ℂ, and h ∈ℕ such that D∗ x,xs,xr

≺ ℴ for all s, r ≥h Consequently, D∗ x,xs,xr < ℴ = μ
for all s, r ≥h It follows that D∗ x,xs,xr ⟶ 0 as s, r
⟶∞

Conversely, assume that D∗ x,xs,xr ⟶ 0 as s, r
⟶∞ Then, given that ℴ ∈ℂ with 0 ≺ ℴ, ∃δ > 0 is
a real number (s.t.) for z ∈ℂ, z < δ⟹z ≺ ℴ

For δ, there ish ∈ℕ such that D∗ x,xs,xr < δ for all
s, r ≥h This means that D∗ x,xs,xr ≺ ℴ for all s, r ≥h

Therefore, xs is complex-valued D∗
c -convergent to x

Proposition 2. Let X ,D∗ be a complex-valued D∗
c -metric

space; then, for a sequence xs in X and point x ∈X .
The following are equivalent:

1. xs is complex-valued D∗-convergent to x

2. D∗ xs,x,x ⟶ 0 as s⟶∞

3. D∗ xs,xs,x ⟶ 0 as s⟶∞

4. D∗ x,xs,xr ⟶ 0 asr, s⟶∞

Proof 2. The proof is a consequence of Lemma 1 and Prop-
ositions 1.

Proposition 3. If X ,D∗ is complex-valued D∗
c -metric

space and xs is a sequence in X , so xs is complex D∗
c -

Cauchy iff D∗ xs,xs,xr ⟶ 0 as s, r⟶∞

Proof 3. Assume xs is a complex D∗
c -Cauchy sequence.

Let
ℴ = μ/ 2 + i μ/ 2 , for a real number μ > 0,
Then, 0 ≺ ℴ ∈ℂ, and there is h ∈ℕ such that

D∗ xs,xs,xr ≺ ℴ∀s, r ≥h Consequently, D∗ xs,xs,
xr < ℴ = μ∀s, r ≥h It follows D∗ xs,xs,xr ⟶ 0 as
s, r⟶∞

3Journal of Function Spaces
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Conversely, assume that D∗ xs,xs,xr ⟶ 0 as s,
r⟶∞ So, given ℴ ∈ℂ with 0 ≺ ℴ, ∃δ > 0 (s.t.) for ℴ ∈ℂ,
z < δ⟹z ≺ ℴ.

For δ, ∃, a natural number h (s.t.) D∗ xs,xs,xr < δ
for all s, r ≥h This means that D∗ xs,xs,xr ≺ ℴ for all s,
r ≥h Thus, xs is complex D∗-Cauchy

Proposition 4. If X ,D∗ is complex-valued D∗
c -metric

space. So,D∗
c x, y,z is jointly continuous mapping for each

three of its variables.

Proof 4. Assume a sequence xk , yr , and zs are
complex-valued D∗

c -convergent to x, y, &z, respectively,
in that case, utilizing CD∗

4 obtains: D∗
c x, y,z ≾D∗

c y,
y, yr +D∗

c yr,x,z ,
D∗

c z,x, yr ≾D∗
c x,x,xk +D∗

c xk,yr,z , and
D∗

c z,xk, yr ≾D∗
c z,z,zs +D∗

c zs, yr,xk . Conse-
quently,

D∗
c x, y,z −D∗

c xk, yr,zs ≾D
∗
c y, y, yr

+D∗
c x,x,xk +D∗

c z,z,zs

In the same way, we obtain:

D∗
c xk,yr,zs −D∗

c x, y,z ≾D∗
c yr,yr, y

+D∗
c xk,xk,x +D∗

c zs,zs,z

Utilizing Lemma 1, we obtain

D∗
c xk, yr,zs −D∗

c x, y,z
≾2 D∗

c x,x,xk +D∗
c y,y, yr +D∗

c z,z,zs

Therefore, D∗
c xk, yr,zs −D∗

c x, y,z ⟶ 0 ash,
r, s⟶∞ when utilizing Lemma 2, the result holds.

Now, our main result in this section is to prove a con-
traction principle in complex-valued D∗-metric space, as
follows.

Example 2. Suppose that X =ℂ and D∗
c X3 ⟶ℂ are

defined by

D∗
c z1,z2,z3 = a1 −a2 + a2 −a3 + a3 −a1

+ i b1 − b2 + b2 − b + b3 − b1 ,

where zi =ai ibi ∈ℂ for every i ∈ 1, 2, 3 Thereaf-
ter, X ,D∗

c is a complex-valued D∗-metric space. Define
the mapping T X ⟶X asT z = 1/4z Then,

T satisfy D∗
c Tz1,Tz2,T z3 =D∗

c 1/4z1, 1/4z2, 1/4
z3 = 1/4 a1 −a2 + a2 −a3 + a3 −a1 + 1/4i b1 −
b2 + b2 − b3 + b3 − b1 ≾hD∗

c z1,z2,z3 . Hence,
D∗

c T z1,T z2,T z3 ≾hD∗
c z1,z2,z3 ∀z1,z2,z3 ∈

X , such that 1/4 ≤h < 1, thus z = 0 is a unique fixed-point.

3. Main Results of Fixed-Point Theorems in
Complete Complex-Valued D∗

c -Metric Spaces

This section is devoted to establishing various new fixed-
point outcomes in complete complex-valued D∗

c -metric.
First, the following outcomes will be needed.

Definition 9 (see [19–22]). A mapping Φ 0,∞ ⟶ 0, 1
is called an MT-map (or R −map) if

lim
w⟶t+

Φ w < 1∀t ∈ 0,∞ 1

Remark 4. (see [17]). Clearly, if Φ 0,∞ ⟶ 0, 1 is a
nondecreasing map or a nonincreasing map, then Φ is
an R-map. Therefore, the set of R-maps is a wealthy
collection.

Theorem 1. The following statements are equivalent for map-
ping Φ 0,∞ ⟶ 0, 1 :

1. Φ is anR-mapping.

2. ∀t ∈ 0,∞ , ∃m 1
t ∈ 0, 1 and ε 1

t > 0 such

thatΦ w ≤m
1
t ∀w ∈ t, t + ε 1

t .

3. ∀t ∈ 0,∞ , ∃m 2
t ∈ 0, 1 and ε 2

t > 0 such

thatΦ w ≤m
2
t ∀w ∈ t, t + ε 2

t .

4. ∀t ∈ 0,∞ , ∃m 3
t ∈ 0, 1 and ε 3

t > 0 such

thatΦ w ≤m
3
t ∀w ∈ t, t + ε 3

t .

5. ∀t ∈ 0,∞ , ∃m 4
t ∈ 0, 1 and ε 4

t > 0 such

thatΦ w ≤m
4
t ∀w ∈ t, t + ε 4

t .

6. For any nonincreasing xs s∈ℕ in 0,∞ , we have 0
≤ sups∈ℕΦ xs < 1

7. Φ is a mapping of the contractive factor; for any strictly
decreasing xs s∈ℕ in 0,∞ , we have 0 ≤ sups∈ℕΦ
xs < 1

Now, we present one new fixed-point theorem, which is
one of the important main results of our work.

Theorem 2. Let T X ⟶X be a mapping in a complete
complex-valued D∗-metric space X ,D∗

c Assume that there
exists a R-mapping Φ 0,∞ ⟶ 0, 1 such that

D∗
c T x,T y,T z ≾Φ D∗

c x, y,z D∗
c x, y,z ,∀x, y,z ∈X

2

Then, T has a unique fixed-point on X

Proof 5. Assume that x0 ∈X is given. The sequence xs is
defined as

xs =T sx0 =Txs−1∀s ∈ℕ 3

4 Journal of Function Spaces
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By Remark 4, ∀s ∈ℕ, we have

D∗
c xsxs,xs+1 ≾Φ D∗

c xs−1, xs−1, xs D∗
c xs−1, xs−1,xs

4

This implies that

D∗
c xs,xs,xs+1 ≤Φ D∗

c xs−1, xs−1, xs D∗
c xs−1, xs−1, xs

5

Suppose that λs = D∗
c xs−1,xs−1,xs for each s ∈ℕ.

Then, by (5), we obtain

λs+1 ≤Φ λs λs < λs∀s ∈ℕ 6

Consequently, we realize that λs is strictly decreasing
in 0,∞ . Stratifying (7) of Theorem (1), we obtain

0 ≤ sups∈ℕΦ λs < 1 7

This mean that

0 ≤ sups∈ℕΦ D∗
c xs−1,xs−1,xs < 1 8

Assume that

δ = sups∈ℕΦ D∗
c xs−1, xs−1, xs 9

Then, δ ∈ 0, 1 Via (5) once more, ∀s ∈ℕ, we obtain

D∗
c xs,xs,xs+1 ≤Φ D∗

c xs−1, xs−1, xs D∗
c xs−1,xs−1, xs

≤ δ D∗
c xs−1,xs−1,xs ≤ δ2 D∗

c xs−2, xs−2, xs−1
≤⋯ ≤ δn D∗

c x0,x0,x1

10

For every s, r ∈ℕ with r > s, by the previous inequality
and employing CD∗

4 , we obtain

D∗
c xs,xs,xr ≤ D∗

c xs,xs, xs+1 + D∗
c xs+1,xs+1,xs+2

+⋯+ D∗
c xr−1,xr−1,xr

≤ δs + δs+1+⋯+δr−1 D∗
c x0,x0,x1

< δs

1 − δ
D∗

c x0,x0,x1

Since δ ∈ 0, 1 , lim
s⟶∞

δs/ 1 − δ D∗
c x0,x0,x1 = 0

Thus, via the previous inequality, we obtain

D∗
c xs,xs,xr ⟶ 0 asr, s⟶∞ 11

For every s, r ∈ℕ, via Lemma 1, we obtain

D∗
c xs,xs,xr ≾D∗

c xs,xr, xr +D∗
c xr, xs, xs , 12

which implies

D∗
c xs,xs,xr ≤ D∗

c xs,xr, xr + D∗
c xr, xs, xs 13

Via inequalities (4) and (6), we obtain D∗
c xs,xs,xr

⟶ 0 asr, s⟶∞ By applying proposition Theorem 1,
xs is complex D∗-Cauchy sequence. Via the complete-

ness of X ,D∗
c , ∃q ∈X , (s.t.) xs is complex-valued

D∗-convergent toq
Next, establishing that Tq =q, assuming that Tq ≠q,

for all s ∈ℕ, by 4, via (2), we have

D∗
c xs−1, xs−1,Tq ≾Φ D∗

c xs,xs,q D∗
c xs,xs,q

14

This concludes

D∗
c xs+1,xs+1,Tq ≤Φ D∗

c xs,xs,q D∗
c xs,xs,q

< D∗
c xs,xs,q

15

Letting xs ⟶q as n⟶∞andD∗ be continuous in
each three of its mutables, so by Proposition 4 and utilizing
the limit from both sides of inequality (15), we obtain

D∗
c q,q,Tq ≤ D∗

c q,q,q = 0 16

Since 0⋨D∗
c q,q,Tq , via Remark 1, we have

0 < D∗
c q,q,Tq 17

Therefore, considering (16) and (17), we have

0 < D∗
c q,q,Tq ≤ 0 18

This is a contradiction. Consequently, Tq =q orq ∈
F T

Lastly, illustrate that the fixed-point of T is unique, since
q ∈ F T has demonstrated that F T = q Letp ∈R T

can be explained. Assume p ≠q Via (2), we get

D∗
c q,p,p =D∗

c Tq,Tp,Tp ≼Φ D∗
c q,p,p D∗

c q,p,p ,

19

which implies

D∗
c q,p,p ≤Φ D∗

c q,p,p D∗
c q,p,p 20

Via (20), we get

1 −Φ D∗
c q,p,p D∗

c q,p,p ≤ 0 21

SinceΦ D∗
c q,p,p ∈ 0, 1 , we obtain D∗

c q,p,p ≤ 0
22

This concludes

D∗
c q,p,p = 0 23

Thus, D∗
c q,p,p = 0 This is a contradiction.

5Journal of Function Spaces
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Therefore, it should be p = q, and so F T = q ; the evi-
dence is completed.

The following result is a special case of Theorem 2, and
its proof is similar to that of Theorem 2.

Corollary 1. Let X ,D∗
c be a complete complex value

D∗
c -metric space and
T X ,D∗

c ⟶ X ,D∗
c is a contraction mapping on

X , such that D∗
c Tx,T y,Tz ≾hD∗

c x, y,z for each x,
y,z ∈X , s t h ∈ 0, 1 Then, T has a unique fixed-point.

Next, we present a suitable example to demonstrate
Theorem (2).

Example 3. Let X =ℂ andD∗
c X ×X ×X ⟶ℂ be

defined via

D∗
c z1,z2,z3 = x1 − x2 + x2 − x3 + x3 − x1

+ i Y1 −Y2 + Y2 −Y3 + Y3 − 1 ,
24

where zi =xi + iyi ∈ℂ∀i ∈ 1, 2, 3 . In that case, X ,D∗
c

is a complex-metric.
T X ⟶X and Φ 0,∞ ⟶ 0, 1 are defined by

Tz = 1/10z forz ∈X ,

Φ t ≔ f x =

4
5 , if t = 0,

1
3 , if t > 0

25

Then, Φ isR-mapping. For any z1,z2,z3 ∈ℂ, where
zi =xi + iyi, we have

Tzi =
zi

10 = xi

10 + i
yi

10 ,∀i ∈ 1, 2, 3 26

Via common calculation, can verify that

D∗
c Tz1,T z2,T z3 ≼Φ D∗

c z1,z2,z3 D∗
c z1,z2,z3

27

As a result, each of the assumptions of Theorem 2 is ful-
filled. It is consequently possible to apply Theorem 2.

Theorem 3. Let T X ⟶X be a mapping in a complete
X ,D∗ , and assume there exists a R −mappingΦ 0,∞
⟶ 0, 1 (s.t.) for each x, y,z ∈X

D∗ Tx,T y,Tz ≤Φ D∗ x, y,z D∗ x, y,z 28

In that case, T has a unique fixed-point

Proof 6. The proof of Theorem 3 is a consequence of
Theorem 2.

Remark 5. Because any nondecreasing mapping or any non-
increasing mapping Φ 0,∞ ⟶ 0, 1 is R-mapping, by
employing Theorem 2, we obtain the following outcomes.

Corollary 2. Let T X ⟶X be a mapping in a complete
complex-valued D∗-metric space X ,D∗

c ; assume there is
nondecreasing mapping Φ 0,∞ ⟶ 0, 1 , where

D∗
c Tx,T y,T z ≼Φ D∗

c x, y,z D∗
c x,y,z ,∀x, y,z ∈X

29

Therefore, T has a unique fixed-point on X

Corollary 3. Let T X ⟶X be a map in a complete
D∗-metric space X ,D∗ ; assume there is nondecreasing
mapping Φ 0,∞ ⟶ 0, 1 such that for each x, y,z ∈X

D∗ Tx,T y,T z ≤Φ D∗ x, y,z D∗ x, y,z 30

So, T has unique fixed-point.

Corollary 4. Let T X ⟶X be a mapping in a complete
complex-valued D∗-metric X ,D∗

c ; assume there is nonin-
creasing mapping Φ 0,∞ ⟶ 0, 1 , where

D∗
c Tx,T y,Tz ≼Φ D∗

c x, y,z D∗
c x, y,z , for eachx, y,z ∈X

31

Consequently, T has a unique fixed-point on X

Corollary 5. Let T X ⟶X be a mapping in a complete
X ,D∗ , and assume there is nonincreasing mapping Φ 0,
∞ ⟶ 0, 1 , where

D∗ Tx,T y,Tz ≤Φ D∗ x, y,z D∗ x, y,z , for eachx, y,z ∈X

32

Consequently, T has a unique fixed-point on X

Corollary 6. Let T X ⟶X be a contraction map in the
complete complex-valued D∗-metric space X ,D∗

c ; this
means

D∗
c Tx,T y,T z ≼hD∗

c x, y,z , for eachx, y,z ∈X ,
33

such that h ∈ 0, 1 . In that case, T has a unique fixed-point.

4. Some Applications of Common Fixed-Point
Theorems in Complex-Valued D∗

c -Metric
Spaces

Several implementations of common fixed-point theory are
introduced in this segment with respect to closed balls on
full complex-valued D∗

c -metric spaces.

6 Journal of Function Spaces
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Theorem 4. Let X ,D∗
c be a complete complex-valued

D∗
c -metric space and let x0 ∈X ,0 ≺m ∈ℂ, and e1, e2, e3, e4,

e5 be real numbers such that e1, e2, e3, e4, e5 ≥ 0 and e1 + e2 +
e3 + 3e4 + 3e5 < 1 Assume that F, T X ,D∗

c ⟶ X ,D∗
c

are two mappings satisfying

D∗
c Fx, Fx, Ty ≾e1D

∗
c x,x,y

+ e2
D∗

c Fx, Fx,x D∗
c Ty, Ty, y

1 +D∗
c x,x, y

+ e3
D∗

c Fx, Fx,x D∗
c Ty, Ty, y

1 +D∗
c x,x, y

+ e4
D∗

c Fx, Fx,x D∗
c Ty, Ty, y

1 +D∗
c x,x, y

+ e5
D∗

c Fx, Fx,x D∗
c Ty, Ty, y

1 +D∗
c x,x, y ,

34

for every x, y ∈Bc
D∗ x0,m If

D∗
c Fx0, Fx0,x0 ≤

1 − h
2

m , 35

where h =max e1 + e4/1 − e2 − e4 , e1 + e5/1 − e2 − e5 ; so,
there exists a unique common fixed-point p ∈Bc

D∗ x0,m of
the self-maps F and T

Proof 7. Suppose that x0 ∈X and that the sequence {xs} is
defined as

x2k+1 = Fx2k and x2k+2 = Tx2k+1,
(s.t.) k = 0, 1, 2,⋯. We explain xs ∈Bc

D∗ x0,m ∀s ∈
ℕ by mathematical induction. Utilizing inequalities 7 and
h < 1, we obtain

D∗
c Fx0, Fx0,x0 ≤ m ,

which implies x1 ∈B
c
D∗ x0,m

Assume that x2,⋯,xi ∈ Bc
D∗ x0,m for some i ∈ℕ. If

i = 2k + 1 or i = 2k + 2 (s.t.) k = 0, 1, 2,⋯, i − 1/2, by
inequality (34), get

D∗
c x2k+1,x2k+1,x2k+2

=D∗
c Fx2k, Fx2k, Tx2k+1 ≾e1D

∗
c x2k,x2k,x2k+1

+ e2
D∗

c Fx2k, Fx2k,x2k D∗
c Tx2k+1, Tx2k+1,x2k+1

1 +D∗
c x2k,x2k,x2k+1

+ e3
D∗

c Fx2k, Fx2k,x2k+1 D∗
c Tx2k+1, Tx2k+1,x2k

1 +D∗
c x2k,x2k,x2k+1

+ e4
D∗

c Fx2k, Fx2k,x2k D∗
c Tx2k+1, Tx2k+1,x2k

1 +D∗
c x2k,x2k,x2k+1

+ e5
D∗

c Fx2k, Fx2k,x2k+1 D∗
c Tx2k+1, Tx2k+1,x2k+1

1 +D∗
c x2k,x2k,x2k+1

,

and consequently,

D∗
c x2k+1,x2k+1,x2k+2 ≾e1D

∗
c x2k,x2k,x2k+1

+ e2
D∗

c Fx2k, Fx2k,x2k D∗
c Tx2k+1, Tx2k+1,x2k+1

1 +D∗
c x2k,x2k,x2k+1

+ e4
D∗

c Fx2k, Fx2k,x2k D∗
c Tx2k+1, Tx2k+1,x2k

1 +D∗
c x2k, x2k, x2k+1

implies

D∗
c x2k+1, x2k+1, x2k+2 ≤ e1 D

∗
c x2k,x2k, x2k+1

+ e2
D∗

c Fx2k, Fx2k,x2k D∗
c Tx2k+1, Tx2k+1,x2k+1

1 +D∗
c x2k,x2k,x2k+1

+ e4
D∗

c Fx2k, Fx2k,x2k D∗
c Tx2k+1, Tx2k+1,x2k

1 +D∗
c x2k,x2k,x2k+1

≤ e1 D
∗
c x2k,x2k,x2k+1

+ e2
D∗

c Fx2k+1, Fx2k+1,x2k D∗
c x2k+2,x2k+2,x2k+1

D∗
c x2k,x2k,x2k+1

+ e4
D∗

c x2k+1,x2k+1,x2k D∗
c x2k+2,x2k+2,x2k

D∗
c x2k,x2k,x2k+1

Utilizing (3) of Lemma 1, we get

D∗
c x2k+1,x2k+1,x2k+2 ≤ e1 D

∗
c x2k,x2k,x2k+1

+ e2 D
∗
c x2k+2,x2k+2,x2k+1

+ e4 D
∗
c x2k+2,x2k+2,x2k

By utilizing the condition (CD∗
4 ) and (3) of Lemma 1, we

obtain

D∗
c x2k+2,x2k+2, x2k+1 ≾D∗

c x2k, x2k, x2k+1
+D∗

c x2k+2, x2k+2, x2k+1 , D∗
c x2k+1, x2k+1, x2k+2

≤
e1 + e4

1 − e2 − e4
D∗

c x2k,x2k,x2k+1

36

Via a similar method as above, we obtain

D∗
c x2k+2,x2k+2,x2k+3 ≤

e1 + e5
1 − e2 − e5

D∗
c x2k+1,x2k+1,x2k+2

37

If we take h =max e1 + e4/1 − e2 − e4 , e1 + e5/1 − e2
− e5 , we obtain

D∗
c xi,xi,xi+1 ≤ hi D∗

c x0,x0,x1 ,

7Journal of Function Spaces
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for all i ∈ℕ Let us consider

D∗
c x0,x0,xi+1 ≤ D∗

c x0,x0,x1 + D∗
c x1,x1,x2

+⋯+ D∗
c xi,xi,xi+1

≤ D∗
c x0,x0,x1 1 + h+⋯+hi−1

+ hi D∗
c x0,x0,x1

≤
1 − h
2 m 1 + h+⋯+hi−1

+ hi
1 − h
2 ≤ m 1 − h 1 + h+⋯+hi ≤ m ,

⟹xi+1 ∈B
c
D∗ x0,m Therefore, xs ∈B

c
D∗ x0,m

and

D∗
c xs,xs,xs+1 ≤ hs D∗

c x0,x0,x1 ,

for each s ∈ℕ If take r > s, so we get

D∗
c xs,xs,xr ≤ D∗

c xs,xs, xs+1 + D∗
c xs+1, xs+1, xs+2

+⋯+ D∗
c xr−1,xr−1,xr ⟶ 0,

As r, s⟶∞, that suggests {xs} is a Cauchy sequence
in Bc

D∗ x0,m Thus, there exists a point p ∈Bc
D∗ x0,m

with lim
s⟶∞

xs =p.

Now, we show that Fp =p. Utilizing inequality 4, we
obtain

D∗
c Fp, Fp,p ≤ D∗

c p,p,x2k+2 + D∗
c x2k+2,x2k+2, Fp

= D∗
c p,p,x2k+2 + D∗

c Fp, Fp, Tx2k+1
≾ D∗

c p,p,x2k+2 + e1 D
∗
c p,p,x2k+1

+ e2
D∗

c Fp, Fp,p D∗
c Tx2k+1, Tx2k+1,x2k+1

1 +D∗
c p,p,x2k+1

+ e3
D∗

c Fp, Fp,x2k+1 D∗
c Tx2k+1, Tx2k+1,p

1 +D∗
c p,p,x2k+1

+ e4
D∗

c Fp, Fp,p D∗
c Tx2k+1, Tx2k+1,p

1 +D∗
c p,p,x2k+1

+ e5
D∗

c Fp, Fp,x2k+1 D∗
c Tx2k+1, Tx2k+1,x2k+1

1 +D∗
c p,p,x2k+1

,

which implies that this inequality converges to 0 as
s⟶∞ Consequently, D∗

c Fp, Fp,p = 0, that is, Fp =
p. Via a similar method as above, we illustrate that Tp =p

Now, establish that a fixed-point p is unique. Presume
p∗ ∈Bc

D∗ x0,m also common fixed-point of F and T In
that case, we obtain

D∗
c p,p,p∗ = D∗

c Fp, Fp, Tp∗ ≤ e1 D
∗
c p,p,p∗

+ e2
D∗

c Fp, Fp,p D∗
c Tp∗, Tp∗,p∗

1 +D∗
c p,p,p∗

+ e3
D∗

c Fp, Fp,p∗ D∗
c Tp∗, Tp∗,p

1 +D∗
c p,p,p∗

+ e4
D∗

c Fp, Fp,p D∗
c Tp∗, Tp∗,p

1 +D∗
c p,p,p∗

+ e5
D∗

c Fp, Fp,p∗ D∗
c Tp∗, Tp∗,p∗

1 +D∗
c p,p,p∗

Therefore, we obtain

D∗
c p,p,p∗ ≤ e1 + e3 D∗

c p,p,p∗ ,

since 1 +D∗
c p,p,p∗ > D∗

c p,p,p∗ . Conse-
quently, p =p∗ as e1 + e3 < 1 Therefore, p is unique com-
mon fixed-point of F and T

Observe if we set F = T in Theorem 4, so we obtain the
next result.

Corollary 7. Let X ,D∗
c be a complete complex-valued

D∗
c -metric, x0 ∈X , 0 ≺m ∈ℂ and e1, e2, e3, e4, e5 be real

numbers such that e1, e2, e3, e4, e5 ≥ 0 and e1 + e2 + e3 + 3e4 +
3e5 < 1 Assume that F X ,D∗

c ⟶ X ,D∗
c is a mapping

satisfying

D∗
c Fx, Fx, Fy ≾e1D

∗
c x,x, y

+ e2
D∗

c Fx, Fx,x D∗
c Fy, Fy, y

1 +D∗
c x,x, y

+ e3
D∗

c Fx, Fx, y D∗
c Fy, Fy,x

1 +D∗
c x,x, y

+ e4
D∗

c Fx, Fx,x D∗
c Fy, Fy,x

1 +D∗
c x,x, y

+ e5
D∗

c Fx, Fx, y D∗
c Fy, Fy, y

1 +D∗
c x,x, y ,

38

∀x,y ∈Bc
D∗ x0,m . If D∗

c Fx0, Fx0,x0 ≤ 1 − h/2
m ,

where h =max e1 + e4/1 − e2 − e4 , e1 + e5/1 − e2 − e5 ;
so, there exists a unique fixed-point p ∈Bc

D∗ x0,m of the
self-map F

Example 4. Suppose X =ℂ with the complex D∗-metric on
ℂ is put as follows:

D∗
c z1,z2,z3 = x1 −x3

2

9 + 4 y1 − y3
2

1/2

+ x2 −x3
2

9 + 4 y2 − y3
2

1/2

,

∀z1,z2,z3 ∈ℂ, where z1 = x1, y1 , z2 = x2, y2 , and
z3 = x3, y3

Assume F ℂ⟶ℂ given by Fz =z0,∀z ∈ℂ, wherein
z0 is the closed ball’s center Bc

D∗ z0,m . If we set e1 = 1/2,
e2 = e3 = e4 = e5 = 0, we get

D∗
c Fz1, Fz1, Fz2 =D∗

c z0,z0,z0 = 0≾ 1
2D

∗
c z1,z1,z2 ,

∀z1,z2 ∈B
c
D∗ z0,m . Then, the inequality (38) is satis-

fied. Thus, we get

8 Journal of Function Spaces
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h =max e1 + e4
1 − e2 − e4

, e1 + e5
1 − e2 − e5

= e1 =
1
2 ,

and D∗
c Fz0, Fz0,z0 = 0 ≤ 1/4 m

Therefore, Corollary 7 is verified and there is a unique
fixed-point z0 ∈B

c
D∗ z0,m of the self-mapping F

5. Conclusion

Banach’s contraction principle plays a significant role in various
fields of pure and applied mathematical analysis and scientific
implementations. Therefore, the main aim of the present man-
uscript is to present a complex D∗

c -metric space and verify the
contraction principle in new spaces. Additionally, several novel
fixed-point outcomes in complete complex D∗

c -metric spaces
have been proven which are extended and generalized to
Banach’s contraction principle and various distinguished out-
comes in the previous studies. Additionally, some common
fixed-point theory related implementations, with respect to
closed balls on complete X ,D∗

c , have been presented.
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