Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1116
Title: Predicting the Daily Evaporation in Ramadi City by Using Artificial Neural Network
Authors: Almawla, Atheer Saleem
Keywords: daily evaporation
Predicting
model
Artificial neural network
Issue Date: 2-May-2017
Publisher: Anbar Journal of Engineering Science
Abstract: In this paper the artificial neural network used to predict dilly evaporation. The model was trained in MATLAB with five inputs. The inputs are Min. Temperature, Max. Temperature, average temperature, wind speed and humidity. The data collected from Alramadi meteorological station for one year. The transfer function models are sigmoid and tangent sigmoid in hidden and output layer, it is the most commonly used nonlinear activation function. The best numbers of neurons used in this paper was three nodes. The results concludes, that the artificial neural network is a good technique for predicting daily evaporation, the empirical equation can be used to compute daily evaporation (Eq.6) with regression more than 96% for all (training, validation and testing) as well as, in this model that the Max. Temperature is a most influence factor in evaporation with importance ratio equal to (30%) then humidity (26%).
URI: http://localhost:8080/xmlui/handle/123456789/1116
Appears in Collections:مركز تنمية حوض أعالي الفرات

Files in This Item:
File Description SizeFormat 
Predicting the Daily Evaporation in Ramadi City.pdf1.04 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.