Please use this identifier to cite or link to this item:
http://localhost:8080/xmlui/handle/123456789/1289
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | abed Jassim, Khalid | - |
dc.contributor.author | Salman Abed, Salwa | - |
dc.date.accessioned | 2022-10-15T14:03:38Z | - |
dc.date.available | 2022-10-15T14:03:38Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 17426588 | - |
dc.identifier.issn | 17426596 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/1289 | - |
dc.description.abstract | Eldred and Veeramani have proved the existence and uniqueness of best proximity for contraction cyclic contraction mapping in uniformly convex banach spaces. In this paper, Eldred and Veeramani study is extended to geodesic spaces particularly in CAT(0) spaces, prove the sequences ( 2 ) n x and ( 2 1) n x are Cauchy sequences and prove the existenace and uniqueness of best proximity point for contraction cyclic mapping in CAT(0) spaces | en_US |
dc.language.iso | en | en_US |
dc.publisher | Journal of Physics | en_US |
dc.subject | approximation fixed sequence | en_US |
dc.subject | best proximity | en_US |
dc.subject | contraction cyclic mapping | en_US |
dc.subject | fixed point | en_US |
dc.subject | geodesic spaces | en_US |
dc.subject | CAT(0) space | en_US |
dc.title | Some results on Best proximity in geodesic spaces | en_US |
dc.type | Article | en_US |
Appears in Collections: | قسم الكيمياء |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Jassim_2021_J._Phys.__Conf._Ser._1804_012030 (2).pdf | 410.74 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.