Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2000
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSalim, Ahmad-
dc.contributor.authorJummar, Wisam-
dc.contributor.authorJasim, Farah-
dc.contributor.authorYousif, Mohammed-
dc.date.accessioned2022-10-16T16:58:47Z-
dc.date.available2022-10-16T16:58:47Z-
dc.date.issued2022-03-04-
dc.identifier.citationSalim, Ahmad, Jummar, Wisam K., Jasim, Farah Maath and Yousif, Mohammed. "Eurasian oystercatcher optimiser: New meta-heuristic algorithm" Journal of Intelligent Systems, vol. 31, no. 1, 2022, pp. 332-344.en_US
dc.identifier.issn2191-026X-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2000-
dc.description.abstractModern optimisation is increasingly relying on meta-heuristic methods. This study presents a new meta-heuristic optimisation algorithm called Eurasian oystercatcher optimiser (EOO). The EOO algorithm mimics food behaviour of Eurasian oystercatcher (EO) in searching for mussels. In EOO, each bird (solution) in the population acts as a search agent. The EO changes the candidate mussel according to the best solutions to finally eat the best mussel (optimal result). A balance must be achieved among the size, calories, and energy of mussels. The proposed algorithm is benchmarked on 58 test functions of three phases (unimodal, multimodal, and fixed-diminution multimodal) and compared with several important algorithms as follows: particle swarm optimiser, grey wolf optimiser, biogeography based optimisation, gravitational search algorithm, and artificial bee colony. Finally, the results of the test functions prove that the proposed algorithm is able to provide very competitive results in terms of improved exploration and exploitation balances and local optima avoidance.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofseries31;1-
dc.subjectmeta-heuristicen_US
dc.subjectoptimisationen_US
dc.subjectEurasian oystercatcher optimiseren_US
dc.subjectEurasian oystercatcheren_US
dc.titleEurasian oystercatcher optimiser: New meta-heuristic algorithmen_US
dc.typeArticleen_US
Appears in Collections:مركز التعليم المستمر

Files in This Item:
File Description SizeFormat 
3-Eurasian oystercatcher optimiser New meta-heuristic algorithm.pdf2.38 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.