Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2166
Title: Electricity-theft detection in smart grids based on deep learning
Authors: Ibrahim, Noor
Al-Janabi, Sufyan
Keywords: Blue monkey algorithm
electricity consumption
Convolutional neural network
Deep learning
Smart grid
Issue Date: 4-Aug-2021
Publisher: Bulletin of Electrical Engineering and Informatics
Abstract: Electricity theft is a major concern for utilities. The smart grid (SG) infrastructure generates a massive amount of data, including the power consumption of individual users. Utilizing this data, machine learning, and deep learning techniques can accurately identify electricity theft users. A convolutional neural network (CNN) model for automatic electricity theft detection is presented. This work considers experimentation to find the best configuration of the sequential model (SM) for classifying and identifying electricity theft. The best performance has been obtained in two layers with the first layer consists of 128 nodes and the second layer is 64 nodes. The accuracy reached up to 0.92. This enables the design of high-performance electricity signal classifiers that can be used in several applications. Designing electricity signals classifiers has been achieved using a CNN and the data extracted from the electricity consumption dataset using an SM. In addition, the blue monkey (BM) algorithm is used to reduce the features in the dataset. In this respect, the focusing of this work is to reduce the features in the dataset to obtain high-performance electricity signals classifier models.
URI: http://localhost:8080/xmlui/handle/123456789/2166
ISSN: 2302-9285
Appears in Collections:قسم علوم الحاسبات

Files in This Item:
File Description SizeFormat 
document(2).pdf340.09 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.