Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/6835
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOsamah N.Kassar, Abdul Rahman S.Juma-
dc.date.accessioned2022-10-25T23:47:37Z-
dc.date.available2022-10-25T23:47:37Z-
dc.date.issued2020-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/6835-
dc.description.abstractIn this paper,2l 2lwe introduce2lgenerality the linear operator     . ,, ,, sa pq  ç ø defined on 2 l the2l 2l 2lo2lpen2l 2lunit disc 𝑈 2l = 2l {2l 𝑍 2l 2l ∈ 2l ℂ2l : 2l |2l 𝑍2l |2l < 2l 12l }.By using this linear operator     . ,, ,, sa pq  ç ø , we2l 2l introduce a2l 2lsubclass of analytic functions     . . , , , , ( , ) p q s a d      ç Mo 2l r 2l e 2l over, We obtain some geometric characterization like2l 2lcoefficient estimates2l,2ldis 2l2ltor2lt 2l ion2l 2l 2land2l 2 l 2lg2l r 2l o 2l w 2l t 2l h theorems2lclosure theorems and2l 2 l integral o 2l per 2l at 2l or 2l s,2l rad2l ii of close2l to  2l convexity, i convexity2l 2 land starlikeness 2l f 2l or2lfunction2l s i in t 2l h 2l e i class     . . , , , , ( , ) p q s a d      ç .en_US
dc.language.isoenen_US
dc.publisherAl-Qadisiyah Journal of Pure Scienceen_US
dc.subjectAnalytic functions, Close-to-convex functions2len_US
dc.subject,2lLinear operator, Integral operatoren_US
dc.titleSome2lProperties on a2l 2lClass of Analytic Functions2lInvolving Generalized linear operatoren_US
dc.typeArticleen_US
Appears in Collections:قسم الرياضيات

Files in This Item:
File Description SizeFormat 
888.pdf1.46 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.