Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/6985
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMustafa Ismaeel Naif Alheety-
dc.date.accessioned2022-10-26T18:01:07Z-
dc.date.available2022-10-26T18:01:07Z-
dc.date.issued2020-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/6985-
dc.description.abstractThis paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.en_US
dc.language.isoenen_US
dc.publisherBaghdad Science Journalen_US
dc.subjectLiu estimator, Mean squared error matrixen_US
dc.subjectMixed estimator, Stochastic restricted Liu estimatoren_US
dc.titleNew Versions of Liu-type Estimator in Weighted and non-weighted Mixed Regression Modelen_US
dc.typeArticleen_US
Appears in Collections:قسم الرياضيات

Files in This Item:
File Description SizeFormat 
بحث جامعة بغداد -بنات-بعد النشر.pdf680.56 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.