Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/7000
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMustafa Ismaeel Alheety-
dc.date.accessioned2022-10-26T18:29:33Z-
dc.date.available2022-10-26T18:29:33Z-
dc.date.issued2009-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/7000-
dc.description.abstractIn this paper, under the linear regression model with heteroscedastic and/or correlated errors when the stochastic linear restrictions on the parameter vector are assumed to be held, a generalization of the ordinary mixed estimator (GOME), ordinary ridge regression estimator (GORR) and Generalized least squares estimator (GLSE) is proposed. The performance of this new estimator against GOME, GORR, GLS and the stochastic restricted Liu estimator (SRLE) [Yang and Xu, Statist. Papers 50 (2007) 639–647] are examined in terms of matrix mean square error criterion. A numerical example is considered to illustrate the theoretical results.en_US
dc.language.isoenen_US
dc.publisherProbability and Statisticsen_US
dc.subjectHeteroscedasticity, generalized least squares estimator,en_US
dc.subjectstochastic restricted Liu estimator.en_US
dc.titleA NEW STOCHASTIC RESTRICTED BIASED ESTIMATOR UNDER HETEROSCEDASTIC OR CORRELATED ERRORen_US
dc.typeArticleen_US
Appears in Collections:قسم الرياضيات

Files in This Item:
File Description SizeFormat 
ESAIM Probability and Statistics2011.pdf264.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.